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The resistive random-access memory (ReRAM) has widely been used to accelerate convolutional neural net-

works (CNNs) thanks to its analog in-memory computing capability. ReRAM crossbars not only store layers’

weights, but also perform in-situ matrix-vector multiplications which are core operations of CNNs. To boost

the performance of ReRAM-based CNN accelerators, crossbars can be duplicated to explore more intra-layer

parallelism. The crossbar allocation scheme can significantly influence both the computing throughput and

bandwidth requirements of ReRAM-based CNN accelerators. Under the resource constraints (i.e., crossbars

and memory bandwidths), how to find the optimal number of crossbars for each layer to maximize the in-

ference performance for an entire CNN is an unsolved problem. In this work, we find the optimal crossbar

allocation scheme by mathematically modeling the problem as a constrained optimization problem and solv-

ing it with a dynamic programming based solver. Experiments demonstrate that our model for CNN inference

time is almost precise, and the proposed framework can obtain solutions with near-optimal inference time.

We also emphasize that communication (i.e., data access) is an important factor and must also be considered

when determining the optimal crossbar allocation scheme.
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1 INTRODUCTION

Convolutional neural networks (CNNs) have widely been adopted in numerous practical appli-
cations, such as image segmentation, object detection, and face identification (e.g., [11, 18]). The
tremendous data requirements of CNN models bring great challenges to the design of CNN ac-
celerators. For conventional von Neumann architecture based CNN accelerators, communication
between processors and memories has become the bottleneck of both performance and energy effi-
ciency [2, 3, 5, 6, 9]. Recently, in-memory computing has emerged as a promising solution to reduce
data movements between arithmetic and storage units. At the highest level, in-memory computing
can be categorized into two kinds of approaches: compute-near-memory (e.g., [10, 16, 17, 19, 20,
27]) and compute-using-memory (e.g., [1, 7, 8, 15, 22–25, 28–30, 33, 34]). Compute-near-memory
means moving computational resources near where data is stored, while compute-using-memory
means using memory cells/arrays for both storage and computing. Compute-using-memory has
widely been studied for CNN acceleration, which is also the focus of this paper.

The resistive random-access memory (ReRAM) is popular to build in-memory architectures
owing to its merits like high parallelism and fast read speed [31, 32]. More importantly, infor-
mation can be programmed into the resistance of ReRAM devices. ReRAM cells can construct a
crossbar structure that can perform an analog matrix-vector multiplication (MVM) with O(1)
time complexity [12] in theory, as shown in Figure 1. This feature makes ReRAMs attractive for
CNN acceleration which involves numerous multiply-accumulate (MAC) operations. In fact,
plenty of works have demonstrated that ReRAM-based architectures can effectively accelerate
CNNs with higher energy efficiency (e.g., [1, 7, 8, 15, 22–25, 28–30, 33, 34]), compared with con-
ventional complementary metal-oxide-semiconductor (CMOS) based CNN accelerators. For
instance, in Ref. [25], the proposed ReRAM-based architecture yields 14.8× higher throughput than
CMOS-based DaDianNao [4], while energy consumption is only 18% of that of DaDianNao.

After training, the weights of an entire CNN are programmed into ReRAMs’ resistance, and they
are not changed during inference. ReRAM-based in-memory architectures perform computations
in-situ in memory and, thus, there are plentiful computing resources. This provides an opportu-
nity to compute all layers of a CNN concurrently in a pipelined way (like [28]) to achieve higher
performance. Therefore, computing resources, namely, ReRAM crossbars, need to be allocated to
all layers. The overall performance heavily depends on the resource allocation strategy. Intuitively,
if we use more resources for one layer (i.e., duplicating its weights to more crossbars), the layer has
more parallelism and may be computed faster. Some intuitive allocation strategies are to assign
ReRAM crossbars to layers proportionally to the amount of weights or workloads of each layer.
However, we will show by experiments that such straightforward ideas are not good solutions.
Optimal resource allocation is a fundamental problem for ReRAM-based CNN accelerators, but it
has not well been solved till now.

