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ABSTRACT
The battery-less Internet of Things (IoT) devices are a key element
in the sustainable green initiative for the next-generation wireless
networks. These battery-free devices use the ambient energy, har-
vested from the environment. The energy harvesting environment
is dynamic and causes intermittent task execution. The harvested
energy is stored in small capacitors and it is challenging to as-
sure the application task execution. The main goal is to provide
a mechanism to aggregate the sensor data and provide a sustain-
able application support in the distributed battery-less IoT network.
We model the distributed IoT network system consisting of many
battery-free IoT sensor hardware modules and heterogeneous IoT
applications that are being supported in the device-edge-cloud con-
tinuum. The applications require sensor data from a distributed set
of battery-less hardware modules and there is provision of joint
control over the module actuators. We propose an application-
aware task and energy manager (ATEM) for the IoT devices and a
vector-synchronization based data aggregator (VSDA). The ATEM is
supported by device-level federated energy harvesting and system-
level energy-aware heterogeneous application management. In our
proposed framework the data aggregator forecasts the available
power from the ambient energy harvester using long-short-term-
memory (LSTM) model and sets the device profile as well as the
application task rates accordingly. Our proposed scheme meets the
heterogeneous application requirements with negligible overhead;
reduces the data loss and packet delay; increases the hardware com-
ponent availability; and makes the components available sooner as
compared to the state-of-the-art.

CCS CONCEPTS
• Computer systems organization→ Sensors and actuators;
Sensor networks; • Networks→ Cyber-physical networks.
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Battery-less IoT Network, Data aggregation, Intermittent comput-
ing, Energy-aware application, IoT Application, Federated energy
harvesting, Vector Synchronization, Cloud/edge computing
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1 INTRODUCTION
The future Internet of things (IoT) networks will comprise of dis-
tributed deployment of battery-less sensing and actuator control
devices that will function using harvested energy from the envi-
ronment. These tiny intermittent computing devices can remotely
monitor environment/ objects in difficult to reach places or inac-
cessible spaces in a maintenance-free manner for long periods of
time (even decades) [11, 17]. The usage of these devices will greatly
impact domains like healthcare, wildlife and forest conservation,
consumer and industrial applications, infrastructure monitoring
and management, and space exploration. The IoT user applications
in scenarios like smart home, smart industry, smart infrastructure
and smart city are more complex and can be supported by the edge
or cloud resources. These require inputs from several IoT hardware
modules that are distributed across a physical space over which
the IoT user application asserts control [13]. In order to achieve a
sustainable deployment of these devices for the above mentioned
use-cases, they need suitable software interfaces that are based on
the specifications of task-based energy requirements [11].

The low-power and battery-free distributed IoT deployment re-
quires efficient and flexible implementation of application [25].
Furthermore, application-specific environmental and programming
abstractions help conceal hidden anomalies in intermittent execu-
tions of battery-less IoT [22]. However, an efficient data aggregation
framework is essential to provide an assured rate of sensor-data
acquisition to support a heterogeneous IoT application in a device-
edge-cloud continuum system. To facilitate this we consider the
application and device state based task rates with underlying task
dependencies.

Figure 1: Intermittent computing example with periodic en-
ergy buffer charging and IoT device on states.

The battery-less IoT devices use small capacitors that charge
by harvesting energy and discharge when powering computing
tasks on IoT hardware modules. The intermittent computing peri-
odic cycles due to the charging and discharging of the capacitor
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is shown in Fig. 1. The energy harvesting mechanism has exten-
sive spatial and temporal unpredictability. This causes variations
in the charge-discharge voltage characteristics of the capacitor [4].
Such limited and varying availability of ambient energy causes the
batteryless device to oscillate between task-execution and recharg-
ing phases [3]. Hence, the application support is constrained and
not guaranteed in such an intermittent computing system. This is
even more challenging in the distributed battery-less IoT device
framework where the application is facilitated by the distributed
sensor deployment in the device-edge-cloud continuum. Therefore,
it is necessary to develop mechanisms that will mitigate the device
state uncertainity and provides a sustainable application support
in distributed batteryless-IoT device network.

The distributed IoT network needs data aggregation to facilitate
IoT user applications [1]. The data aggregator [40] in a battery-
less IoT or low power wireless sensor network requires energy
harvesting aware protocol to perform efficient data collection [1].
The communication tasks need to be scheduled in accordance with
the availability of radio interface on the battery-less IoT device
based on the amount of energy harvested from the environment.
Cloud computing and end-user application based data processing
are integral for taking control decisions in resource constrained
battery-less IoT device networks. Data aggregator facilitates this
by relaying sensor and control information between the resource
constrained IoT device and the user application over the network.

State Vector Synchronization is an application synchronization
protocol in distributed information-centric network [5, 33]. It is
a simple, lightweight protocol that synchronizes content across
distributed applications by allowing periodic and event-triggered
notifications. It offers sharing of data across network participants
and allows participating nodes to detect state change by comparing
state vectors with the local state. The simultaneous state change
updates is thereby possible with minimum delay. In the distributed
battery-less IoT network there is uncertainity associated with the
active state of the sensor and radio modules. Hence, vector synchro-
nization can be used for such a distributed network for sensor data
exchange and data aggregation. Since long-short-term-memory
(LSTM) has been used for forecasting time-series data [35] like
remaining battery life [10], we can also use LSTM model for fore-
casting harvester power. We propose using the LSTM based IoT
device state estimator at the data aggregator, accordingly sched-
uling the sensor data reception and correspondingly setting the
vector synchronization state.

