
outputs, relate these to the inputs,
and thus explore and check its func-
tionality. This task faces two long-
standing challenges.

First, there is the input generation
problem: How can a bot create inputs
that reliably cover functionality? Ran-
dom system input generators (“fuzz-
ers”20) easily detect issues and vulner-
abilities in input processing of arbitrary
programs. However, creating valid
inputs and interactions that reliably
reach code beyond input processing is
still a challenge for which test genera-
tors require human assistance—either
through input specifications1,5,6,10,12,23
or a comprehensive population of di-
verse input samples that cover behav-
ior.3,17,19,27

One might assume that large lan-
guage models (LLMs) might alleviate
this problem. Couldn’t a bot learn
how to interact with software from
examples or documentation? Or what
makes a valid input? The problem is
that to find bugs, one needs valid but
also uncommon inputs—namely,
those that trigger less common (and
less tested) behavior. LLMs may help
find common (and thus valid) in-
puts—but by construction, they will
not find uncommon inputs.

The second challenge is the long-
standing test oracle problem: How
can a bot check the outputs of a sys-
tem? All test generators and fuzzers
assume some oracle that checks for
correctness—by default, a generic,
implicit oracle detecting illegal or un-
responsive states. If, however, a bot is
to run specific checks, it needs a test
oracle that retrieves and evaluates the
relevant information from the out-

S OF T WA R E T E S T I NG CON T I N U E S to be the number
one technique to satisfy safety, security, and privacy
requirements. Yet, manual testing is laborious, calling
for automated software testing. While automatically
running software tests is current practice, one still
must write all these tests. Generating software tests
promises to relieve humans of the testing task, leaving
the work to “testing bots”—automatic processes
tirelessly testing and assessing software around the
clock (See Figure 1).

How can we build such testing bots? To create tests
for some software, a testing bot first must be able to
interact with it—that is, produce inputs, examine

Language-
Based
Software
Testing

DOI:10.1145/3631520

Constraints over grammar elements can make
test generation easier than ever.

BY DOMINIC STEINHÖFEL AND ANDREAS ZELLER

80 COMMUNICATIONS OF THE ACM | APRIL 2024 | VOL. 67 | NO. 4

research

 key insights

	˽ For effective software testing, we must
generate valid inputs and check outputs
for correctness.

	˽ We can address both generating and
checking by expressing and solving
constraints over grammar elements.

	˽ We can learn grammars and constraints
from existing inputs and programs.

https://dx.doi.org/10.1145/3631520
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3631520&domain=pdf&date_stamp=2024-03-25

put. Creating oracles manually4,6,16,21,24
is nontrivial and time-consuming:
“Compared to many aspects of test
automation, the problem of automat-
ing the test oracle has received sig-
nificantly less attention and remains
comparatively less well-solved.”2

The oracle problem not only af-
fects the result of a computation. If
the bot is to interact with the software
and produce new inputs in reaction to
output properties, we have the oracle
problem at every step of the interac-
tion. Now consider the scale and com-
plexity of today’s software systems and
their interactions, and you will see
that software bots have a long way to
go. For this reason, so much time goes
into manual testing—and still, soft-
ware catastrophes like Heartbleed7 or
log4shell, the “largest vulnerability
ever,”14 keep on haunting us.

To generate tests, we must
produce valid inputs and check

outputs for correctness.

Specifying Interactions
Why is generating inputs and check-
ing outputs so hard? The Heartbeat
extension26 of a TLS server allows
clients to check whether a server is
still active by sending a 0x1 byte fol-
lowed by a payload, which the server
is expected to include verbatim in its
response.

The syntax of such requests is easy
to specify. The grammar in Figure
2 identifies the individual elements
in the request; we can use it to parse
given requests (and thus access and

check its constituents), but also to
produce requests (and thus test the
server). Using a grammar as a pro-
ducer ensures syntactic validity. This
makes test generation far more effi-
cient than generating and mutating
random bytes, as valid inputs reliably
exercise functionality beyond input
processing. (We can still mutate valid
inputs to test input processing and
handling of invalid inputs.)

To really test a system, we also
must check its output. In our Heart-
beat example, the server responds
with a 0x2 byte, followed by the pay-
load from the request and some pad-
ding. To specify the response, we
could again use a grammar.

