
outputs, relate these to the inputs, 
and thus explore and check its func-
tionality. This task faces two long-
standing challenges.

First, there is the input generation 
problem: How can a bot create inputs 
that reliably cover functionality? Ran-
dom system input generators (“fuzz-
ers”20) easily detect issues and vulner-
abilities in input processing of arbitrary 
programs. However, creating valid 
inputs and interactions that reliably 
reach code beyond input processing is 
still a challenge for which test genera-
tors require human assistance—either 
through input specifications1,5,6,10,12,23 
or a comprehensive population of di-
verse input samples that cover behav-
ior.3,17,19,27

One might assume that large lan-
guage models (LLMs) might alleviate 
this problem. Couldn’t a bot learn 
how to interact with software from 
examples or documentation? Or what 
makes a valid input? The problem is 
that to find bugs, one needs valid but 
also uncommon inputs—namely, 
those that trigger less common (and 
less tested) behavior. LLMs may help 
find common (and thus valid) in-
puts—but by construction, they will 
not find uncommon inputs.

The second challenge is the long-
standing test oracle problem: How 
can a bot check the outputs of a sys-
tem? All test generators and fuzzers 
assume some oracle that checks for 
correctness—by default, a generic, 
implicit oracle detecting illegal or un-
responsive states. If, however, a bot is 
to run specific checks, it needs a test 
oracle that retrieves and evaluates the 
relevant information from the out-

S OF T WA R E T E S T I NG CON T I N U E S to be the number 
one technique to satisfy safety, security, and privacy 
requirements. Yet, manual testing is laborious, calling 
for automated software testing. While automatically 
running software tests is current practice, one still 
must write all these tests. Generating software tests 
promises to relieve humans of the testing task, leaving 
the work to “testing bots”—automatic processes 
tirelessly testing and assessing software around the 
clock (See Figure 1).

How can we build such testing bots? To create tests 
for some software, a testing bot first must be able to 
interact with it—that is, produce inputs, examine 
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 key insights

	˽ For effective software testing, we must 
generate valid inputs and check outputs 
for correctness.

	˽ We can address both generating and 
checking by expressing and solving 
constraints over grammar elements.

	˽ We can learn grammars and constraints 
from existing inputs and programs.
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put. Creating oracles manually4,6,16,21,24 
is nontrivial and time-consuming: 
“Compared to many aspects of test 
automation, the problem of automat-
ing the test oracle has received sig-
nificantly less attention and remains 
comparatively less well-solved.”2

The oracle problem not only af-
fects the result of a computation. If 
the bot is to interact with the software 
and produce new inputs in reaction to 
output properties, we have the oracle 
problem at every step of the interac-
tion. Now consider the scale and com-
plexity of today’s software systems and 
their interactions, and you will see 
that software bots have a long way to 
go. For this reason, so much time goes 
into manual testing—and still, soft-
ware catastrophes like Heartbleed7 or 
log4shell, the “largest vulnerability 
ever,”14 keep on haunting us.

To generate tests, we must  
produce valid inputs and check  

outputs for correctness.

Specifying Interactions
Why is generating inputs and check-
ing outputs so hard? The Heartbeat 
extension26 of a TLS server allows 
clients to check whether a server is 
still active by sending a 0x1 byte fol-
lowed by a payload, which the server 
is expected to include verbatim in its 
response.

The syntax of such requests is easy 
to specify. The grammar in Figure 
2 identifies the individual elements 
in the request; we can use it to parse 
given requests (and thus access and 

check its constituents), but also to 
produce requests (and thus test the 
server). Using a grammar as a pro-
ducer ensures syntactic validity. This 
makes test generation far more effi-
cient than generating and mutating 
random bytes, as valid inputs reliably 
exercise functionality beyond input 
processing. (We can still mutate valid 
inputs to test input processing and 
handling of invalid inputs.)

To really test a system, we also 
must check its output. In our Heart-
beat example, the server responds 
with a 0x2 byte, followed by the pay-
load from the request and some pad-
ding. To specify the response, we 
could again use a grammar.

However, we also want to express 
the response is the result of the re-
quest. For this, we can chain request 
and response to a single I/O gram-

mar15 characterizing the interaction 
(Figure 3).