A few existing studies have more or less involved the resource allocation problem. They heuristi-
cally determine the number of ReRAM crossbars allocated to each layer [7, 21, 25, 28, 35]. PRIME [7]
duplicates the crossbars twice to hide data access latency with a ping-pong mode. The strategy is
rough and cannot fully utilize the resources. It also ignores the latency difference between com-
munication and computation. ISAAC [25] allocates crossbars heuristically, according to the stride
sizes of convolutional (Conv) layers. PipeLayer [28] presents the results of crossbar duplication
ratios but how to determine them is completely not mentioned. Ref. [35] optimizes the resource al-
location for different sized crossbars to boost the resource utilization. The solution is heuristically
derived and not guaranteed to be optimal. Ref. [21] proposes a throughput-aimed resource map-
ping strategy for multi-modal neural networks (e.g., a neural network composed of a CNN and a
recurrent neural network), which are uncommon in practice, especially running on ReRAM-based
accelerators.
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Fig. 1. ReRAM crossbar.

The resource allocation approaches in previous works are generally based on heuristic meth-
ods and are usually aimed at dedicated accelerators and conditions. For example, under the con-
ditions where crossbar resources are scarce, allocating crossbars with the approach mentioned
in ISAAC [25] will lead to the suboptimality of the accelerator performance. Our experiments
demonstrate that, when the number of crossbars of ISAAC is reduced to 0.125×, the accelerator
performance of accelerating VGG-A will become 0.07×, less than 0.125×. It suggests that when
accelerators are computation-dominated, the performance degrades more rapidly than the reduc-
tion of computation resources, that is, the efficiency of ISAAC’s resource allocation method will
decline under the condition with limited resources. Moreover, existing works generally ignore the
impact of data access overhead and lack consideration of the memory bandwidth. In other words,
they determine the resource allocation scheme by only considering computation. In fact, as the
number of crossbars increases, while the computational parallelism rises, communication burden
within the accelerator will become more severe and may become the bottleneck, which cannot
be ignored. How to optimally allocate resources to all layers of a CNN is still an open question.
Comprehensively studying the problem is necessary.

In this work, we propose a mathematical framework to systematically solve the resource alloca-
tion problem for ReRAM-based CNN accelerators. Given a CNN model and the hardware resource
constraints, the framework mathematically models the inference time as a function of crossbar
allocation, and finds the optimal crossbar allocation scheme through solving a constrained prob-
lem. Compared with the previous works, our proposed resource allocation method is based on
an abstract and universal performance analysis model and a dynamic programming based search
strategy. It can be flexibly applied to various conditions and most ReRAM-based CNN accelerators.
Near-optimal crossbar allocation schemes can be efficiently found. Besides modeling computation,
we also take into account the impact of data access by adding memory bandwidth constraints to
the model. The crossbar allocation approach we derived can balance the computation throughput
and data access overhead across different layers. Specifically, we make the following contributions
in this paper.

— We formulate a crossbar allocation problem for ReRAM-based CNN accelerators to maximize
the performance. The formulated constrained optimization problem is solved by a dynamic
programming based solver. Near-optimal crossbar allocation schemes can be quickly found,
without time-consuming exhaustive searches.

— We mathematically model the performance of ReRAM-based CNN accelerators when con-
sidering crossbar allocation. Specifically, we first model the computational behavior by con-
sidering essential operations and building an abstract multi-level pipelined execution flow.
Communication (i.e., data access) cost is further modeled by taking into account bandwidth
constraints. The model can be applied to various ReRAM-based CNN accelerators. It achieves
about 98% accuracy on average, compared with cycle-level behavior simulations.
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Fig. 2. Mapping convolution operations onto ReRAM-based crossbars.

— The experimental results reveal that the allocation scheme solved by our mathematical
framework achieves 94% of the optimality. Besides, with the example of ISAAC [25], our
framework optimizes the inference time of ReRAM-based CNN accelerators by 13.2×.

— By utilizing our framework, we analyze the relationship between the resource allocation
scheme and the bandwidth constraints, to tell when the bandwidth starts limiting the per-
formance. Our framework not only is an application-level optimizer, but also can provide
suggestions on architectural design.

The rest of the paper is organized as follows. Section 2 introduces the background of this work.
In Section 3 we present the proposed mathematical framework in detail. Section 4 presents and
analyzes the experimental results. Finally, Section 5 concludes the paper.