However, we also want to express
the response is the result of the re-
quest. For this, we can chain request
and response to a single I/O gram-

mar15 characterizing the interaction
(Figure 3).

With such an I/O grammar, we
can parse an entire client/server in-
teraction to check whether a 0x1 cli-
ent request gets a proper 0x2 server
response. However, we can also pro-
duce inputs for the server, expanding
<heartbeat _ request>, and then
parse and check the server response.
Alternatively, we can mock a server
by parsing its input and then expand
<heartbeat _ response> to produce
its output. By interleaving multiple
input and output sources in a single
representation, we obtain a declara-
tive specification of interactions that
embeds all the expressiveness of fi-
nite-state protocol specifications yet
is detailed enough to produce valid
inputs and check concrete outputs
alike.

Figure 1. With language specs, software bots can test, monitor, and debug software.

Figure 2. An input grammar for the TLS Heartbeat extension.

​< 𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚚𝚞𝚎𝚜𝚝  >   ∷  =  𝟶𝚡𝟷  <  𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 > <  𝚙𝚊𝚢𝚕𝚘𝚊𝚍 > <  𝚙𝚊𝚍𝚍𝚒𝚗𝚐 >​
​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 >​​   ∷  = ​​ < ​𝚞𝚒𝚗𝚝𝟷𝟼  >​
​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​​  ∷ = ​​ 𝜖 ∣ < 𝚋𝚢𝚝𝚎 ><  𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​
​< 𝚙𝚊𝚍𝚍𝚒𝚗𝚐 >​​  ∷ = ​​ 𝜖 ∣ < 𝚋𝚢𝚝𝚎 ><  𝚙𝚊𝚍𝚍𝚒𝚗𝚐 >​

Figure 3. TLS Heartbeat I/O grammar. After a client sends a <heartbeat_ request>,
the server responds with <heartbeat_response>.

​< 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎  >   ∷  =   < 𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚚𝚞𝚎𝚜𝚝 > <  𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚜𝚙𝚘𝚗𝚜𝚎 >
< 𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚚𝚞𝚎𝚜𝚝  >   ∷  =  𝟶𝚡𝟷  <  𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 > <  𝚙𝚊𝚢𝚕𝚘𝚊𝚍 > <  𝚙𝚊𝚍𝚍𝚒𝚗𝚐 >​
​< 𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚜𝚙𝚘𝚗𝚜𝚎 >   ∷ = 𝟶𝚡𝟸 < 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 > < 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 > < 𝚙𝚊𝚍𝚍𝚒𝚗𝚐 >​
​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 >​​   ∷  = ​​ < ​𝚞𝚒𝚗𝚝𝟷𝟼  >​
​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​​  ∷ = ​​ 𝜖 ∣ < 𝚋𝚢𝚝𝚎 ><  𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​
​< 𝚙𝚊𝚍𝚍𝚒𝚗𝚐 >​​  ∷ = ​​ 𝜖 ∣ < 𝚋𝚢𝚝𝚎 ><  𝚙𝚊𝚍𝚍𝚒𝚗𝚐 >​

Testing

Monitoring

Mocking

APRIL 2024 | VOL. 67 | NO. 4 | COMMUNICATIONS OF THE ACM 81

research

Syntax alone, as expressed in our
grammar in Figure 3, is not suffi-
cient for testing—neither for generat-
ing inputs nor for checking outputs.
In our client/server exchange, the
<payload _ length> field holds the
length of the <payload> that follows
as a 16-bit integer. We must satisfy
this relation; otherwise, our gener-
ated inputs will be invalid. Such prop-
erties that cannot be expressed in a
context-free grammar are called se-
mantic properties, as they go beyond
syntax. How can one specify them?

To allow for a precise specification,
we can switch to a different formal-
ism. We could enrich grammars with
general-purpose code to produce in-
puts. Such code, though, would be
closely tied to an implementation lan-
guage and require separate code for
producing and parsing strings, which
must be kept in sync. Unrestricted
grammars can, in principle, specify
any computable input property, but
we see them as “Turing tar-pits,” in
which “everything is possible, but
nothing of interest is easy”22—in our
Heartbeat example, one would have
to specify integer encodings to start
with. In summary, while specifying
syntax is well-understood, specifying
the semantic properties of inputs and
outputs is not—and this makes both
generating inputs and checking out-
puts so difficult.