With such an I/O grammar, we 
can parse an entire client/server in-
teraction to check whether a 0x1 cli-
ent request gets a proper 0x2 server 
response. However, we can also pro-
duce inputs for the server, expanding 
<heartbeat _ request>, and then 
parse and check the server response. 
Alternatively, we can mock a server 
by parsing its input and then expand 
<heartbeat _ response> to produce 
its output. By interleaving multiple 
input and output sources in a single 
representation, we obtain a declara-
tive specification of interactions that 
embeds all the expressiveness of fi-
nite-state protocol specifications yet 
is detailed enough to produce valid 
inputs and check concrete outputs 
alike.

Figure 1. With language specs, software bots can test, monitor, and debug software.

Figure 2. An input grammar for the TLS Heartbeat extension.

​< 𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚚𝚞𝚎𝚜𝚝  >   ∷  =  𝟶𝚡𝟷  <  𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 > <  𝚙𝚊𝚢𝚕𝚘𝚊𝚍 > <    𝚙𝚊𝚍𝚍𝚒𝚗𝚐 >​  
​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 >​​   ∷  = ​​ < ​𝚞𝚒𝚗𝚝𝟷𝟼  >​ 
​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​​  ∷ = ​​  𝜖 ∣ < 𝚋𝚢𝚝𝚎 ><   𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​  
​< 𝚙𝚊𝚍𝚍𝚒𝚗𝚐 >​​  ∷ = ​​  𝜖 ∣ < 𝚋𝚢𝚝𝚎 ><   𝚙𝚊𝚍𝚍𝚒𝚗𝚐 >​

Figure 3. TLS Heartbeat I/O grammar. After a client sends a <heartbeat_ request>, 
the server responds with  <heartbeat_response>.

​< 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎  >   ∷  =   < 𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚚𝚞𝚎𝚜𝚝 > <    𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚜𝚙𝚘𝚗𝚜𝚎 >  
< 𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚚𝚞𝚎𝚜𝚝  >   ∷  =  𝟶𝚡𝟷  <  𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 > <  𝚙𝚊𝚢𝚕𝚘𝚊𝚍 > <    𝚙𝚊𝚍𝚍𝚒𝚗𝚐 >​  
​< 𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚜𝚙𝚘𝚗𝚜𝚎 >   ∷ = 𝟶𝚡𝟸 < 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 > < 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 > < 𝚙𝚊𝚍𝚍𝚒𝚗𝚐 >​ 
​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 >​​   ∷  = ​​ < ​𝚞𝚒𝚗𝚝𝟷𝟼  >​ 
​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​​  ∷ = ​​  𝜖 ∣ < 𝚋𝚢𝚝𝚎 ><   𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​  
​< 𝚙𝚊𝚍𝚍𝚒𝚗𝚐 >​​  ∷ = ​​  𝜖 ∣ < 𝚋𝚢𝚝𝚎 ><   𝚙𝚊𝚍𝚍𝚒𝚗𝚐 >​

Testing

Monitoring

Mocking
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Syntax alone, as expressed in our 
grammar in Figure 3, is not suffi-
cient for testing—neither for generat-
ing inputs nor for checking outputs. 
In our client/server exchange, the  
<payload _ length> field holds the 
length of the <payload> that follows 
as a 16-bit integer. We must satisfy 
this relation; otherwise, our gener-
ated inputs will be invalid. Such prop-
erties that cannot be expressed in a 
context-free grammar are called se-
mantic properties, as they go beyond 
syntax. How can one specify them?

To allow for a precise specification, 
we can switch to a different formal-
ism. We could enrich grammars with 
general-purpose code to produce in-
puts. Such code, though, would be 
closely tied to an implementation lan-
guage and require separate code for 
producing and parsing strings, which 
must be kept in sync. Unrestricted 
grammars can, in principle, specify 
any computable input property, but 
we see them as “Turing tar-pits,” in 
which “everything is possible, but 
nothing of interest is easy”22—in our 
Heartbeat example, one would have 
to specify integer encodings to start 
with. In summary, while specifying 
syntax is well-understood, specifying 
the semantic properties of inputs and 
outputs is not—and this makes both 
generating inputs and checking out-
puts so difficult.

Specifying syntax of inputs and 
outputs is well understood. But how 

do we specify their semantics?

