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ABSTRACT
In this paper, we look at and expand the problems of dispersion

and Byzantine dispersion of mobile robots on a graph, introduced

by Augustine and Moses Jr. [ICDCN 2018] and by Molla, Mondal,

and Moses Jr. [ALGOSENSORS 2020], respectively, to graphs where

nodes have variable capacities. We use the idea of a single shepherd,

a more powerful robot that will never act in a Byzantine manner, to

achieve fast Byzantine dispersion, even when other robots may be

strong Byzantine in nature. We also show the benefit of a shepherd

for dispersion on capacitated graphs when no Byzantine robots are

present.
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1 INTRODUCTION
There are many instances in modern life where computational enti-

ties must move around in some space and work together with one

another to perform some task. For example, self-driving cars inter-

acting with one another in order to navigate intersections, overtake

one another, and perform other driving behavior. Another example

is that of using unmanned aerial vehicles to collect information

Part of the work was done while William K. Moses Jr. was a post doctoral fellow at

the University of Houston in Houston, USA. The work of William K. Moses Jr. was

supported in part by NSF grants CCF-1540512, IIS-1633720, and CCF-1717075 and

in part by BSF grant 2016419 and in part by UMass Lowell Pre-tenure Mathematics

Faculty Seed Grant. The work of Amanda Redlich was supported in part by UMass

Lowell Pre-tenure Mathematics Faculty Seed Grant.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICDCN ’24, January 4–7, 2024, Chennai, India
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1673-7/24/01. . . $15.00

https://doi.org/10.1145/3631461.3632310

about the weather [9]. These real world instances can be abstracted

by using the model of mobile robots on a plane or on a graph.

In the context of mobile robots on a graph, several problems have

been well studied in the past, such as exploration [5], gathering [4],

scattering [8], and dispersion [3]. Of interest to us is the problem

of dispersion of mobile robots on a graph, where 𝑘 robots, initially

arbitrarily placed on an 𝑛 node graph, must move around such that

each node has at most ⌈𝑘/𝑛⌉ robots on it. This models, for example,

𝑘 electric vehicles that each need a charge in a city with 𝑛 charging

stations. Since it may take far longer for a vehicle to charge up at a

station than find a station, the goal is for as few vehicles as possible

to share a station.

The problem of dispersion of mobile robots on a graph, intro-

duced in [3], assumed that each node was identical with respect

to satisfying the demand of the robot. However, in real life, this

may not necessarily be the case. Consider again the electric ve-

hicle example. Some locations may have multiple chargers while

others have just one. Here we study the problem of dispersion on

capacitated graphs to model this idea. Each node has a (possibly

zero) capacity, and the total capacity across all nodes is at least the

number of robots. Now dispersion is redefined, the robots must

move around such that each node has at most its capacity of robots

on it.

We further modify the problem to match real-world situations

by introducing capacitated Byzantine dispersion. Robots can some-

times fail, either in simple ways (crash faults) or in arbitrary and

unexpected ways (Byzantine faults). Byzantine dispersion was in-

troduced and first studied in [15, 18]. In previous work [15, 16, 18],

it was assumed that all robots were equally likely to be corrupted.

However, in real life, the robots participating in a task may be het-

erogeneous [22]. Due to budget constraints or availability one may

use a large number of inexpensive robots to perform a task and a

single more expensive robot to aid these robots.

Thus, in this paper, we look at how a single powerful robot,

which we call a trusted shepherd, and multiple weaker robots can

solve Byzantine dispersion on a capacitated graph. We assume that

this trusted shepherd will never act in a Byzantine manner and

all robots are able to identify the shepherd. These are reasonable

assumptions: The shepherd represents a special robot that may be

more powerful than other robots. We can suppose that all robots

have a sensor that is tuned to pick up a specific type of signal only

emitted by the shepherd. For instance, if all robots are equippedwith

a light sensor but only the shepherd is equipped with a source of

light, then it would be impossible for other robots to fake being the
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shepherd.
1
As the shepherd represents a more powerful robot, with

extra hardware or other mechanisms to prevent faulty behavior, it

is reasonable to assume that the shepherd is not Byzantine.