Specifying syntax of inputs and
outputs is well understood. But how

do we specify their semantics?

Specifying Syntax and Semantics
In recent work,25 we have presented a
means to specify such semantic prop-
erties and have shown how they can
be used to produce valid inputs as well
as to check outputs for correctness.
Our Input Specification Language
(ISLa) approach represents semantic
properties as constraints on top of
context-free grammars expressing
the relationship between elements
in the exchange. Such constraints
are like function pre-/postconditions,
except that grammar nonterminals
take the role of function variables.
They can thus make use of arbitrary
formalisms, expressing, for example,
arithmetic, strings, sets, or temporal
logic. To express the relationship be-

tween the <payload _ length> and
<payload> fields, we write the ISLa
specification

​𝚞𝚒𝚗𝚝𝟷𝟼​​(​​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 >​)​​​ = 
	 𝚜𝚝𝚛  .  𝚕𝚎𝚗​​(​​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​)​​​​	 (1)

The function uint16() evaluates
two bytes as a 16-bit unsigned inte-
ger; str.len() determines the length
of a string. We can also constrain the
length further by stating

	 ​𝚜𝚝𝚛  .  𝚕𝚎𝚗​​(​​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​)​​​ < 𝟷𝟼𝟹𝟻𝟽​	 (2)

which happens to be the maximum
length of a <payload> element.

Through functions like uint16()
and str.len(), ISLa is effectively
unrestricted in expressing input
properties while keeping a single de-
clarative specification for input and
output properties. Yet, by separating
grammars (syntax) and constraints
(semantics), we can use tailored ap-
proaches to satisfy syntactical and se-
mantic properties—both for produc-
ing inputs and checking outputs.

Combining grammars with
constraints allows syntax and

semantics of inputs and outputs.

Producing Valid Inputs
What can we do with an ISLa speci-
fication? To start with, we can use it
to produce inputs. ISLa uses a con-
straint solver to solve the above con-
straints, instantiating the symbol
<payload _ length> to, say, 0x0005
and <payload> elements to, say,
"Hello." It then places the solutions
into the grammar to produce valid in-
puts. For the grammar in Figure 2, this
would then be <heartbeat _ request>
elements such as

0x1 0x0005 Hello …
0x1 0x0004 CACM …
0x1 0x0000 …

and many more, all syntactically and
semantically valid. To express (and
solve) constraints, ISLa incorporates
all SMT-LIB theories, including in-
teger arithmetics, strings, and regu-
lar expressions. On top, ISLa allows
quantifying over syntactical elements
("forall," "exists") and addressing
structural properties ("before," "on
the same level," …).

Here are a few examples of ISLa
constraints used for various purpos-

es. In XML and like languages, any
opening tag (<body>) must be fol-
lowed by a closing tag (</body>) with
the same identifier. This ISLa con-
straint for an XML grammar ensures
the opening and closing tags indeed
have the same identifier:

​< 𝚡𝚖𝚕  −  𝚝𝚛𝚎𝚎 > . <  𝚡𝚖𝚕  −  𝚘𝚙𝚎𝚗  −  𝚝𝚊𝚐 > 
. < 𝚒𝚍 > =  < 𝚡𝚖𝚕  −  𝚝𝚛𝚎𝚎 > . 

	 < 𝚡𝚖𝚕  −  𝚌𝚕𝚘𝚜𝚎  −  𝚝𝚊𝚐 > . <  𝚒𝚍 >​	 (3)

The dot (.) refers to direct chil-
dren in the derivation tree: <xml-
open-tag>.<id> is the identifier of
the opening tag.

If we would like at least one pay-
load in our exchange to have a length
of zero, we can use a quantifier:

​​𝚎𝚡𝚒𝚜𝚝𝚎𝚡𝚒𝚜𝚝𝚜 <  𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 >  𝚙𝚕 𝚒𝚗𝚒𝚗 
	 < 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎 >  :  𝚞𝚒𝚗𝚝𝟷𝟼​​(​​𝚙𝚕​)​​​ = 𝟶​	 (4)

We do not know whether a length
of zero is allowed, but it would be fun
to find out. Likewise, one may want to
test with very large payloads to check
if these trigger a buffer overflow.