Specifying Syntax and Semantics
In recent work,25 we have presented a 
means to specify such semantic prop-
erties and have shown how they can 
be used to produce valid inputs as well 
as to check outputs for correctness. 
Our Input Specification Language 
(ISLa) approach represents semantic 
properties as constraints on top of 
context-free grammars expressing 
the relationship between elements 
in the exchange. Such constraints 
are like function pre-/postconditions, 
except that grammar nonterminals 
take the role of function variables. 
They can thus make use of arbitrary 
formalisms, expressing, for example, 
arithmetic, strings, sets, or temporal 
logic. To express the relationship be-

tween the <payload _ length> and 
<payload> fields, we write the ISLa 
specification

​𝚞𝚒𝚗𝚝𝟷𝟼​​(​​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 >​)​​​ =   
	 𝚜𝚝𝚛  .  𝚕𝚎𝚗​​(​​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​ )​​​​	 (1)

The function uint16() evaluates 
two bytes as a 16-bit unsigned inte-
ger; str.len() determines the length 
of a string. We can also constrain the 
length further by stating

	 ​𝚜𝚝𝚛  .  𝚕𝚎𝚗​​(​​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​ )​​​ < 𝟷𝟼𝟹𝟻𝟽​	 (2)

which happens to be the maximum 
length of a <payload> element.

Through functions like uint16() 
and str.len(), ISLa is effectively 
unrestricted in expressing input 
properties while keeping a single de-
clarative specification for input and 
output properties. Yet, by separating 
grammars (syntax) and constraints 
(semantics), we can use tailored ap-
proaches to satisfy syntactical and se-
mantic properties—both for produc-
ing inputs and checking outputs.

Combining grammars with  
constraints allows syntax and  

semantics of inputs and outputs.

Producing Valid Inputs
What can we do with an ISLa speci-
fication? To start with, we can use it 
to produce inputs. ISLa uses a con-
straint solver to solve the above con-
straints, instantiating the symbol 
<payload _ length> to, say, 0x0005 
and <payload> elements to, say,  
"Hello." It then places the solutions 
into the grammar to produce valid in-
puts. For the grammar in Figure 2, this 
would then be <heartbeat _ request> 
elements such as

0x1 0x0005 Hello … 
0x1 0x0004 CACM … 
0x1 0x0000 …

and many more, all syntactically and 
semantically valid. To express (and 
solve) constraints, ISLa incorporates 
all SMT-LIB theories, including in-
teger arithmetics, strings, and regu-
lar expressions. On top, ISLa allows 
quantifying over syntactical elements 
("forall," "exists") and addressing 
structural properties ("before," "on 
the same level," … ).

Here are a few examples of ISLa 
constraints used for various purpos-

es. In XML and like languages, any 
opening tag (<body>) must be fol-
lowed by a closing tag (</body>) with 
the same identifier. This ISLa con-
straint for an XML grammar ensures 
the opening and closing tags indeed 
have the same identifier:

​< 𝚡𝚖𝚕  −  𝚝𝚛𝚎𝚎 > . <     𝚡𝚖𝚕  −  𝚘𝚙𝚎𝚗  −  𝚝𝚊𝚐 >   
. < 𝚒𝚍 > =  < 𝚡𝚖𝚕  −  𝚝𝚛𝚎𝚎 > .    

	 < 𝚡𝚖𝚕  −  𝚌𝚕𝚘𝚜𝚎  −  𝚝𝚊𝚐 > . <   𝚒𝚍 >​	  (3)

The dot (.) refers to direct chil-
dren in the derivation tree: <xml-
open-tag>.<id> is the identifier of 
the opening tag.

If we would like at least one pay-
load in our exchange to have a length 
of zero, we can use a quantifier:

​​𝚎𝚡𝚒𝚜𝚝𝚎𝚡𝚒𝚜𝚝𝚜 <   𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 >   𝚙𝚕 𝚒𝚗𝚒𝚗  
	 < 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎 >   :  𝚞𝚒𝚗𝚝𝟷𝟼​​(​​𝚙𝚕​)​​​ = 𝟶​	 (4)

We do not know whether a length 
of zero is allowed, but it would be fun 
to find out. Likewise, one may want to 
test with very large payloads to check 
if these trigger a buffer overflow.

And while we already test for vul-
nerabilities, let us go further and try 
script injections. This constraint en-
sures each string ends in a SQL injec-
tion:

​𝚜𝚝𝚛  .  𝚜𝚞𝚏𝚏𝚒𝚡𝚘𝚏​​(​​< 𝚜𝚝𝚛𝚒𝚗𝚐 >   ,  "'​)​​​;  
	 𝙳𝚁𝙾𝙿 𝚃𝙰𝙱𝙻𝙴 𝚍𝚊𝚝𝚊;   –")​	 (5)

One could also write grammars 
generating common injections and 
test against all of these. Such target-
ed yet automated testing would allow 
developers to test their systems thor-
oughly as never before.