1.1 Model
Graph Description.We consider a graph𝐺 (𝑉 , 𝐸, 𝑐) with𝑉 the set

of nodes, 𝐸 the set of edges, and 𝑐 a capacity function that maps

each node 𝑣 ∈ 𝑉 to some value in [0, 𝑘𝑝 ], where 𝑘 is the number of

robots present in the graph and 𝑝 is some positive constant.
2
We

assume that

∑
𝑣∈𝑉 𝑐 (𝑣) ≥ 𝑘 . The nodes are anonymous, i.e., they

do not have IDs. We use 𝑛 to denote the number of nodes and𝑚 to

denote the number of edges. Note that neither the graph structure

nor 𝑐 are known to robots prior to the start of the algorithm. A

robot discovers 𝑐 (𝑣) only when reaching 𝑣 .

Robot Description. There are 𝑘 (> 1) robots on the graph, each

having a unique ID in the range [1, 𝑘𝑞], where 𝑞 is some positive

constant. Among these robots, one of them is designated the shep-
herd. This robot can never be Byzantine. All robots can detect if a

co-located robot is the shepherd.

We assume time proceeds in synchronous rounds. Each round

consists of two steps: (i) robots co-located with each other commu-

nicate and each robot performs local computation, (ii) each robot

stays at its current node or moves along an edge to an adjacent

node. All robots start the prescribed algorithm at the same time.

Among the 𝑘 robots, at most 𝑓 of them may be strong Byzan-

tine [7]. That is, they may deviate from prescribed algorithms, send

incorrect information to other robots when communicating, and lie

about their IDs. (This contrasts with weak Byzantine behavior [7],

where robots may not lie about their IDs.) There is one subtlety
with respect to strong Byzantine behavior that we wish to make

explicit here. When the notion of a strong/weak Byzantine robot

was introduced in [7] and was subsequently used in [16], it was

assumed that when a robot is present at a node, it could see the

labels of co-located robots, and all information exchanged is done

in a “shouting” manner so that the information becomes common

knowledge to all robots co-located on the node. This implicitly

prevents a Sybil style attack, i.e., a strong Byzantine robot cannot

pretend to send messages originating frommultiple different robots.

As this is implicitly taken care of by the model, we do not explicitly

handle it in our algorithms.

When we consider the Byzantine setting in Section 2, as is usual

(e.g. [7]) we assume that all robots have unlimited memory. When

we consider the non-Byzantine setting in Section 3, we assume

that all robots have limited memory with the exact values required

for the given algorithm. Note that it is possible for robots to not

know the value of a parameter (e.g., 𝑘) and yet require memory that

is proportional to some function of that parameter (e.g., log𝑘) in

order to perform some algorithm. This is a conditional guarantee

of the algorithm and so long as the robots possess this minimum

memory requirement, the algorithm will work as intended.

1
Alternatively, one may assume that the shepherd can use cryptographic primitives

to ensure that he is trusted, such as encrypting messages via a private key whose

corresponding public key is known to all robots.

2
Notice that some nodes may have zero capacity.

Global Knowledge and Assumptions. As a thumb rule, we as-

sume that only the shepherd knows both the values of 𝑛 and 𝑘

unless otherwise stated. Regarding the algorithms for Byzantine

dispersion, we assume that the robots do not know the value of 𝑓

unless otherwise stated. While the explicit knowledge requirements

are made clear in each Theorem, we also mention these require-

ments together in one place in Section 1.3.

ProblemStatement: Dispersion on aCapacitatedGraph:Given
𝑘 robots initially placed arbitrarily on a capacitated graph of𝑛 nodes,

the robots must re-position themselves autonomously to reach a

configuration where each node 𝑢 with capacity 𝑐 (𝑢) has at most

𝑐 (𝑢) robots on it. Subsequently the robots must terminate the algo-

rithm.

Problem Statement: Byzantine Dispersion on a Capacitated
Graph: Given 𝑘 robots, up to 𝑓 of which are Byzantine, initially

placed arbitrarily on a capacitated graph of 𝑛 nodes, the non-

Byzantine robots must re-position themselves autonomously to

reach a configuration where each node 𝑢 with capacity 𝑐 (𝑢) has
at most 𝑐 (𝑢) non-Byzantine robots on it. Subsequently the robots

must terminate the algorithm.