And while we already test for vul-
nerabilities, let us go further and try
script injections. This constraint en-
sures each string ends in a SQL injec-
tion:

​𝚜𝚝𝚛  .  𝚜𝚞𝚏𝚏𝚒𝚡𝚘𝚏​​(​​< 𝚜𝚝𝚛𝚒𝚗𝚐 >  ,  "'​)​​​; 
	 𝙳𝚁𝙾𝙿 𝚃𝙰𝙱𝙻𝙴 𝚍𝚊𝚝𝚊;  –")​	 (5)

One could also write grammars
generating common injections and
test against all of these. Such target-
ed yet automated testing would allow
developers to test their systems thor-
oughly as never before.

All these constraints can also be
combined. For instance, one can have
a set of constraints required for valid-
ity, add constraints for reaching spe-
cific functionality, and, on top, con-
straints for testing specific scenarios.

If one needs additional functions
(say, for a specific domain), ISLa sup-
ports adding new predicates, which
must come with specific solvers and
checkers. For instance, we could cre-
ate a signature (document, hash)
predicate checking whether hash is
the appropriate signature for docu-
ment. With this, ISLa could first gener-
ate a document and then cryptograph-
ically sign it. Creating a document
satisfying a given signature would
still require ISLa to enumerate all pos-
sible documents until it finds a match-

82 COMMUNICATIONS OF THE ACM | APRIL 2024 | VOL. 67 | NO. 4

research

server by, for a given request, produc-
ing a correct response that satisfies
the above constraint.

ISLa on its own does not solve the
oracle problem completely. It would
still be a vast effort to formally spec-
ify the correct behavior of an entire
SSL/TLS server, with many domain-
specific functions and predicates
that go beyond the stock arithmetics
and functions ISLa has on offer. But
at least ISLa provides some means to
decompose messages into individual
elements and to specify their proper-
ties. These capabilities constitute an
essential step toward fully formal-
izing input/output formats, incor-
porating all abstraction levels, from
documents received and messages
exchanged to the individual bits and
bytes.

Constraints can also be used to
check outputs for correctness.

Learning Input Languages
To cash in the benefits discussed, one
only needs one thing—complete for-
mal specifications of the input and
output languages. Will developers be
able to provide these? Possibly, if they
can use a specification language that
is sufficiently expressive and useful.
However, we can undoubtedly ease
their task by inferring approximate
specifications from existing data and
code.

In recent work,11,13 we have shown
how to automatically extract input
grammars from existing programs.
Our MIMID prototype takes a pro-
gram and a set of diverse sample
inputs (which we can even generate
from scratch using parser-directed
fuzzing18) and tracks where and how
individual bytes in the input are pro-
cessed. Bytes that follow the same
path form tokens; subroutines induce
hierarchies. After refining grammars
through active learning, MIMID thus
produces a context-free grammar
that accurately represents the input
language of a program. As MIMID
grammars reuse code identifiers and
reflect code structure, they are con-
cise, structured, and well-readable.
Other sources of grammars include
semi-formal specifications such as
RFCs; XML schemas also are formal
descriptions of input structure.

With a grammar (given or mined),
we can decompose given inputs and
outputs into their elements. Suppose
we observe some Heartbeat interac-
tions between a client and a server:

<client _ request> =
0x1 0x0005 Hello …

<server _ response> =
0x2 0x0005 Hello …

The grammar tells us that 0x0005
is the <payload _ length>, and that
Hello is the <payload> itself.

Having individual elements and
their values allows us to infer con-
straints over these very elements.
Doing so is like inferring abstrac-
tions that match given sets of ob-
served values, a problem known as
program synthesis. We have experi-
mented with a traditional synthesis
technique called dynamic invariants,9
which instantiates a catalog of pat-
terns with all given variables and re-
tains those patterns that hold for all
values of these variables.