All these constraints can also be 
combined. For instance, one can have 
a set of constraints required for valid-
ity, add constraints for reaching spe-
cific functionality, and, on top, con-
straints for testing specific scenarios.

If one needs additional functions 
(say, for a specific domain), ISLa sup-
ports adding new predicates, which 
must come with specific solvers and 
checkers. For instance, we could cre-
ate a signature (document, hash) 
predicate checking whether hash is 
the appropriate signature for docu-
ment. With this, ISLa could first gener-
ate a document and then cryptograph-
ically sign it. Creating a document 
satisfying a given signature would 
still require ISLa to enumerate all pos-
sible documents until it finds a match-
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server by, for a given request, produc-
ing a correct response that satisfies 
the above constraint.

ISLa on its own does not solve the 
oracle problem completely. It would 
still be a vast effort to formally spec-
ify the correct behavior of an entire 
SSL/TLS server, with many domain-
specific functions and predicates 
that go beyond the stock arithmetics 
and functions ISLa has on offer. But 
at least ISLa provides some means to 
decompose messages into individual 
elements and to specify their proper-
ties. These capabilities constitute an 
essential step toward fully formal-
izing input/output formats, incor-
porating all abstraction levels, from 
documents received and messages 
exchanged to the individual bits and 
bytes.

Constraints can also be used to 
check outputs for correctness.

Learning Input Languages
To cash in the benefits discussed, one 
only needs one thing—complete for-
mal specifications of the input and 
output languages. Will developers be 
able to provide these? Possibly, if they 
can use a specification language that 
is sufficiently expressive and useful. 
However, we can undoubtedly ease 
their task by inferring approximate 
specifications from existing data and 
code.

In recent work,11,13 we have shown 
how to automatically extract input 
grammars from existing programs. 
Our MIMID prototype takes a pro-
gram and a set of diverse sample 
inputs (which we can even generate 
from scratch using parser-directed 
fuzzing18) and tracks where and how 
individual bytes in the input are pro-
cessed. Bytes that follow the same 
path form tokens; subroutines induce 
hierarchies. After refining grammars 
through active learning, MIMID thus 
produces a context-free grammar 
that accurately represents the input 
language of a program. As MIMID 
grammars reuse code identifiers and 
reflect code structure, they are con-
cise, structured, and well-readable. 
Other sources of grammars include 
semi-formal specifications such as 
RFCs; XML schemas also are formal 
descriptions of input structure.

With a grammar (given or mined), 
we can decompose given inputs and 
outputs into their elements. Suppose 
we observe some Heartbeat interac-
tions between a client and a server:

<client _ request> =  
0x1 0x0005 Hello …

<server _ response> =  
0x2 0x0005 Hello …

The grammar tells us that 0x0005 
is the <payload _ length>, and that 
Hello is the <payload> itself.

Having individual elements and 
their values allows us to infer con-
straints over these very elements. 
Doing so is like inferring abstrac-
tions that match given sets of ob-
served values, a problem known as 
program synthesis. We have experi-
mented with a traditional synthesis 
technique called dynamic invariants,9 
which instantiates a catalog of pat-
terns with all given variables and re-
tains those patterns that hold for all 
values of these variables.

In our example, a pattern such as

	 ​𝚜𝚝𝚛  .  𝚕𝚎𝚗​​(​​$𝟷​)​​​ = 𝚞𝚒𝚗𝚝𝟷𝟼​​(​​$𝟸​)​​​​	 (7)

would be instantiated with

​$𝟷  =  <  𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚚𝚞𝚎𝚜𝚝 >,   
< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 >,   

	 < 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >,   …​	 (8)

and $𝟸 likewise. Now, an instantia-
tion like

​𝚜𝚝𝚛  .  𝚕𝚎𝚗​​(​​< 𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚚𝚞𝚎𝚜𝚝 >​ )​​​ =  
	 𝚞𝚒𝚗𝚝𝟷𝟼​​(​​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 >​)​​​​	 (9)

would not match any of the observed 
interactions and thus would be dis-
carded. However, the instantiation