In this paper we propose an application aware task and energy
manager (ATEM) and vector-synchronization based data aggrega-
tion (VSDA) framework for intermittent computing devices. The
VSDA is facilitated by LSTM-based harvester power forecasting to
predict IoT device state. The ATEM selects the application profile
(like normal or low-power) and corresponding task rates based on
application specifications. The application tasks (like sense and
transmit/receive) are then scheduled and correspondingly the pe-
ripherals are controlled in the intermittent computing device. The
energy management unit controls the federated energy harvesting
that considers the upcoming sequence of tasks while dynamically
charging the federated capacitors. Overall, this provides a sustain-
able application support for a distributed battery-less IoT network
in the device-edge-cloud continuum.

The ATEM scheme increases the IoT hardware component avail-
ability by at least 15.28% and makes these components at least
sooner by 22.4s than the state-of-the-art. The VSDA decreases the
data loss and packet delay by 99.04% and 94.96%, respectively, as
compared to the state-of-the-art.

The rest of the paper is organized as follows. Section 2 discusses
related works. Section 3 describes the proposed system model con-
sisting of data aggregator and distributed IoT network to facilitate
heterogeneous IoT applications in the device-edge-cloud contin-
uum. Section 4 presents the proposed functional components and
solution. Section 5 provides details on the evaluation framework
and presents the key performance results. Finally, Section 6 draws
our conclusions.

2 RELATEDWORKS
There has been a rapid increase in the use of embedded systems and
IoT. These embedded devices have diverse requirements depending
upon the application domain in which they are deployed [30]. The
battery-less IoT harvests energy from discontinuous and intermit-
tent ambient energy sources. This drives the on-board intermittent
computing, characterized by frequent transitions between the charg-
ing, computing, and non-powered states [30]. There is a dynamic
variation between the energy buffer ‘charging’ and battery-less IoT
device ‘on’ states resulting in intermittent computing, as shown
in Fig. 1. The device energy is proportional to the system voltage
and frequency [8]. The application-specific performance demands,
such as, task deadlines, can be met while minimizing the power by
dynamically scaling the system voltage and frequency. Dynamic
voltage scaling (DVS) is one such method that maintains the re-
quired performance level by adjusting the system supply voltage to
a suitable minimum [42]. The dynamic frequency scaling (DFS) is
another method that meets the required performance by modulat-
ing the system clock frequency [8]. Dynamic voltage and frequency
scaling (DVFS) is a combination of the above two methods and it
adjusts both the voltage and frequency to maximize the system
efficiency [2, 6]. We use the intermittent computing system hard-
ware emulator to benchmark our proposed solution in terms of its
energy-consumption overhead. We implement the solution on the
emulator using the MSP430x microcontroller that employs DVFS
for its supported active and low-power modes.

The ambient energy source output can extensively vary, both
temporally and spatially. Hence, the energy harvesting systems
incorporate large external energy buffers (such as rechargeable
batteries or supercapacitors) to sustain computation. In energy-
neutral operation unlimited operation is provided by ensuring that
the stored energy never completely depletes [7]. There is an attempt
to balance the long-term energy consumption against the harvested
energy over a period of time (e.g., a day). Energy neutrality can
smooth the long-term variability in energy harvesting supplies, but
requires time to charge, poses environmental issues and deterio-
rates in performance over time. In task-based approaches sufficient
energy storage is used to execute small tasks [7]. In our proposed
ATEM-VSDA scheme, we use energy management and application-
aware task execution in battery-less IoT devices.

Battery-less IoT devices can also employ transient computing
and a power-neutral operation. The device operation can be directly
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supported from energy harvesting without any energy storage. This
requires matching the instantaneous power consumption of the
device to the instantaneous harvested power. It can be achieved by
using control algorithms for DFS and system voltage thresholds.
Here, the system performance gracefully modulates in response to
the incoming power [6]. Additionally a software based maximum
power point (MPP) tracking can also facilitate the power-neutral
operation. It can adapt the power consumption of the system that
is operating at an efficient operating voltage and maximizing for-
ward application execution without adding any external tracking
or control units [7, 14]. We propose a solution for data aggregation
in distributed intermittent computing IoT battery-less device net-
work. In our proposed scheme, we implement the application aware
task and energy manager within the MSP430x microcontroller that
manages the system performance dynamically without the need of
any external functional unit.

Ambient energy source like kinetic energy can be effectively
used in low-power wearables [38]. Such a device can harvest energy
during different human activities. It could acquire more than 2000
images for an hour (7 power saving modes) while being in one
of the modes: sleep, acquire, store, and near-field-communication
(wireless) send [38]. In such an implementation voltage-current
characteristics of the kinetic energy harvesting transducer is used
to find the optimal operating point, i.e. MPP, dynamically [32]. The
MPP sampling rate and harvesting efficiency facilitates dynamic
MPP tracking [32]. In this work, we evaluate our proposed ATEM-
VSDA framework with solar energy harvesting and diverse set of
applications.