In our example, a pattern such as

	 ​𝚜𝚝𝚛  .  𝚕𝚎𝚗​​(​​$𝟷​)​​​ = 𝚞𝚒𝚗𝚝𝟷𝟼​​(​​$𝟸​)​​​​	 (7)

would be instantiated with

​$𝟷  =  <  𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚚𝚞𝚎𝚜𝚝 >, 
< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 >, 

	 < 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >,  …​	 (8)

and $𝟸 likewise. Now, an instantia-
tion like

​𝚜𝚝𝚛  .  𝚕𝚎𝚗​​(​​< 𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚚𝚞𝚎𝚜𝚝 >​)​​​ = 
	 𝚞𝚒𝚗𝚝𝟷𝟼​​(​​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 >​)​​​​	 (9)

would not match any of the observed
interactions and thus would be dis-
carded. However, the instantiation

​𝚜𝚝𝚛  .  𝚕𝚎𝚗​​(​​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​)​​​ = 
	 𝚞𝚒𝚗𝚝𝟷𝟼​​(​​< 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 _ 𝚕𝚎𝚗𝚐𝚝𝚑 >​)​​​​	(10)

would apply to all observed interac-
tions and could thus be extracted as
a constraint for the grammar in Fig-
ure 3. We implemented the sketched
procedure in our ISLearn prototype.25

Learning constraints this way
works surprisingly well. Our AVICEN-
NA prototype8 further refines ISLearn
to generate better input abstractions
faster. Its main application is de-
bugging: We aim to find an explana-
tion for some software behavior, for
example, a crash. AVICENNA uses
techniques from explainable AI to
restrict the search space, uses both

ing one—which may take billions of
years. So, while you can express lots
of constraints, there is no guarantee
that ISLa can also solve all these con-
straints. At least not in your lifetime.

Currently, ISLa is well-suited for
a limited set of constraints that the
constraint solver can handle well.
Yet, suppose you want to use ISLa for
producing valid C code without unde-
fined behavior. In that case, you will
run into limitations regarding the
expressiveness of the current ISLa
language and issues regarding the
efficiency of modern constraint solv-
ers that ISLa uses under the hood. In
principle, this is feasible; it “just” re-
quires more engineering work.

Solving contraints automatically
produces valid inputs.

Checking Outputs
With ISLa addressing test generation,
let us turn to the oracle problem: How
can we check whether an output is
correct? It turns out that ISLa also is
an excellent tool for this. Grammars
can express the elements an output is
made of; ISLa constraints then cap-
ture the properties these elements
must satisfy.

Let us return to our Heartbeat ex-
change in Figure 3, which specifies
both request and response. To ex-
press that the payload in the response
is identical to the payload in the re-
quest, we can easily write

​< 𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 𝚛𝚎𝚚𝚞𝚎𝚜𝚝 > 
. < 𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >  =  <  𝚑𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝 _ 

	 𝚛𝚎𝚜𝚙𝚘𝚗𝚜𝚎 > . <  𝚙𝚊𝚢𝚕𝚘𝚊𝚍 >​	 (6)

and hence, when the <heartbeat _
response> comes in, compare its
payload against the <heartbeat _
request> payload sent earlier. We
see that the nonterminals in the
grammar effectively take the roles of
variables in pre- and postconditions.

To parse outputs, ISLa can use the
grammar—with a bit of help from the
constraints, as it needs to know that
<payload _ length> indicates the
length of the following <payload>
field. Also, the I/O grammar needs
to differentiate which part of the ex-
change comes from which of the in-
volved parties. However, ISLa can also
check an entire interaction between a
client and a server; and even mock a

APRIL 2024 | VOL. 67 | NO. 4 | COMMUNICATIONS OF THE ACM 83

research

IEEE Trans. Softw. Eng. 27, 2 (Feb. 2001), 99–123;
10.1109/32.908957

10.	 Godefroid, P., Kiezun, A., and Levin, M.Y. Grammar-
based whitebox fuzzing. In Proceedings of ACM
SIGPLAN Conf. on Programming Language Design
and Implementation (Tucson, AZ, USA, 2008). ACM,
206–215; 10.1145/1375581.1375607.

11.	 Gopinath, R., Mathis, B., and Zeller, A. Mining
input grammars from dynamic control flow. In
Proceedings of the 2020 Joint Meeting of the
European Softw. Eng. Conf. and the ACM SIGSOFT
Symp. Foundations of Softw. Eng.; https://
publications.cispa.saarland/3101/

12.	 Holler, C., Herzig, K., and Zeller, A. Fuzzing with code
fragments. In Proceedings of the 2012 USENIX
Security Symp. USENIX Assoc., Bellevue, WA,
38–38; https://bit.ly/41oj8Mv

13.	 Höschele, M. and Zeller, A. Mining input
grammars from dynamic taints. In Proceedings
of the IEEE/ACM Intern. Conf. Automated
Softw. Eng. (Singapore, 2016), 720–725;
10.1145/2970276.2970321.