2 BACKGROUND

2.1 Mapping CNNs onto ReRAM Crossbars

CNNs usually consist of Conv layers, fully-connected (FC) layers, pooling layers, rectified lin-

ear unit (ReLU) layers and so on. Conv and FC layers, due to their numerous dot-product com-
putations, can be accelerated by ReRAM crossbars, while other layers are typically implemented
by CMOS-based circuits. Figure 2 displays a general Conv layer in CNNs. It extracts characteristic
elements fromCi ×Wi ×Hi

1 sized input feature maps (IFMs) withCo×Ci ×Kc ×Kc sized weights
and producesCo ×Wo ×Ho sized output feature maps (OFMs) as a result. Specifically, the output
element of coordinate (x ,y) on the zth output feature map is calculated as Equation (1):

o fm[z][x][y] =

Ci∑
c=0

Kc∑
kx

Kc∑
ky

(
i f m[c][Scx + kx ][Scy + ky]
×weiдht[z][c][kx ][ky]

)
+ bias[z], (1)

where Sc denotes the stride size of the Conv layer. As for an FC layer, it is equivalent to a Conv
layer withWi = Hi = Kc andWo = Ho = 1. Hence, Conv and FC layers can naturally be modeled
in a unified way.

1Those layer-related parameters, including Ci , Co , Wi , Wo , Hi , Ho , Kc , and so on, are of a particular layer in a CNN. We

ignore the layer index for these parameters if it will not lead to ambiguity. When necessary, layer indexes are marked as

superscripts.
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Fig. 3. Weight duplication.

ReRAM crossbars have widely been used for accelerating the MVM kernels in Conv and FC
layers, based on the schematic explained in Figure 2. It illustrates the methodology for mapping
convolution operations onto ReRAM crossbars. In the instance, the size of crossbars is M × N .
Weights from one filter are programmed into the same column of one or more crossbars, so a layer
requires Co columns in total, while inputs from one sliding window are applied to Kc × Kc × Ci

rows. It is important to emphasize that here crossbars refer to logical crossbars. A logical crossbar
is the minimum resource to represent M ×N weights under users’ design specifications. A logical
crossbar may include multiple physical M × N crossbars. As an example, if positive and negative
weights use separate crossbars (like PRIME [7]), a logical crossbar has two physical crossbars.
For another example, if the weights are 12 bits but a ReRAM cell can only store 4 bits, we need
3 physical crossbars to form a logical crossbar. If the two cases are both considered, the number of
logical crossbars is 1

6 of the number of physical crossbars. In this work, when we mention crossbars,
we always refer to logical crossbars. But we use the size of a physical crossbar to represent the size
of a logical crossbar. Considering the limited size of practical crossbars, it often needs multiple
crossbars, denoted as a crossbar set, to map a single layer’s weights. The number of crossbars in a
crossbar set for a particular layer is

set =
⌈Kc × Kc ×Ci

M

⌉
×
⌈Co

N

⌉
. (2)

In fact, a crossbar set is the minimum resource to store a layer’s weights. By using a crossbar set
(set crossbars) for a layer, we can produce 1 × 1 ×Co outputs at a time. When the total number of
crossbars in a ReRAM-based CNN acceleration system is more than

∑
l set

l where the summation
across all layers, if we still use the minimum resources to map the weights of all layers, there will
be resource waste. Instead, a concept of weight duplication can be introduced, which maps the
weights of a layer onto multiple crossbar sets. After duplicating the weights of a layer R times, as
illustrated in Figure 3, R crossbar sets can compute in parallel with different inputs of that layer.
As a result, intra-layer parallelism is obtained and performance is improved. R×Co outputs can be
produced in one step. It is emphasized that the number of crossbars for mapping a layer’s weights
is better to be a multiple of set (i.e., R is an integer) to simplify the hardware design. Partial sums
generated by different crossbars in a crossbar set are accumulated by additional computational
components in subsequent steps, if they belong to the same output element.