1.2 Useful Procedures from Other Papers
We utilize two procedures from earlier literature. The first is the

routine Explorer-Pebble, called EMT in [7], which can be used by

at least two robots to construct a map of the graph, even when 𝑛 is

unknown. The procedure takes 𝑂 (𝑛3) rounds.
The second procedure we utilize, the universal exploration se-

quence (UXS) of [20], is one that allows a robot to visit all nodes of

a graph of size at most 𝑛, when 𝑛 is given as an input parameter. For

any arbitrary graph, there exists a universal exploration sequence

such that this procedure takes 𝑂 (𝑛5 log𝑛) time. To allow for var-

ious run times depending on prior knowledge of the graph (e.g.,

𝑂 (𝑑2𝑛3 log𝑛) for a 𝑑-regular graph [24]) or for how much memory

a robot has, we simply say that the procedure takes 𝑋 (𝑛) rounds.

1.3 Our Contributions
We make several contributions in this paper. First, we formalized

the the problems of dispersion and Byzantine dispersion in the

capacitated setting in this section.

In Section 2, we show how the use of a trusted shepherd to solve

Byzantine dispersion leads to better guarantees. We first develop an

algorithm that solves Byzantine dispersion on capacitated graphs

in 𝑂 (𝑋 (𝑛) + 𝑛3) rounds and tolerates up to ⌊(𝑘 − 1)/2 − 1⌋ strong
Byzantine robots. This algorithm requires the shepherd to know

the values of 𝑛 and 𝑘 . We then show how to replace the assumption

that the shepherd knows the value of 𝑛 with the assumption that

the shepherd knows the value of 𝑓 and develop an algorithm to

solve Byzantine dispersion on capacitated graphs in 𝑂 (𝑋 (𝑛) + 𝑛3)
rounds that tolerates up to (𝑘 − 1)/3 − 1 strong Byzantine robots.

Finally, we develop an algorithm that replaces the use of a trusted

shepherd with the assumption that the total capacity of the graph is

≥ 𝑐 𝑓 +𝑘− 𝑓 , where 𝑐 is the number of non-zero-capacity nodes. This

algorithm solves Byzantine dispersion in 𝑋 (𝑛) rounds, tolerates up
to 𝑘 − 1 strong Byzantine robots, and only requires the robots to
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know the value of 𝑛, unlike the previous algorithms. However, all
robots must know the value of 𝑛.

Note that an algorithm for dispersion on uncapacitated graphs

which includes map creation (e.g., [16, 17]) can be extended to

capacitated graphs; simply add the capacities of nodes to the map as

they are discovered. Thus, our work can immediately be compared

with prior algorithms, both in terms of time and Byzantine tolerance.

We include details in a table below.

Finally, in Section 3, we show that a shepherd aids in disper-

sion on a capacitated graph even without Byzantine robots. In

this setting we use the shepherd’s memory to store a map of the

whole graph. We explain the technical challenges that render ca-

pacitated non-Byzantine dispersion a non-trivial task. We then

develop a wrapper algorithm that (given any algorithm A for dis-

persion on uncapacitated graphs in 𝑇A rounds and with𝑀A bits

of memory per robot) solves dispersion on capacitated graphs in

time 𝑂 (𝑇A +𝑚) with a requirement of 𝑂 (𝑀A ) bits of memory for

the non-shepherd robots and 𝑂 (𝑀A +𝑚 log𝑘) bits of memory for

the shepherd robot. We note that this wrapper algorithm works

when 𝑘 > 𝑛 and the values of 𝑇A , 𝑛, 𝑘 , and any global knowledge

parameters needed to run A are known to all robots.

We also develop algorithms that handle all values of 𝑘 with less

global knowledge. If only the shepherd knows𝑛 and no robot knows

𝑘 , we give an algorithm using UXS that takes 𝑂 ((𝑋 (𝑛) + 𝑛3 +𝑚)
time and 𝑂 (𝑀𝑥 + 𝑚 log(𝑛𝑘)) bits of memory (where 𝑀𝑥 is the

memory to construct and use a UXS) for the shepherd and𝑂 (log𝑘)
bits of memory for the other robots. If no robot knows 𝑛 or 𝑘 ,

we show a 𝑂 (𝑛3 +𝑚) time algorithm that assumes the shepherd

is initially co-located with at least one other robot, the shepherd

has 𝑂 (𝑚 log(𝑛𝑘)) bits of memory, and the remaining robots have

𝑂 (log𝑘) bits of memory.