Sensor nodes with energy harvesting modules store energy in a
buffer and periodically sense a random field (such as temperature,
humidity) that generates a packet [27, 34]. These packets are stored
in a queue and transmitted using the energy available in the buffer
at that time. Stability needs to be ensured for the sensor data queue
while choosing the highest data rate for transmission under varying
channel conditions [27, 34]. The packet transmission throughput
can be optimized while minimizing the mean delay using a greedy
policy in the low SNR regime [34]. Energy management policies
play an important role in such intermittent computing system to
support applications and sensor data transmission. Such policies
are more efficient when based on the current and past harvested
energy observations rather than future predictions [27].

The sporadic energy availability in intermittent computing sys-
tems makes the real-time task scheduling difficult [19, 20]. However,
the schedulability can be improved by dynamically scheduling the
computational and energy harvesting tasks, as done in Celebi [19].
The schedulability performance with Celebi is further enhanced
along with periodic execution of sensing tasks by using a real-time
periodic task scheduling framework [20]. The battery-less IoT de-
vices can also partition and prioritize harvested energy intomultiple
isolated smaller energy buffers (capacitors). Task scheduling and
different voltage requirements of the peripherals can be facilitated
by these capacitors based on the application [16]. This mechanism
is known as federated energy storage [16]. In our earlier work, we
have developed the application support and energy-attack miti-
gation frameworks for battery-less IoT [36, 37]. In this paper, we
propose application-aware task and federated energy harvesting

manager, ATEM, framework that works in conjunction with the
vector synchronization based data aggregator, VSDA.

An on-demand, coordinated, energy adaptive duty cycle based
slotted cyclic TDMA (time division multiple access) scheme [21] is
used for efficient data collection and control information dissemina-
tion in battery-less IoT device networks. Adaptive duty-cycling [21]
allows an efficient coordinated exchange of control-information
and sensor-data between the data aggregator and the battery-less
IoT device. The collection of information from battery-free devices
in smart-home (with RFID technology) is possible using adaptive
MAC protocol, APT-MAC, for supporting applications like object
identification and counting [24]. In TDMA, the number of slots in a
given time cycle and the slot as well as cycle duration are governed
by the number of available IoT devices in the network that are
associated with the given data aggregator [21].

Distributed information centric networks synchronize the data
collection using vector synchronization [5, 33]. Event-triggered
Consensus-based Vector Synchronization protocol was designed
for information collection in [28]. Blind synchronization without
transmitter-side information is possible using state vector syn-
chronization [26]. LSTM model can be used to forecast battery
charging/discharging time-series data [10]. LSTM model has also
been previously used for the battery state-of-charge estimation [9].
Hence, in our proposed data-aggregator vector synchronization
based scheme we use LSTM model to forecast the harvester power
value and use it to predict the IoT device state.

The following are a few key contributions of this work:

• LSTM-based IoT device state estimate and corresponding
scheduling of beacon packets at the data aggregator.

• Heterogeneous IoT application and distributed IoT network
modeling.

• Vector-synchronization based sensor data aggregation (VSDA)
for distributed battery-less IoT network.

• Application aware task scheduling and federated energy
management (ATEM) at the battery-less IoT device.

3 SYSTEM MODEL
We consider the set of IoT applications, denoted as A = {A𝑖 |1 ≤
𝑖 ≤ 𝐴}. Each IoT application A𝑖 executes over a set of battery-free
IoT hardware modules (or devices), M𝑖 = {M𝑖, 𝑗 |1 ≤ 𝑗 ≤ 𝑀𝑖 }. Each
module M𝑖, 𝑗 consists of an MCU, a transceiver, a transducer, and a
set of sensors, S𝑖, 𝑗 = {S𝑖, 𝑗,𝑘 |1 ≤ 𝑘 ≤ 𝑆𝑖, 𝑗 }. The rate of data acquisi-
tion by sensors S𝑖, 𝑗,𝑘 is denoted as R𝑖, 𝑗,𝑘 . The system-level sensor-
data acquisition rate is maintained in a set, R = {R𝑖, 𝑗,𝑘 |∀𝑖, 𝑗, 𝑘},
at the data aggregator. The Fig. 2 shows a sample scenario with
three IoT applications, i.e., 𝐴 = 3, with corresponding number of
distributed IoT modules as 𝑀1 = 2, 𝑀2 = 4, and 𝑀3 = 5, in the
device-edge-cloud continuum. The data-aggregator is always-on,
powered, and not battery-less. The device state is estimated at
the data aggregator using LSTM forecasting and the vector syn-
chronization state is maintained and updated based on application
specifications and successful sensor data acquisition. The IoT ap-
plications are heterogeneous and are facilitated by processing the
sensor data at the edge/cloud.
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Communication framework and Packet schedule
The data aggregator and the IoT devices (hardware modules) com-
municate using Bluetooth low energy (BLE) that has 40 distinct
radio channels, each with 2MHz bandwidth [41]. Each IoT applica-
tion A𝑖 uses a distinct radio channel C𝑖 . This limits the number of
applications per data aggregator in the system to 40, i.e., 𝐴 = 40. In
the sample scenario shown in Fig. 2, the sensor data of the three
applications is sent over BLE channels 𝐶1,𝐶2, and 𝐶3.