14.	 Hunter, T. and de Vynck, G. “most serious security
breach ever” is unfolding right now. WSJ (Dec.
20, 2021); https://www.washingtonpost.com/
technology/2021/12/20/log4j-hack-vulnerability-
java/

15.	 Jones, B., Harman, M., and Danicic, S. Automated
Construction of Input and Output Grammars.
Technical Report. University of North London, 1999;
https://bit.ly/3TqEcQv.

16.	 Kent, S. Model driven engineering. In Proceedings of
the 2002 Intern. Conf. Integrated Formal Methods.
Springer, 286–298; 10.5555/647983.743552.

17.	 LibFuzzer; https://llvm.org/docs/LibFuzzer.html.
18.	 Mathis, B. et al. Parser-directed fuzzing. In

Proceedings of the ACM SIGPLAN Conf.
Programming Language Design and Implementation
(Phoenix, AZ, USA, 2019). ACM, 548–560;
10.1145/3314221.3314651.

19.	 McMinn, P. Search-based software testing: Past,
present and future. In Proceedings of the IEEE
2011 4th Intern. Conf. Softw. Testing, Verification and
Validation Workshops. IEEE, 153–163.

20.	 Miller, B.P., Fredriksen, L., and So, B. An empirical
study of the reliability of UNIX utilities.
Commun. ACM 33, 12 (Dec. 1990), 32–44;
10.1145/96267.96279

21.	 Mussa, M., Ouchani, S., Al Sammane, W., and
Hamou-Lhadj, A. A survey of model-driven
testing techniques. In Proceedings of the 2009
9th Intern. Conf. Quality Softw., 167–172; 10.1109/
QSIC.2009.30.

22.	 Perlis, A.J. Epigrams on programming.
ACM SIGPLAN Notices 17, 9 (1982), 7–13;
10.1145/947955.1083808

23.	 Pham, V.-T. et al. Smart greybox fuzzing. IEEE
Trans. Softw. Eng. 47, 9 (2019), 1980–1997; 10.1109/
TSE.2019.2941681.

24.	 Rosenblum, D.S. A practical approach to
programming with assertions. IEEE Trans. Softw.
Eng. 21, 1 (1995), 19–31; 10.1109/32.341844.

25.	 Steinhöfel, D. and Zeller, A. Input invariants. In
Proceedings of the 30th ACM Joint European Softw.
Engineering Conf. and Symp. the Foundations of
Softw. Eng. (Singapore, 2022). ACM, New York, NY,
USA, 2022, 583–594; 10.1145/3540250.3549139.

26.	 Williams, M., Tüxen, M., and Robin Seggelmann,
R. Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS) Heartbeat
Extension. RFC 6520 IETF, 2012; https://datatracker.
ietf.org/doc/rfc6520/.

27.	 Załewski, M. American fuzzy lop; https://lcamtuf.
coredump.cx/afl/

28.	 Zeller, A. and Hildebrandt, R. Simplifying and
isolating failure-inducing input. IEEE Trans. Softw.
Eng. 28, 2 (Feb. 2002), 183–200; 10.1109/32.988498.

Dominic Steinhöfel is a researcher of computer science
at CISPA Helmholtz Center for Information Security, in
Saarbrücken, Germany.

Andreas Zeller is on faculty at CISPA Helmholtz
Center for Information Security and a professor of
software engineering at Saarland University, Germany.

tions from semi-formal documents
such as RFCs. At that point, the bots
begin their work. They continuously
test systems with powerful input
generators and strong oracles, report
suspicious system inputs or outputs,
isolate failure circumstances, and
suggest fixes. All these little help-
ers will free valuable resources for
companies and developers, enabling
them to focus on implementing new
products and features.