We note that all our algorithms are deterministic in nature.

1.4 Comparison with Related Work
The problem of dispersion of mobile robots on graphs was orig-

inally introduced in [3]. Subsequent work [11, 12, 14, 23] in the

synchronous system focused on reducing the time-memory trade-

offs to solve the problem. The current best known algorithm is that

of [14].

The problem has been extended to the asynchronous system [11,

14], dynamic graphs [1, 13], and randomized algorithms [6, 19, 21]

among others. Here we consider robots with Byzantine faults [15,

16, 18].

In order to compare our work with prior related work, we first

set our results in the same context. That is, we make the same

assumption as prior work [16, 17] that 𝑘 = 𝑛 (observe that in this

case knowledge of 𝑛 and knowledge of 𝑘 are one and the same).

Note that [17] contains the strongest results, and those results are

what we compare ours with. In particular, we wish to highlight 3

of our results in this context. The algorithm in [17] handles up to

𝑛 − 1 weak Byzantine robots, where robots start from an arbitrary

configuration, with the assumption that the quotient graph of the

input graph is isomorphic to the input graph. We give an algorithm

(Theorem 2.4) that handles up to𝑛−1 strong Byzantine robots where
robots start from an arbitrary configuration with the assumption

that the total capacity of the input graph is ≥ 𝑐 𝑓 + 𝑛 − 𝑓 , where

𝑐 is the number of non-zero capacity nodes. They have multiple

results that do not require a restriction on the input graph and can

handle robots starting from an arbitrary configuration. However,

(i) their algorithms take asymptotically longer than our algorithm

(Theorem 2.1), (ii) our algorithm has strong Byzantine fault tolerance
that is similar but slightly less than the best weak Byzantine fault

tolerance of their algorithms, and (iii) when compared with their

algorithm that handles strong Byzantine robots, ours requires one
less parameter to be known (i.e., 𝑓 ) and runs exponentially faster.

A comparison of a subset of our results with prior work may be

found in Table 1. We achieve these improvements through use of a

“trusted shepherd”.

To the best of our knowledge, no non-trivial time lower bounds

are known for dispersion or Byzantine dispersion and a trivial lower

bound of Ω(𝑛) rounds holds.

2 THE POWER OF A SHEPHERD IN THE LAND
OF BYZANTINE ROBOTS

2.1 Algorithm & Analysis
In this section, we present an algorithm that utilizes a trusted shep-

herd to allow robots to solve Byzantine dispersion on a capacitated

graph, tolerating up to ⌊(𝑘 − 1)/2⌋ strong Byzantine robots.

Brief Description. The algorithm is similar in structure to the

algorithms from [16], i.e., it can be broken down into three stages,

(i) gathering, (ii) map creation, and (iii) dispersion. However, we

utilize the shepherd to execute these phases differently. In stage 1,

the shepherd uses a UXS to find and gather the remaining robots.

In stage 2, the gathered robots participate in an Explorer-Pebble

routine, where the shepherd acts as the explorer and the remaining

robots act as the pebble, to construct a map of the graph. Finally, in

stage 3, the shepherd leads the other robots to find nodes to settle

down at, before settling down itself.

The following theorem captures the properties of the algorithm.

Due to space constraints, the detailed description of the algorithm

and the proof of the theorem may be found in the full version [10].

Theorem 2.1. There exists an algorithm that allows 𝑘 robots, up
to 𝑓 of which are strong Byzantine robots, that are initially arbitrarily
located on an 𝑛 node capacitated graph to solve Byzantine dispersion
in 𝑂 (𝑋 (𝑛) + 𝑛3) rounds when 𝑓 < ⌊(𝑘 − 1)/2⌋. Furthermore, 𝑘 and
𝑛 must be known to the shepherd.

Notice that if robots are initially gathered, then they only need

to run stage 2 and stage 3 of the algorithm, resulting in a faster run

time. This is also an improvement on the total memory requirements

of robots compared with [16]; here only one robot, the shepherd,

creates and stores the map compared with all robots creating and

storing maps in [16].