Figure 2: Device-edge-cloud continuum scenario with dis-
tributed IoT device network.

Message type
We define the following three types of messages that are exchanged
between the battery-free IoT hardware module and the data aggre-
gator to facilitate the proposed vector synchronization based data
aggregation for the provision of heterogeneous IoT applications.

1. s e n s o r _ d a t a {
f l o a t ∗ s en so r ;

} ;

This message includes the sensors’ reading from the hard-
ware module.

2. r a t e _ c o n t r o l {
in t ∗ r a t e _ c u r r e n t ;
in t ∗ rate_new ;

} ;

This message exerts the rate control of sensor data acquisi-
tion at the IoT hardware module. The current and new rate
values for the module sensors is given by rate_current[]
and rate_new[], respectively.

3. app_synch {
in t ∗ s yn ch_v e c t o r _ cu r r e n t ;
in t ∗ synch_vector_new ;

} ;

This message facilitates state vector synchronization be-
tween the IoT modules associated with an application and
the data aggregator.

4. a c t u a t o r _ c o n t r o l {
in t s t a t e ; / / on =1 , o f f =0
f l o a t d e g r e e _ c on t r o l ;

} ;

This message exerts actuator control by setting the state
value to ‘1’ or ‘0’ for turning the actuator ‘on’ or ‘off’.

Packet type and Packet schedule
The packets exchanged between the data aggregator and the IoT
modules are categorized as below:

1. Beacon packet is broadcast from the data aggregator to the
sensor nodes. It contains the rate_control, app_synch, and
actuator_control messages. In app_synch, we denote the
synchronization_vector_current as𝑉𝑖 = {V𝑖, 𝑗 |∀𝑖, 𝑗} and
synchronization_vector_new is denoted as𝑉𝑖 = {V̂𝑖, 𝑗 |∀𝑖, 𝑗}.
Here,V𝑖, 𝑗 denotes the current count of sensor data readings
successfully received from the IoT module 𝑀𝑖, 𝑗 in the on-
going time period of duration 𝑇 . V̂𝑖, 𝑗 denotes the desired
new count of sensor data readings to be received from the
IoT module𝑀𝑖, 𝑗 immediately following the current Beacon
packet.

2. Sensor data packet is sent from the IoT module to the data
aggregator. It contains the sensor_data message.

The beacon packet for each application A is broadcast on the
BLE channel C periodically once in every 𝜏 time duration. This
packet indicates the sense (and data acquisition) task rate of the
associated distributed IoT hardware modules. It also contains the
current and new state synchronization vector indicating the desired
sensor node to send the sensor information. Furthermore based on
the edge/cloud based processing of sensor data obtained at the data
aggregator and the user preferences the actuator control is asserted
by the beacon.

Since, there is no guarantee on whether the battery-less IoT
node is on to successfully receive the beacon packet, the same
packet is resent a few times till the corresponding sensor_data is
successfully received or the reattempt count exceeds the predefined
limit reattempt_count.

Device state, Task state, and Task dependency
The device state, D𝑖, 𝑗 , of device M𝑖, 𝑗 is determined by the har-
vested energy available at the device, i.e., E𝑖, 𝑗 . The system-level
current device-state is maintained at the data aggregator in a set,
D = {D𝑖, 𝑗 |∀𝑖, 𝑗, 𝑘}. The estimated device-state for the next slot
at the data aggregator correspondingly is maintained as the set
D̂ = {D̂𝑖, 𝑗 |∀𝑖, 𝑗, 𝑘}. The device state transition diagram is shown
in Fig. 3(a). Based on the energy threshold E𝑡ℎ , the state is set to
low_power (LP) if E𝑖, 𝑗 ≤ E𝑡ℎ and is set to normal (NML), otherwise.

The IoT application specifies the battery-less device task list and
the corresponding device state based task rates. The task states
are controlled by the task manager on-board the IoT hardware
module. The task state transition diagram is shown in Fig. 3(b).
The peripherals and resources that need energy in an intermittent
computing system are: MCU (computing), sensors (sensing), and
radio (transmit-receive) [31]. Each IoT device task can be in one
of the four states shown in Fig. 3(b). Active tasks are set to be in
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Figure 3: Battery-less IoT network (a) device state transition
diagram (b) task states transition diagram (c) task depen-
dency for sensing data transmission (d) task dependency for
actuator control.

ready state and the one being executed is in running state. Task
dependency sets a task to be in blocked state if it is dependent on
another one that is yet to be executed.

The tasks and their timing dependency for sensing data acqui-
sition and actuator control are shown in Figs. 3(c) and 3(d), re-
spectively. The IoT device performs the beacon Receive task and
performs the Sense task thereafter if the vector synchronization
state in the beacon requires a sensor reading from the IoT device.
Thereafter the sensor data is transmitted to the data aggregator
by the Send task. In case the actuator control is required as per
the beacon, the IoT device performs beacon Receive followed by
the actuator Control task. In both the above cases, the Log task
is performed if sufficient energy is available in the capacitor af-
ter performing the Sense and Control tasks. The task manager
sets the state of the tasks and controls the IoT hardware periph-
erals accordingly. It schedules tasks and selects task for run-time
execution.