2.2 ReRAM-based CNN Accelerators

In recent years, ReRAM-based architectures have widely been used to accelerate CNNs (e.g., [1,
7, 8, 15, 22–25, 28–30, 33, 34]). Figure 4(a) shows a general abstract architecture of ReRAM-based
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CNN accelerators, which is composed of multiple sub-chips (may be referred to tiles, process ele-
ments, clusters, etc. in different publications) connected with an inter-bus. Before processing CNN
inference, weights after training are written into ReRAM crossbars as a one-time programming
step. For each sub-chip, data from input buffers are computed in crossbars and the results are
stored into output buffers. Figure 4(b) describes a typical execution flow for a Conv layer. First,
the input data are converted to analog voltages through digital-to-analog converters (DACs).
Next, ReRAM crossbars complete the MVMs and the analog results are latched in sample-and-hold
circuits. Finally, after the analog-to-digital converters (ADCs), results are fed to the following
shift-and-add circuits and ReLU/pooling components to get the final outputs, which are stored in
output buffers through the on-chip bus. The number of cycles that each operation lasts depends on
computing resources and/or the bandwidth. In the example of Figure 4(b), we assume to produce
1 × 1 × Co outputs there needs four-cycle fetching inputs, one-cycle DAC and MVM, three-cycle
ADCs and so on. Though different ReRAM-based CNN accelerators have different detailed imple-
mentations, from a high-level point of view, they generally follow a common abstract architecture
and execution flow, which may be modeled in a unified way.

In conventional CMOS-based CNN accelerators, Conv layers are usually executed sequentially
due to limited arithmetic resources. On the contrary, due to the plentiful computing resources in
memory and also to avoid costly ReRAM re-programming, ReRAM-based accelerators typically
enable all layers to be computed in parallel in a pipelined manner. Figure 4(e) explains how two
adjacent Conv layers operate in a pipeline way, assuming R = Ci = Co = 1 and Sc = 1 for both
layers. As shown in Figure 4(e), ReRAM crossbars produce outputs row by row. After (K1

c − 1) ×
W 1

o + K1
c steps, Conv buffer 1 has accumulated enough outputs to activate the computation of

Conv layer 2, as shown in step 1. Here accumulating enough outputs means that the accumulated
outputs of a layer include all the inputs required by a sliding window of the next layer, so that the
next layer can start the first convolutional computation. In step 2, Conv layer 1 generates a new
output so that layer 2 can use it to compute the second result. That is to say, as long as the previous
layer provides enough outputs, the current layer can use them to compute its outputs (“activated”
by the previous layer), so that adjacent layers can be computed in such a pipelined way. In each
step, the amount of inputs required by next layer is relevant to R × Sc . This method realizes inter-
layer parallelism. Combining with intra-layer parallelism brought by weight duplication, the two
levels of parallelism together boost the performance of ReRAM-based CNN accelerators.

3 MATHEMATICAL FRAMEWORK FOR OPTIMIZING CROSSBAR ALLOCATION

As mentioned in the previous section, ReRAM-based CNN accelerators have both intra-layer and
inter-layer parallelism. Weight duplication is a key factor that impacts the performance of both
levels of parallelism. Duplicating the weights of a layer by more multiples may provide more intra-
layer parallelism and boost the performance of that layer. Considering the inter-layer pipelined
flow, the weight duplication multiples of all layers should be elaborated to achieve the best over-
all performance. Ideally, a ReRAM-based accelerator with abundant crossbars can complete the
inference of a CNN in just L (L: number of layers in the CNN) steps with the help of maximum
weight duplication, if other factors (e.g., bandwidth constraints) are ignored. Take VGG-19 [26] as
an example, it needs 1387392 128× 128 crossbars (about 23× 109 ReRAM devices, assuming that a
device can map a weight parameter) to ensure every layer is completed within one step. In practice,
however, it is hard to provide such massive devices. Even with so many devices, it generates huge
demands on memory access and the memory bandwidth will restrict the throughput. Thus, using
maximum weight duplication such that every layer is completed in one step is impractical. How
to allocate the given number of crossbars to layers needs to be discussed comprehensively. This is
a fundamental problem but has not yet been well studied by previous works.

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 1, Article 21. Pub. date: December 2023.



Mathematical Framework for Optimizing Crossbar Allocation 21:7

Fig. 4. (a) Abstract architecture of ReRAM-based CNN accelerators. (b) Typical execution flow of a Conv

layer. (c) Two abstract pipeline stages of a layer. (d) Inter-layer parallelism. (e) Output buffers of two adjacent

Conv layers.