Corollary 2.2. There exists an algorithm that allows 𝑘 robots,
up to 𝑓 of which are strong Byzantine robots, to solve Byzantine
dispersion on an 𝑛 node graph in𝑂 (𝑛3) rounds when 𝑓 < ⌊(𝑘 −1)/2⌋
and all robots are initially gathered at the same node. Furthermore, 𝑘
and 𝑛 must be known to the shepherd.
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Table 1: Comparison of our results and previous results for Byzantine dispersion of 𝑘 robots on an 𝑛 node capacitated graph in
the presence of at most 𝑓 Byzantine robots. Note that previous results assume 𝑘 = 𝑛 (so knowledge of 𝑛 implies knowledge of 𝑘),
whereas our results are for any 𝑘 robots. In order to accurately compare our results with previous work, one should substitute
𝑘 = 𝑛 in our results. Note that Λ𝑔𝑜𝑜𝑑 is the length of the largest ID among non-Byzantine robots, Λ𝑎𝑙𝑙 is the length of the largest
ID among all robots, and 𝑋 (𝑛) is the number of rounds required to explore any graph of 𝑛 nodes.

Paper Running Time Starting Byzantine Handles Strong Required

(in rounds) Configuration Tolerance Byzantine Robots Knowledge

[16, 17]
†
* 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛) Arbitrary 𝑛 − 1 No 𝑛

This paper (Theorem 2.4)† 𝑋 (𝑛) Arbitrary 𝑘 − 1 Yes 𝑛

[16, 17]
†✠ 𝑂 (𝑛4 |Λ𝑔𝑜𝑜𝑑 |𝑋 (𝑛)) Arbitrary ⌊𝑛/2 − 1⌋ No 𝑛

[16, 17]
†⋄ 𝑂 ((𝑓 + |Λ𝑎𝑙𝑙 |)𝑋 (𝑛)) Arbitrary 𝑂 (

√
𝑛) No 𝑛

[16, 17]
† 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝑛) Arbitrary ⌊𝑛/4 − 1⌋ Yes 𝑛 and 𝑓

This paper (Theorem 2.1)ℵ 𝑂 (𝑋 (𝑛) + 𝑛3) Arbitrary ⌊(𝑘 − 1)/2 − 1⌋ Yes 𝑛 and 𝑘

[16, 17]
† 𝑂 (𝑛4) Gathered ⌊𝑛/2 − 1⌋ No 𝑛

[16, 17]
† 𝑂 (𝑛3) Gathered ⌊𝑛/3 − 1⌋ No 𝑛

[16, 17]
† 𝑂 (𝑛3) Gathered ⌊𝑛/4 − 1⌋ Yes 𝑛

This paper (Corollary 2.2) 𝑂 (𝑛3) Gathered ⌊(𝑘 − 1)/2 − 1⌋ Yes 𝑛 and 𝑘

†
This result assumes 𝑘 = 𝑛.

*This result holds only for those graphs where the quotient graph is isomorphic to the original graph.

†
This result holds only for those graphs where the total capacity of the graph ≥ 𝑐 𝑓 + 𝑘 − 𝑓 , where 𝑐 is the number of

non-zero capacity nodes.

✠
Since |Λ𝑔𝑜𝑜𝑑 | = 𝑂 (log𝑛) and 𝑋 (𝑛) = �̃� (𝑛5) (see [2, 24]), 𝑂 (𝑛4 |Λ𝑔𝑜𝑜𝑑 |𝑋 (𝑛)) = �̃� (𝑛9).

⋄
Since |Λ𝑎𝑙𝑙 | = 𝑂 (log𝑛), 𝑓 = 𝑂 (

√
𝑛), and 𝑋 (𝑛) = �̃� (𝑛5) (see [2, 24]), 𝑂 ((𝑓 + |Λ𝑔𝑜𝑜𝑑 |)𝑋 (𝑛)) = �̃� (𝑛5

√
𝑛).

ℵ
Since 𝑋 (𝑛) = �̃� (𝑛5) (see [2, 24]), 𝑂 (𝑋 (𝑛) + 𝑛3) = �̃� (𝑛5).