4 PROPOSED SOLUTION
The proposed data aggregation and IoT device task and energy
manager framework in a distributed battery-less IoT device network
architecture is shown in Fig. 4. The battery-less IoT device has an
application-aware energy manager and a task and device state
manager. These combinedly constitute the ATEM functional block
that manages the hardware components (peripherals) of the IoT
module. The data aggregator performs LSTM-based forecasting
of IoT device harvester power as well as vector synchronization
and beacon control. The coordinated data collection at the data
aggregator is implemented using packet scheduling. Overall, these
constitute the VSDA functional block at the data aggregator. The
end-user application provides the application specifications that
includes the device state (NML or LP) based IoT module sense
task rate, 𝜌 = {𝑟𝐿𝑃

𝑖,𝑗
, 𝑟𝑁𝑀𝐿
𝑖,𝑗

}, and task dependency list. The actuator
control and the sensor data processing is performed using the edge
and cloud computing resource due to the limited resource (energy
and computing) and capabilities of the battery-less IoT device.
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Figure 4: Proposed functional blocks for the data aggregation
and application provision in a distributed IoT device network
architecture.

ATEM: Application-aware Task and Energy
Manager
The Algorithm 1 shows ATEM operation through psuedocode. The
inputs include the application specification (𝜌), IoT device energy
(E𝑖, 𝑗 ), and state vectors for synchronization (𝑉𝑖 ,𝑉𝑖 ). The output of
the algorithm is the device state D𝑖, 𝑗 , sensor data acquisition rate
(R), and energy to store in the capacitor buffers (𝐸1, 𝐸2).

We consider an array of capacitors for federating the energy
storage [16]. The lightweight task like sense, is performed using a
smaller capacitor that charges more quickly, whereas more power-
intensive tasks like radio-transmit, radio-receive is performed
using the energy stored in a larger capacitor.

The Task_Manager sets the device state and task state based on
the energy availability in buffers (E𝑖, 𝑗 ) and task execution order.
We have used two small isolated capacitors for the federated energy
storage. The device state D𝑖, 𝑗 is set to LP if E𝑖, 𝑗 ≤ E𝑡ℎ and NML,
otherwise. The sensor data acquisition rate is set according to 𝜌

and device state. The energy stored in first capacitor is used for
MCU and sensing. The energy stored in second capacitor is used
for radio unit. The transition of a ‘ready’ to ‘running’ state, for a
task, is performed when the energy available in the corresponding
energy buffer (𝐸1 or 𝐸2) is greater than that required to execute
the task (𝐸𝑠𝑒𝑛𝑠𝑒 , 𝐸𝑟𝑒𝑐𝑒𝑖𝑣𝑒 , or 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 ). At each IoT device the task
states are managed based on the application specifications 𝜌 and
vector synchronization information 𝑉𝑖 ,𝑉𝑖 for the given device state
(NML, LP). Furthermore the application requirements 𝜌 and the task
(as well as device) state is used to manage the energy storage in the
federated capacitor bank.

The ATEM framework consists of Energy_manager that imple-
ments the charging controller using the energy harvester output
E𝑖, 𝑗 . The MCU turns on using the energy stored in the first stage
capacitor i.e., 𝐸1. The MCU initiates the proportional charging of
the isolated federated energy buffers (small capacitors). The voltage
equations of the energy harvesting circuit is obtained by assuming
power from the energy source as 𝑃 (𝑡) at time 𝑡 . We consider a par-
allel resistor-capacitor circuit with the equivalent storage capacitor,
𝑐𝑖 in parallel to the resistor equivalent with the rest of the circuit’s
equivalent resistor, 𝑟𝑝 . Hence the voltage of the capacitor, 𝑐𝑖 at time
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instance 𝑡 is given as:

𝑣𝑖 (𝑡) =
√︂
𝑃 (𝑡) · 𝑟𝑝 − 𝑒

−2𝑡
𝑐𝑖 ·𝑟𝑝 ·

(
𝑃 · 𝑟𝑝 − 𝑣20

)
(1)

where 𝑣0 is the capacitor voltage at 𝑡 = 0.
The energy harvesting power observed during slot 𝑛 from source

to buffer 𝑖 is 𝑃𝑖 (𝑛), which is governed by the proposed ATEM
control. The energy level in buffer 𝑖 at the beginning of slot 𝑛 is
𝐸𝑖 (𝑛). The energy level in buffer 𝑖 at the beginning of the next time
slot is given as:

𝐸𝑖 (𝑛 + 1) = (1 − 𝜎𝑖 ) · 𝐸𝑖 (𝑛) + 𝜂𝑖 · 𝑃𝑖 (𝑛) · 𝑡 (2)

where, the duration of slot 𝑛 is 𝑡 , the proportion of energy budget
sourced by buffer 𝑖 is 𝜎𝑖 , and the efficiency of energy buffer 𝑖 is 𝜂𝑖 .
The energy management module dynamically charges the capaci-
tors in order to sustain support of the active task at the earliest.