In this section, we propose a mathematical framework to find the best crossbar allocation
scheme, namely, the weight duplication multiples of all layers, to pursue the optimal performance
of ReRAM-based accelerators with given number of crossbars and bandwidth constraints. This is a
common problem of all ReRAM-based CNN accelerators. Before the introduction of our methodol-
ogy, there are two points that need to be emphasized. First, our work is aimed at the situation where
the number of crossbars is more than

∑L
l=1 set

l . Without this assumption, the CNN model is too
large so that the number of crossbars is insufficient to store the weights of all layers, and weight
re-writes are required in inference, which is impractical for ReRAM-based accelerators. Second,
the optimization idea in our mathematical framework is based on a unified and abstract modeling
for ReRAM-based CNN accelerators and can be applied to various architectural designs, and that
will be explained below. Specifically, our proposed framework includes the following three steps.

(1) We define a unified parameter model to describe different layers and layer dimensions of
CNNs.

(2) We propose a mathematical constrained optimization model that describes the crossbar allo-
cation problem. We convert the practical limitations to mathematical constraints and quan-
tify the relationship between performance and crossbar allocation, by modeling the essential
computation and data access behaviors in the CNN inference flow in an abstract and unified
way.

(3) We solve the optimization problem with dynamic programming. The obtained crossbar allo-
cation scheme can minimize CNN inference time effectively.

3.1 Parameter Model

In order to describe different types of layers and different layer dimensions involved in practical
CNNs, we construct a unified set of parameters to represent them. Three sets of parameters are
included in the parameter model.

(1) Architectural parameters: We use Total and M × N to represent the number and size of
crossbars. Remember thatTotal is the number of logical crossbars but not physical crossbars.
In this work we use identical-size crossbars. This is reasonable because a practical memory
system is typically composed of identical-size arrays.

(2) CNN parameters: For CNN parameters, the essential problem is how to describe dif-
ferent layers, such as pooling layers, Conv layers and FC layers, in a unified form. To
solve this problem, we reorganize the original layers and describe the new layers with a
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Table 1. Parameter Model of VGG-A

New layer Original layer(s) {Ci ,Co ,Wo ,Ho ,Kc ,Kp , Sc , Sp , Pc , Pp }
1 Conv-64, pooling {3, 64, 112, 112, 3, 2, 1, 2, 1, 0}
2 Conv-128, pooling {64, 128, 56, 56, 3, 2, 1, 2, 1, 0}
3 Conv-256 {128, 256, 56, 56, 3, 1, 1, 1, 1, 0}
4 Conv-256, pooling {256, 256, 28, 28, 3, 2, 1, 2, 1, 0}
... ... ...
11 FC-4096 × 1000 {4096, 1000, 1, 1, 1, 1, 1, 1, 0, 0}

unified form {Ci ,Co ,Wo ,Ho ,Kc ,Kp , Sc , Sp ,Pc ,Pp }2, where Kc /Kp , Sc /Sp , Pc /Pp denote the
kernel sizes of Conv/pooling layers, stride sizes of Conv/pooling layers, and padding sizes
of Conv/pooling layers, respectively. As an instance, Table 1 lists the parameter model of
the VGG-A model [26]. To use our CNN parameter model, some original layers are fused to
form new layers. If Kp = Sp = 1, the new layer refers to a pure Conv layer. IfWo = Ho = 1,
the new layer refers to an FC layer whose input/output size isCi /Co . In other cases, the new
layer is a combination of a Conv layer and the following pooling layer. Wo and Ho always
represent the output sizes of Conv layers. This unified representation of CNN parameters
brings great convenience to the next steps, in which the constraints and objective are also
unified.

(3) Derived parameters: In addition to the user-given parameters, we also use set to repre-
sent the number of crossbars in a crossbar set for a particular layer, which is defined in
Equation (2).

3.2 Constrained Optimization Problem

We use X and R to represent the numbers of crossbars and crossbar sets allocated to the lay-
ers of a CNN, respectively. The crossbar allocation problem becomes finding the optimal X or R
to minimize the inference time of an entire CNN. Based on the parameter model, we propose a
constrained optimization model to generalize the problem. Section 3.2.1 defines the optimization
problem. Section 3.2.2 models the CNN inference time in an abstract and unified way by consider-
ing the essential computations in CNN reference. Section 3.2.3 further complements the model by
considering the memory bandwidth constraints.