2.2 Replacing the Shepherd’s Knowledge
Requirement of 𝑛 with 𝑓

In this section, we design an algorithm that substitutes the shep-

herd’s knowledge requirement of 𝑛 with that of 𝑓 . However, the

tolerance of the algorithm to Byzantine robots is reduced, i.e., the

algorithm can only handle 𝑓 < (𝑘 − 1)/3 strong Byzantine robots.
Due to space constraints, the detailed algorithm and the proof of

the theorem can be found in the full version [10].

Brief Description. This is a three stage process. In stage one, all

non-shepherd robots perform UXSes with input parameter 2
𝑖
for

increasing values of 𝑖 = 1, 2, 3, . . . until they find the shepherd. The

shepherd waits until at least 𝑘 − 𝑓 − 1 other robots find it and then

moves to stage two. In stage two, the shepherd and the gathered

robots
3
construct the map of the graph using an explorer-pebble

routine, resulting in the shepherd knowing the value of 𝑛. The final

stage consists of the shepherd waiting at a node for a sufficient

amount of time to allow for any remaining non-Byzantine robots

find it, then settling the robots and itself as before.

Theorem 2.3. There exists an algorithm that allows 𝑘 robots, up
to 𝑓 of which are strong Byzantine robots, that are initially arbitrarily
located on an 𝑛 node capacitated graph to solve Byzantine dispersion
in 𝑂 (𝑋 (𝑛) + 𝑛3) rounds when 𝑓 < (𝑘 − 1)/3. Furthermore, 𝑘 and 𝑓

must be known to the shepherd.

3
Since there are at least 𝑘 − 𝑓 − 1, a majority are non-Byzantine.

2.3 Replacing the Shepherd with an Input
Condition

Here we give an algorithm to solve Byzantine dispersion without

the use of a shepherd, as long as input conditions are met. Due

to space constraints, the detailed algorithm and the proof of the

theorem can be found in the full version [10].

Brief Description. Each robot 𝑅 explores the graph according to

the universal exploration sequence with input parameter 𝑛 for𝑋 (𝑛)
rounds. At each timestep, at each node, the robots present check its

remaining capacity and then that many robots settle there while

the remainder (if any) keep exploring. After 𝑋 (𝑛) rounds are over,
the robot terminates the algorithm.

Theorem 2.4. There exists an algorithm that allows 𝑘 robots who
all know 𝑛, up to 𝑓 of which are strong Byzantine robots, that are
initially arbitrarily located on an 𝑛 node capacitated graph, to solve
Byzantine dispersion in 𝑋 (𝑛) rounds when 𝑓 < 𝑘 and the total capac-
itance of the graph is ≥ 𝑐 𝑓 +𝑘 − 𝑓 , where 𝑐 is the number of non-zero
capacity nodes.

3 THE USE OF A SHEPHERD IN THE
CAPACITATED MODEL WITH NO
BYZANTINE ROBOTS

In this section, we show how a trusted shepherd can be beneficial

even in the absence of Byzantine robots. In Section 3.1, we present

a wrapper algorithm that allows one to solve dispersion on a capac-

itated graph using any pre-existing dispersion algorithms for an

uncapacitated graph. We make the assumption that 𝑘 ≥ 𝑛 for this
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algorithm, which is natural (e.g., consider cars navigating a city in

search of parking where roads are edges and garages are nodes). In

Section 3.2, we show how to remove this assumption at the expense

of a possibly larger run time and possibly more memory required

by the shepherd.

Motivation and Technical Challenges:
A typical dispersion algorithm would explore the graph by set-

tling robots on vacant nodes as they are encountered, and using

those settled robots as signposts for unsettled robots. That pro-

cess will not work for the capacitated version: Suppose we have

to disperse 𝑘 robots on an 𝑛 node graph where only two nodes

have non-zero capacity. We have a contradiction once the first but

not the second non-zero-capacity node is found. The robots should

settle there (and leave their zero-capacity nodes unsettled), but on

the other hand the robots must remain on the zero-capacity nodes

to facilitate exploring the rest of the graph and finding the second

non-zero capacity node.

The situation becomes evenmore difficult if the number of robots

𝑘 is less than the number of nodes 𝑛, in which case the robots may

not even have enough memory collectively to store a map of the

graph. Our algorithm successfully overcomes both of these issues.