The energy in the buffers that supports execution of Sense and
[Transmit, Receive] tasks is 𝐸1 and 𝐸2. The Energy_Manager func-
tion proportionally stores the harvested energy in isolated buffers
(small capacitors) based on the state of the task it supports. If the
task is ‘ready’ then a higher proportion of energy, Λ, is stored in
the corresponding buffer, else a lower proportion of energy, 𝜆, is
stored.

VSDA: Vector Synchronization based Data
Aggregator
The Algorithm 2 shows VSDA operation through psuedocode. The
inputs include the application specification 𝜌 , time period 𝑇 , IoT
device stateD, and state vector for synchronization𝑉𝑖 . The output of
the algorithm is the beacon period, vector synchronization current
and new information, and the beacon. The Data aggregator predicts
the battery-less device state using LSTMmodel (lstm) with periodic
updates with the actual device state. The LSTM model forecasts the
harvested power. The rate of beacon packet transmission and its
contents (scheduled sensor data request) is decided based on the
the predicted device states.

The system objective is to meet the sensor data collection rate
requirement of the application (R𝑖, 𝑗,𝑘 ). This is achieved by selecting
the beacon period (𝜏), given the proportion of estimates of the
device states that are correct is 𝛼 . In our proposed solution this
governs the scheduling order of the sensor data collection from the
distributed IoT sensor modules in a synchronized manner by the
data aggregator. The system objective and corresponding beacon
period is given as:

𝛼 · 𝑅(𝜏)−
𝑀𝑖∑︁
𝑗=1

𝑆 𝑗∑︁
𝑘=1

R𝑖, 𝑗,𝑘 ≥ 0, ∀ 𝑖 ∈ [1 . . . 𝐴] (3)

𝑅(𝜏) = 𝑇

𝜏
(4)

𝜏 ≤ 𝛼 · 𝑇

𝑆 𝑗∑
𝑘=1

R𝑖, 𝑗,𝑘

(5)

For a given application, the order of sensor information collection
from the battery-less hardware modules (devices) is synchronized
by the data aggregator by means of the vector sent in the beacon

Algorithm 1: ATEM: Application-aware Task and Energy
Manager

Input: 𝜌 , E𝑖,𝑗 , E𝑡ℎ ,𝑉𝑖 ,𝑉𝑖
Task_Manager(𝜌 , E𝑖,𝑗 , E𝑡ℎ ,𝑉𝑖 ,𝑉𝑖):

1) Select device state D𝑖,𝑗 :
if E𝑖,𝑗 ≤ E𝑡ℎ then

D𝑖,𝑗=LP
else

D𝑖,𝑗=NML
2) Assign sensor data acquisition rate:

for 𝑖 = 1 to 𝐴 do
for 𝑗 = 1 to𝑀𝑖 do

for 𝑘 = 1 to 𝑆𝑖,𝑗 do
state=D𝑖,𝑗

R𝑖,𝑗,𝑘 = 𝑟state
𝑖,𝑗

3) Set task state:
if V̂𝑖,𝑗 > V𝑖,𝑗 then

if E𝑖,𝑗 > 𝐸𝑠𝑒𝑛𝑠𝑒 then
Set Sense task state to running;

else Set Sense task state to ready;

else
Set Sense task to blocked

if Sense is running then
Set Transmit task to ready;

else
Set Transmit task to blocked;

if Sense and Transmit tasks is suspended then
Set Receive task to ready;

else Set Receive to blocked;
if Transmit is ready and E𝑖,𝑗 > 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 then

Set Transmit to running;
if Receive is ready and E𝑖,𝑗 > 𝐸𝑟𝑒𝑐𝑒𝑖𝑣𝑒 then

Set Receive to running;
return D𝑖,𝑗 , R

Energy_Manager(E𝑖,𝑗):
1) Proportion of harvested energy to capacitor
if Sense is ready or running then

Set 𝐸1 = Λ · E𝑖,𝑗

Set 𝐸2 = 𝜆 · E𝑖,𝑗 ;
else
Set 𝐸1 = 𝜆 · E𝑖,𝑗

Set 𝐸2 = Λ · E𝑖,𝑗 ;
return 𝐸1, 𝐸2

Output: D𝑖,𝑗 , R, 𝐸1, 𝐸2

packet. This order is governed by the device states’ and the task
rates of all the IoT modules facilitating a given application.

Data aggregation example
Fig. 5 shows an example with two IoT modules M1,1 in NML
mode and M1,2 in LP mode for application A1. The application
specification has rate requirement of [𝑟𝑁𝑀𝐿

1,1 = 3, 𝑟𝐿𝑃1,2 = 1] in
this example. The beacon packet is broadcast periodically after
𝜏 time duration that is received by active IoT nodes (i.e. radio
is on). Initially the data aggregator (DA) beacon has the param-
eters set as, synchronization_vector_current=[0,0] as well as
synchronization_vector_new=[1,0]. On receiving this beacon
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Algorithm 2: VSDA: Vector Synchronization based Data
Aggregation