3.2.1 Problem Definition. In our framework, we take the time required to complete a CNN’s
inference as the optimization objective. The constraints mainly come from the number of crossbars
and the maximum weight duplication multiples, i.e.,

L∑
l=1

X l ≤ Total , (3)

X l = Rl × set l for 1 ≤ l ≤ L, (4)

1 ≤ Rl ≤W l
o × H l

o for 1 ≤ l ≤ L, Rl is an integer, (5)

architectural constraints on R, X or set . (6)

Equations (3) and (4) are obvious. Due to Equation (4), finding the optimal X is equivalent to
finding the optimal R. For a layer l , the maximum weight duplication multiple is W l

o × H l
o . If

Rl =W l
o ×H l

o , the entire layer can be completed in one step. Equation (5) limits the maximum value

2A bold variable is a vector that is composed of the corresponding parameters of all layers.
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of R to avoid unnecessary duplication. In addition, we limit R to be integers to simplify hardware
design. If some R is not an integer, additional hardware components are needed to control the
partial computation and data access which are related to the fractional part of R. For an integral
R, the R-way parallelism is implemented in a unified way. For an FC layer (Wo = Ho = 1), it only
requires an MVM operation, so R = 1 is already sufficient for its computation and it is the only
possible duplication multiple for FC layers. In our framework, we offer an opportunity to set other
constraints from the architectural perspective. For example, the ReRAM crossbars in one set prefer
to be allocated in the same group [25], such as a bank or a tile, to minimize costly inter-group partial
sum communication and structural harzards among different layers. In this case, the number of
crossbars duplication in one group becomes an additional constraint for R. Such constraints can
be added in Equation (6). There are other restrictions like this, depending on the specific hardware
design of ReRAM-based CNN accelerators.

3.2.2 Optimization Objective. The optimization objective is the CNN inference time, which
should be accurately modeled. Figures 4(b)–4(e) illustrate the CNN inference flow from three dif-
ferent points of view. Assuming that a Conv layer i is allocated with Ri crossbar sets, each time it
fetches Ri × K i

c × K i
c × Ci

i inputs and generates Ri × Ci
o outputs. We call this operation one step.

Conv layer i needs �W
i

o ×H i
o

Ri � steps in total to complete its computation. Figure 4(b) illustrates the
typical process of one step of a layer. Though different CNN accelerators have different detailed
execution flows, basically, a step can always be divided into two abstract stages, a data access stage
and a computation stage. Detailed latencies of them depend on the specific architectural design,
dataflow and the assigned resources. The two stages are executed in a pipelined way, as explained
in Figure 4(c), where any data access stage is for the next computation stage. In ReRAM-based
CNN accelerators, all layers are computed in parallel. As long as in the previous step the previous
layer has produced enough outputs, the current layer is activated and can be started, as Figure 4(d)
shows. Based on the above modeling, it is obvious that CNN inference time can be calculated as

In f erenceTime = Tstep ×OpL, (7)

whereTstep is the step latency and will be modeled in the next subsection. We useOp to represent

the accumulated amounts of steps of all layers so thatOpL denotes the total number of steps of the
entire CNN inference process. In this subsection, we first focus on modeling Op that is a function
of R, without considering the detailed latencies of data access and computation stages, which will
be modeled in the next subsection.

Figure 5(a) illustrates a layer-wise pipelined inference process. ReRAM-based CNN accelerators
process inference in a pipelined way as introduced in Section 2. Each layer can start its computa-
tion as long as the previous layer has produced sufficient outputs. Figure 5(a) points out that Op
depends on the latencies of three kinds of operations, which is expressed as

Op = NormalOp + PreOp + Nop. (8)

The computation of a layer can be described by the following process. First, to activate the compu-
tation of a layer, it requires a few steps waiting for sufficient inputs generated from the previous
layer. The number of the preparation steps is called PreOp. After the preparation, under the ideal
condition without any pipeline stall, the number of required steps for generating the output fea-
ture map of the layer is referred to as NormalOp. In each step, the layer can produce R×Co outputs,

so NormalOp can be calculated by Wo Ho

R
. However, due to pipeline imbalance, pipeline stalls may

happen during the process. For example, when the computational throughput of the previous layer
is much smaller than the current layer’s, at a particular step, inputs required by the layer may not
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Fig. 5. (a) Pipelined timing diagram of CNN inference. (b) Output buffers of layers 2 and 3 in different steps.