ISLa is open source: Install it by
running pip install isla-solver
(requires Python). If you want to toy
with it, we recommend following our
interactive tutorial for inspiration.a

Acknowledgment
This work is funded by the Euro-
pean Union (ERC Advanced Grant
101093186 – Semantics of Software
Systems (S3)). Views and opinions
expressed are however those of the
author(s) only and do not necessarily
reflect those of the European Union
or the European Research Council Ex-
ecutive Agency. Neither the European
Union nor the granting authority can
be held responsible for them. 

a	 https://www.fuzzingbook.org/beta/html/Fuzz-
ingWithConstraints.html

References
1.	 Aschermann, C. et al. NAUTILUS: Fishing for deep

bugs with grammars. In Proceedings of 2019
Network and Distributed System Security Symp.;
https://bit.ly/3uRisTx

2.	 Barr, E.T. et al. The oracle problem in software
testing: A survey. IEEE Trans Softw Eng. 41, 5
(2014), 507–525; 10.1109/TSE.2014.2372785

3.	 Böhme, M., Pham, V.T., and Roychoudhury, A.
Coverage-based greybox fuzzing as Markov Chain.
In Proceedings of the ACM SIGSAC Conf. Computer
and Communications Security (Vienna, Austria,
2016). ACM, New York, NY, USA, 1032–1043;
10.1145/2976749.2978428

4.	 Booch, G. The Unified Modeling Language User Guide.
Addison Wesley, 2005.

5.	 Briand, L.C. and Labiche, Y. A UML-based
approach to system testing. Intern. Conf. on the
Unified Modeling Language, Modeling Languages,
Concepts, and Tools. Springer, 2001, 194–208;
10.5555/647245.719446.

6.	 Claessen, K. and Hughes, J. QuickCheck: A
lightweight tool for random testing of Haskell
programs. In Proceedings of the 5th ACM
SIGPLAN Intern. Conf. Functional Programming.
ACM, New York, NY, USA, 2000, 268–279;
10.1145/351240.351266

7.	 Durumeric, Z. et al. The matter of Heartbleed.
In Proceedings of the 2014 Conf. Internet
Measurement. (Vancouver, BC, Canada). ACM, New
York, NY, USA, 475–488; 10.1145/2663716.2663755

8.	 Eberlein, M. et al. Semantic debugging. In
Proceedings of the 31st ACM Joint European Softw.
Eng. Conf. and Symp. Foundations of Softw. Eng.
(San Francisco, CA, USA, 2023), K. Blincoe and P.
Tonella, eds. ACM, New York, NY; preprint https://
publications.cispa.saarland/3988/

9.	 Ernst, M.D. et al. Dynamically discovering likely
program invariants to support program evolution.

benign and crashing inputs to elimi-
nate coincidental properties, and
gradually refines candidate explana-
tions by considering example inputs
generated for them by ISLa. In our
case study—based on actual bugs in
real programs—AVICENNA produced
concise diagnoses matching the pre-
cision of human experts. Until now,
the only widely adapted automated
debugging technique is the simpli-
fication of failure-inducing inputs.28
We believe tools like AVICENNA that
automatically explain failure circum-
stances will soon contribute to reduc-
ing the burden of software mainte-
nance by joining input minimizers
in automated testing and debugging
toolchains. And if we have tools like
AVICENNA target acceptance—that
is, we determine the conditions un-
der which an input is accepted by the
program under test—we obtain the
exact constraints that define valid in-
puts. Hence, given a set of seed inputs
and a program that processes them,
we can infer both the input grammar
and the input constraints—and thus
obtain a language for testing, check-
ing, and monitoring inputs.

Grammars and constraints
can be learned from inputs

and programs.

Outlook
The future of test generation will be
language oriented. Without knowl-
edge about the input language of a
program, we cannot efficiently reach
deep program functionality, over-
coming coverage plateaus that today’s
mutation-based fuzzers struggle
with. Furthermore, without knowing
a program’s output language and the
desired relation between inputs and
outputs, we cannot precisely detect
logic errors.

Formal input/output language
models can also be used to mock
functionality, generate inputs for an
outcome of your choice, repair in-
puts, perform semantics-preserving
mutations, and monitor services. In
our vision, such language models will
be generated by a collaboration of hu-
man experts, translators from sche-
mas in other formats, grammar and
constraint miners, and AI-based tech-
niques inferring language descrip-

This work is licensed under a
http://creativecommons.org/licenses/by/4.0/

84 COMMUNICATIONS OF THE ACM | APRIL 2024 | VOL. 67 | NO. 4

research