Input: 𝜌 ,𝑇 , D,𝑉𝑖 , E𝑖,𝑗 (𝜏𝑛 ) , ∀1 ≤ 𝑖 ≤ 𝐴, E𝑡ℎ

Device_state(D):
1) Estimate energy E𝑖,𝑗 (𝜏𝑛+1 ) in next time slot, 𝜏𝑛+1:
for 𝑖 = 1 to 𝐴 do

for 𝑗 = 1 to𝑀𝑖 do
(𝛼, E𝑖,𝑗 (𝜏𝑛+1 ) )=lstm(E𝑖,𝑗 (𝜏𝑛 ))

2) Estimate the IoT device state D̂𝑖,𝑗 :
if E𝑖,𝑗 (𝜏𝑛+1 ) ≤ E𝑡ℎ then
D̂𝑖,𝑗=LP
else
D̂𝑖,𝑗=NML

3) Assign task rate:
for 𝑖 = 1 to 𝐴 do

for 𝑗 = 1 to𝑀𝑖 do
for 𝑘 = 1 to 𝑆𝑖,𝑗 do

state=D̂𝑖,𝑗

R𝑖,𝑗,𝑘 = 𝑟state
𝑖,𝑗

return R = {R𝑖,𝑗,𝑘 |∀𝑖, 𝑗, 𝑘 }, 𝛼
Vector_synchronization(R,𝑇 , 𝛼):

1) Set beacon period 𝜏 using (5)
2) Set vector synchronization state,𝑉𝑖 :

for 𝑗 = 1 to𝑀𝑖 do
flag=0
if V𝑖,𝑗 < R𝑖,𝑗,𝑘 and flag==0 then
V̂𝑖,𝑗 = V𝑖,𝑗 + 1
flag=1

3) Packet schedule and vector state update:
Schedule Beacon every 𝜏 s.
if M𝑖,𝑗 sensor_data is received then

V𝑖,𝑗 = V̂𝑖,𝑗

if no sensor_data is received during 𝜏 then
Repeat Beacon for maximum reattempt_count times

return𝑉𝑖

Output: 𝜏 ,𝑉𝑖 , ∀1 ≤ 𝑖 ≤ 𝐴, Beacon

Figure 5: Beacon and sensor data packet scheduling for IoT
devices.

the IoT moduleM1,1 sends the sensor_data and the DA updates
the synchronization_vector_current=[1,0] as well as the pa-
rameter synchronization_vector_new=[2,0]. The LPmoduleM1,2
misses the second beacon packet. Since DA predicts the device state

TABLE 1: Application specifications

Application Modules Rate (sensor readings)
per hour per module)
NML LP

1 2 10 5
2 4 16 8
3 5 20 10

TABLE 2: Performance evaluation scenarios

Scenario Proportion of devices per mode (%)
NML LP

1 0 100
2 50 50
3 100 0

the second beaconwas targeted to collect the sensor data fromM1,1.
Overall in the time period 𝑇 , the rate of (3,1) from (M1,1,M1,2) is
successfully achieved in this example.

5 EVALUATION AND RESULTS
We consider a use case of two solar energy harvesting powered
battery-less IoT devices, implemented using TI MSP430FR [40]
(a low power MCU), with Bluetooth low-energy transceiver. We
have used indoor and outdoor measurement datasets, EnHANTS
Irradiance [15, 23], to characterize the solar energy harvesting
power available at these IoT devices. An application cycle consists
of completion of tasks in the following execution order: receive-
sense-send, receive-control. For example, the sensing task needs
to be performed before the radio-send task. The sensor data is sent
to the cloud, with the help of a data aggregator. The control decision
is taken based on data processing or user control in the end-user
application. The radio-receive provides the IoT device with the
decision (from the previous cycle) and control information (from
user application and data aggregator) facilitating the control task
in the ongoing application cycle.

We consider three applications with specifications as given in
Table 1.We study the comparative system performance for the three
system scenarios listed in Table 2. These scenarios have different
proportion of LP and NML state IoT devices in the distributed IoT
network. We evaluate the proposed ATEM scheme in comparison
to federated harvesting (FH, [16, 17]) and central (with a single
large capacitor) energy buffer schemes employing celebi task sched-
uling [19]. We also perform the comparative performance analysis
of VSDA scheme with respect to APT-MAC [24] data aggregation
scheme.

The LSTM model based prediction of Solar Energy Harvesting
Power is performed at the at Data Aggregator for the EnHANTS
dataset. The parameters used for the LSTM model based forecaster
are: 0.001 learning rate, Adam optimizer, 400 epochs, and upto 10
time-series samples. Fig. 6 shows the epoch-wise LSTM model
training and validation loss for the Outdoor and Mobile scenarios.
The loss reduces below 0.2 after 100 epochs. Fig. 7 shows the actual
and predicted harvested power with time for the Outdoor and
Mobile scenarios. The RMSE is less than 2.5mW. The corresponding
proportion of estimates of the device states that are correct (𝛼) is
0.98 and 0.99 for the Outdoor and Mobile scenarios, respectively.
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(a) (b)

Figure 6: Epoch-wise loss of LSTM model training to predict
solar energy harvesting power for (a) Outdoor and (b) Mobile
scenarios.

(a) RMSE=2.473 mW (b) RMSE=0.109 mW

Figure 7: LSTM-based prediction of solar energy harvesting
power using the data from the previous 1 s duration, 100
training epochs, and 10 data values per second, for (a) Out-
door and (b) Mobile scenarios.