Notes and Assumptions: We note that pre-existing algorithms

for dispersion often assume that either 𝑘 = 𝑛 or 𝑘 < 𝑛, but those

algorithms can be easily converted into algorithms for 𝑘 ≥ 𝑛 when

the value of ⌈𝑘/𝑛⌉ is known to the robots: Instead of assuming only

1 robot may settle at a node, they may assume that up to ⌈𝑘/𝑛⌉
robots may settle at each node and act appropriately. An additional

𝑂 (log(𝑘/𝑛)) bits of memory per robot is needed, however that is

subsumed by the𝑂 (log𝑘) bits for each robot to store its own unique
ID.

We assume that all robots have access to a dispersion algorithm

A, know its run time 𝑇A and have enough memory 𝑀A to run

A. We require that all robots know 𝑛 and 𝑘 and also whatever

assumptions are needed in order to run A.

3.1 Handling 𝑘 ≥ 𝑛 Robots
As discussed above, the primary challenges for dispersion across a

capacitated graph are creating a map of the graph and then deter-

mining where each robot should settle. We use a shepherd to deal

with both difficulties.

Brief Description.Our wrapper algorithm consists of three phases.

In phase one, all robots run an already existing dispersion algorithm

A, treating the graph as uncapacitated. In phase two, the shepherd

performs a depth first search (DFS) of the graph to construct a map

of the graph using the temporarily settled robots to differentiate

nodes. In phase three, the shepherd first collects all the robots using

a DFS as before, then performs a second DFS allocating robots to

nodes subject to capacity constraints. When the shepherd allots

a robot to a node, that robot terminates the algorithm. Once all

robots (including the shepherd) are allotted to nodes, the shepherd

terminates.

Theorem 3.1, given below, captures the properties of the algo-

rithm. Due to space constraints, the detailed version of the algo-

rithm as well as the proof of the theorem may be found in the full

version [10].

Theorem 3.1. Assume that 𝑘 robots have access to an algorithm
A that solves dispersion on an uncapacitated graph of 𝑛 nodes in time
𝑇A and requires each robot to have 𝑀A bits of memory. If 𝑘 ≥ 𝑛

and all the robots know the value of 𝑇A , 𝑛, 𝑘 , and whatever other
global knowledge is required to run A, then there exists an algorithm
to solve dispersion of 𝑘 robots on an 𝑛 node capacitated graph in
time 𝑂 (𝑇A +𝑚), where𝑚 is the number of edges of the graph, with
a memory requirement of 𝑂 (𝑀A +𝑚 log𝑘) bits of memory for a
shepherd robot and 𝑂 (𝑀A ) bits of memory for the remaining 𝑘 − 1

robots.

The current best known algorithm for dispersion on an uncapaci-

tated graph is that of [14], which allows 𝑘 robots initially arbitrarily

located on an 𝑛 node graph (where 𝑘 ≤ 𝑛) to achieve dispersion

in 𝑂 (min{𝑚,𝑘Δ}) time, where Δ is the maximum degree of the

graph and𝑚 is the number of edges, and requires each robot to

have 𝑂 (log(𝑘 + Δ)) bits of memory. From the previous theorem

and our discussion just prior to Section 3.1 on how to convert dis-

persion algorithms on uncapacitated graphs that work for 𝑘 ≤ 𝑛 to

dispersion algorithms on uncapacitated graphs that work for 𝑘 ≥ 𝑛,

we have the following corollary.

Corollary 3.2. Assume that 𝑘 robots have access to the disper-
sion algorithm A from [14] for uncapacitated graphs. If 𝑘 ≥ 𝑛 and
all the robots know the values of 𝑂 (min{𝑚,𝑘Δ}) (where 𝑚 is the
number of edges of the graph and Δ is the maximum degree of the
graph), 𝑛, 𝑘 , and the global knowledge requirements of algorithm A,
then there exists an algorithm to solve dispersion of 𝑘 robots on an 𝑛
node capacitated graph in time 𝑂 (𝑚) with a memory requirement of
𝑂 (𝑚 log𝑘) bits of memory for the shepherd robot and𝑂 (log(𝑘 + Δ))
bits of memory for the remaining 𝑘 − 1 robots.