​𝚜𝚝𝚛  .  𝚕𝚎𝚗​​(​​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​ )​​​ =  
	 𝚞𝚒𝚗𝚝𝟷𝟼​​(​​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 >​)​​​​	(10)

would apply to all observed interac-
tions and could thus be extracted as 
a constraint for the grammar in Fig-
ure 3. We implemented the sketched 
procedure in our ISLearn prototype.25

Learning constraints this way 
works surprisingly well. Our AVICEN-
NA prototype8 further refines ISLearn 
to generate better input abstractions 
faster. Its main application is de-
bugging: We aim to find an explana-
tion for some software behavior, for 
example, a crash. AVICENNA uses 
techniques from explainable AI to 
restrict the search space, uses both 

ing one—which may take billions of 
years. So, while you can express lots 
of constraints, there is no guarantee 
that ISLa can also solve all these con-
straints. At least not in your lifetime.

Currently, ISLa is well-suited for 
a limited set of constraints that the 
constraint solver can handle well. 
Yet, suppose you want to use ISLa for 
producing valid C code without unde-
fined behavior. In that case, you will 
run into limitations regarding the 
expressiveness of the current ISLa 
language and issues regarding the 
efficiency of modern constraint solv-
ers that ISLa uses under the hood. In 
principle, this is feasible; it “just” re-
quires more engineering work.

Solving contraints automatically 
produces valid inputs.

Checking Outputs
With ISLa addressing test generation, 
let us turn to the oracle problem: How 
can we check whether an output is 
correct? It turns out that ISLa also is 
an excellent tool for this. Grammars 
can express the elements an output is 
made of; ISLa constraints then cap-
ture the properties these elements 
must satisfy.

Let us return to our Heartbeat ex-
change in Figure 3, which specifies 
both request and response. To ex-
press that the payload in the response 
is identical to the payload in the re-
quest, we can easily write

​< 𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚚𝚞𝚎𝚜𝚝 >    
. < 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >   =  <  𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _  

	 𝚛𝚎𝚜𝚙𝚘𝚗𝚜𝚎 > . <     𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​	 (6)

and hence, when the <heartbeat _
response> comes in, compare its 
payload against the <heartbeat _
request> payload sent earlier. We 
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tions from semi-formal documents 
such as RFCs. At that point, the bots 
begin their work. They continuously 
test systems with powerful input 
generators and strong oracles, report 
suspicious system inputs or outputs, 
isolate failure circumstances, and 
suggest fixes. All these little help-
ers will free valuable resources for 
companies and developers, enabling 
them to focus on implementing new 
products and features.

ISLa is open source: Install it by 
running pip install isla-solver 
(requires Python). If you want to toy 
with it, we recommend following our 
interactive tutorial for inspiration.a
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benign and crashing inputs to elimi-
nate coincidental properties, and 
gradually refines candidate explana-
tions by considering example inputs 
generated for them by ISLa. In our 
case study—based on actual bugs in  
real programs—AVICENNA produced 
concise diagnoses matching the pre-
cision of human experts. Until now, 
the only widely adapted automated 
debugging technique is the simpli-
fication of failure-inducing inputs.28 
We believe tools like AVICENNA that 
automatically explain failure circum-
stances will soon contribute to reduc-
ing the burden of software mainte-
nance by joining input minimizers 
in automated testing and debugging 
toolchains. And if we have tools like 
AVICENNA target acceptance—that 
is, we determine the conditions un-
der which an input is accepted by the 
program under test—we obtain the 
exact constraints that define valid in-
puts. Hence, given a set of seed inputs 
and a program that processes them, 
we can infer both the input grammar 
and the input constraints—and thus 
obtain a language for testing, check-
ing, and monitoring inputs.

Grammars and constraints  
can be learned from inputs 

and programs.

Outlook
The future of test generation will be 
language oriented. Without knowl-
edge about the input language of a 
program, we cannot efficiently reach 
deep program functionality, over-
coming coverage plateaus that today’s 
mutation-based fuzzers struggle 
with. Furthermore, without knowing 
a program’s output language and the 
desired relation between inputs and 
outputs, we cannot precisely detect 
logic errors.

Formal input/output language 
models can also be used to mock 
functionality, generate inputs for an 
outcome of your choice, repair in-
puts, perform semantics-preserving 
mutations, and monitor services. In 
our vision, such language models will 
be generated by a collaboration of hu-
man experts, translators from sche-
mas in other formats, grammar and 
constraint miners, and AI-based tech-
niques inferring language descrip-
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