Energy consumption overhead of IoT tasks and
ATEMmodules
We evaluate the energy consumption of the functional module of
the proposed solution using the intermittent computing system
hardware emulator, MSPSim. We ascertain the extent of energy
consumption overhead due to the execution of the proposed func-
tional modules on the MSP430f2618 microcontroller that consumes
515 𝜇A at 3 V (i.e. 1.545 mW power, on average) in active mode. The
Dual-Mode Bluetooth low-energy transceiver, CC256x [39], is used
in the IoT device for send and receive tasks. The corresponding
energy consumption of the proposed functional modules are listed
in Table 4. We consider the worst-case energy consumption values
of the application tasks (i.e. sensor (read), send, and receive) based
on the microcontroller datasheet, literature, and MSPSim-based
evaluation [12, 18, 29]. We have included these values of execu-
tion duration and energy consumption of the application tasks
and proposed ATEM functional modules (Application_Manager,
Energy_Manager) in the performance evaluation framework.

TABLE 3: Energy consumption of ATEM functional modules

Module Execution time Energy
Overall ATEM 0.582 𝜇s 0.782 nJ
Energy_Manager 0.198 𝜇s 0.217 nJ
Task_Manager 0.379 𝜇s 0.493 nJ

TABLE 4: Energy consumption of on-board IoT device tasks

Task Duration Energy
Sense 12.030 msec 19.066 𝜇J
Send 52.558 msec 67.891 𝜇J
Receive 58.483 msec 92.931 𝜇J

The execution time and energy consumption of each ATEM
functional modules is lesser than all the IoT application-tasks. We
observe that a single execution of the ATEM functions consumes
0.782 nJ energy and takes 0.582 𝜇s for execution and this is many
order of magnitudes lesser than that of each application task (Sense,
Receive, Send). Fig. 8 shows the energy consumption overhead of
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Figure 8: Overhead of functional modules and overall imple-
mentation of the proposed ATEM framework.

ATEM functional modules with increase in the sensor data acquisi-
tion rate. Even with a high rate of 50 sensor readings per hour the
energy consumption is less than 65 nJ.

Comparative performance
The ATEM comparative performance for the Outdoor and Mobile
scenario, in terms of component (MCU-sense and Radio) available
initial time and availability, is shown in Figs. 9(b)(a) and 9(b)(b),
respectively. The availability of all the components (radio andMCU)
with ATEM is at least 25% higher than the Central and FH schemes.
Also, the components are available at least 20 s sooner with ATEM
as compared to Central and FH schemes.

The VSDA performance for scenarios listed in Table 2 and appli-
cations listed in Table 1, in terms of the application-wise rate and
beacon interval, 𝜏 , is shown in Figs. 10(a) and 10(b), respectively.
This corresponds to the 𝛼 according to LSTM model prediction
performance shown in Fig. 7. The beacon interval is smaller for
a high sensor data acquisition rate. The rate for each application
is higher for the scenarios with more IoT nodes in the LP mode,
causing lesser correct device state estimates, i.e. smaller 𝛼 .

The data-loss and sensor-data packet delay for scenarios listed
in Table 2 is shown in Fig. 11(a) and 11(b), respectively. The VSDA
results in atleast 98% lesser data loss and atleast 100 ms lesser than
APT-MAC scheme. In our proposed framework, VSDA estimates
the IoT device state before initiating the data acquisition and collec-
tion. Subject to device availability, the data aggregation in VSDA
is application and device-state based making the packet transfer
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Figure 9: (a) Available-initial-time and (b) Availability of hard-
ware components with central, FH, and Application-aware
task and energy manager (ATEM) schemes in Outdoor and
Mobile scenarios.
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Figure 10: Application-wise (a) rate and (b) beacon interval,
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to LSTM model devoce-state prediction performance.
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Figure 11: Scenario-wise (a) Data-loss and (b) Packet delay,
for scenarios listed in Table 2.

immediate and successful as compared to APT-MAC that does not
estimate the IoT device state causing higher packet loss and delay.
Overall, the ATEM and VSDA schemes are combinedly effective for
efficient data aggregation in distributed battery-less IoT network,
as compared to the state-of-the-art.

6 CONCLUSION
In this paper, we have proposed an application aware task and
energy manager (ATEM) for IoT devices in a distributed battery-
less IoT network. We also propose a vector synchronization based
data aggregator (VSDA) to facilitate heterogeneous IoT applica-
tions in device-edge-cloud continuum system. The data aggregator
performs LSTM-based forecasting of the available power from the

ambient energy harvester and maintains the IoT device states. The
overhead of the proposed framework implementation is evaluated
using battery-less hardware emulator and is found to be negli-
gible as compared to the application tasks. We have performed
comparative performance analysis for three scenarios with three
heterogeneous applications and varied system conditions, with re-
spect to the state-of-the-art schemes central, FH, and APT-MAC.
Combinedly, the proposed framework, increases hardware com-
ponent availability making them available sooner, reduces data
loss and packet delay as compared to the state-of-the-art. In the
future work, we will accommodate IoT network scalability and
devise mechanisms to handle practical challenges in deployment
for scenarios with extreme variability in available ambient energy.
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