3.2 Handling Any Value of 𝑘 Robots
The algorithm in Section 3.1 assumed that the number of robots

𝑘 was greater than or equal to the number of nodes 𝑛. Here, we

describe a modification of the preceding algorithm to deal with sce-

narios where 𝑘 is less than 𝑛 or 𝑘 is unknown. To handle these situ-

ations, we use a UXS or the Explorer-Pebble routine, both described

in Section 1.2, rather than a pre-existing dispersion algorithm. In

the below descriptions, we use𝑀𝑥 to denote the memory required

by a robot to construct and use a UXS.

Brief Description. First, the shepherd runs a UXS with input

parameter 𝑛 until it finds another robot. Next, these two robots

perform the Explorer-Pebble routine where the shepherd acts as the

explorer to construct a map of the graph which is stored with the

shepherd. The shepherd learns the value of 𝑘 while constructing the

map by noting how many robots are at each node. After mapping,

the shepherd runs phase three of the algorithm from Section 3.1 to

collect and then disperse the robots.

Note that in this algorithm, only the shepherd needs to know the

value of 𝑛, i.e., 𝑛 does not need to be global knowledge, and 𝑘 can be

unknown. Also, the non-shepherd robots only need 𝑂 (log𝑘) bits
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of memory each to store their unique IDs. Since 𝑘 may be less than

𝑛, the shepherd’s memory required for the map is 𝑂 (𝑚 log(𝑛𝑘)).

Theorem 3.3. There exists an algorithm that allows 𝑘 robots that
are initially arbitrarily located on an 𝑛 node capacitated graph with
𝑚 edges to solve dispersion in time 𝑂 (𝑋 (𝑛) + 𝑛3 +𝑚), requires the
shepherd to have𝑂 (𝑀𝑥 +𝑚 log(𝑛𝑘)) bits of memory, where𝑀𝑥 is the
memory required to construct and use a UXS and 𝑋 (𝑛) is the running
time of that procedure, and the remaining robots to have 𝑂 (log𝑘)
bits of memory. Only the shepherd needs to know the value of 𝑛.

Notice that the running time may be large due to the UXS. If we

assume that all robots are initially gathered, or that the starting

configuration is such that at least one other robot starts on the same

node as the shepherd, then we may skip the use of the UXS and

directly move to the use of the Explorer-Pebble routine to construct

the map of the graph. In this scenario, none of the robots need to

know either the value of 𝑛 or 𝑘 .

Theorem 3.4. There exists an algorithm that allows 𝑘 robots that
are initially located such that the shepherd and at least one robot
initially occupy the same node on an 𝑛 node capacitated graph with𝑚
edges to solve dispersion in time𝑂 (𝑛3 +𝑚) and requires the shepherd
to have 𝑂 (𝑚 log(𝑛𝑘)) bits of memory and the remaining robots to
have 𝑂 (log𝑘) bits of memory. None of the robots need to know the
value of 𝑛 or 𝑘 .

4 CONCLUSION
This work suggests several new lines of future research. Here we

analyzed dispersion on graphs where nodes have different capaci-

ties; what if the robots have different needs as well? This is a model

for when some robots need more of a given resource (e.g., space to

park, energy at a charging station, etc.). Coupled with capacitated

graphs, this would be a more realistic analogue to many real-world

situations.

Another line of research is exploring the utility of a trusted

shepherd in other variants of the traditional models for dispersion

and Byzantine dispersion. For instance, when dealing with dynamic

graphs, could a slightly more powerful robot aid the algorithm

designer? What power would be most helpful?

A third line of research is to see whether the algorithms in this

paper may be adapted to an asynchronous setting. Some of the

algorithms, especially those for Byzantine dispersion, may appear

to be asynchronous in nature as they are event driven (as opposed

to time dependent) and the shepherd is the robot that tells other

robots to terminate the algorithm. However, a key component of

those algorithms is the communication inherent in each round. If

there were no rounds, then it becomes difficult to tell whether all

robots co-located at a node had the chance to communicate with one

another. It especially becomes difficult to differentiate between a

relatively “slow” robot and one that is acting in a Byzantine manner

by refusing to communicate. Perhaps the additional power of the

trusted shepherd could be used to overcome these challenges.
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