(W 2
o = 5,W 3

o = 5, K3
c = 3, S3

c = 1, P3 = 1, R2 = 2, R3 = 3, C3
i = 1, C3

o = 1).

be available as the previous layer’s computation is still in progress. In such cases, the computation
of the current layer needs to temporarily pause. We call the number of the pauses as Nop.

We explain these operations in Figure 5(b) with the example of layers 2 and 3 in Figure 5(a).
Layer 3 cannot start its computation until the 7th step due to the insufficient outputs of layer 2,
so PreOp3 = 6. Next, as R2 < R3, layer 2’s outputs become insufficient in the 9th step, resulting in
a nop operation in layer 3’s execution. The same situation happens again in the 13th step. In the
15th step, layer 2 finishes its computation, but the existence of padding makes layer 3 continue its
computation until the 17th step. The interval between the finish time of adjacent layers is called
Tail in our model.

Based on the inter-layer pipelined process, the CNN inference time is calculated using
Algorithm 1. Conv layer i produces Ri × Ci

o outputs in every step, so its NormalOpi can be com-

puted as line 17. From Figure 5(a) we can find that PreOpi consists of PreOpk and the time Conv
layer k spends to activate Conv layer i (k < i), which is denoted as PreOpInterval(i,k ). Consider-
ing the popular Conv-pooling-Conv structure, we calculate PreOpInterval(i, i − 1) in lines 1-13.
First, we calculate the number of rows and columns of outputs produced in Conv layer i’s first
operation, as shown in line 6. Next, taking (row , col ) as inputs, we calculate the numbers of re-
quired rows and columns of pooling layer i − 1 in lines 7-8. Similarly, to provide enough inputs
for pooling layer i , crow rows and ccol columns are required in Conv layer i − 1, as calculated in
lines 9-10. Finally, PreOpInterval(i, i−1) is calculated in line 12 with (crow , ccol ). For the simpler
Conv-Conv structure, this process is also applicable, as K i−1

p = S i−1
p = 1.

However, computing PreOpi with the above process may lead to a potential error. As shown
in Figure 5(a), the operation marked at F for layer 4, which corresponds to PreOp, is actu-
ally also a nop operation caused by the nop operation at C. This additional stall cannot be
calculated by PreOpInterval(4, 3), which leads to an error in PreOp4. However, we find that
PreOpInterval(4, 2) can take this stall into account and correct the result. This example explains
why we traverse all the i − 1 cases in line 18 for calculating the precise PreOpi . For Nopi , it is
difficult to be modeled precisely, because it may appear in a variety of complex scenes and is hard
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ALGORITHM 1: Calculation flow of CNN inference time.
Input: Number of layers L;

Parameters
{
Ci , Co, Wo, Ho, Kc , Kp , Sc , Sp , Pc , Pp

}
;

Duplication of all layers R .

Output: CNN inference time.

// Calculate number of steps Conv layer k spends to activate Conv layer i

1 Function PreOpInterval(i , k):

2 Initialize Product ← Ri ;

// Wp denotes the width of pooling layers

3 Wp ←
Wo−Kp+2×Pp

Sp
+ 1;

4 for j ← i to k + 1 do

5 row ←
⌈

P r oduct

W
j

o

⌉
;

6 col ← Product − (row − 1) ×W
j

o ;

7 prow ← (row − 1) × S
j
c + K

j
c − P

j
c ;

8 pcol ← min
{
(col − 1) × S

j
c + K

j
c − P

j
c , W

j−1
p

}
;

9 crow ← K
j−1
p + S

j−1
p × (prow − 1) − P

j−1
p ;

10 ccol ← min
{
K

j−1
p + S

j−1
p × (pcol − 1) − P

j−1
p , W

j−1
o

}
;

11 Product ←
⌈

(cr ow−1)×W
j−1

o +ccol

R j−1

⌉
× R j−1;

12 pr e ←
⌈

(cr ow−1)×W k
o +ccol

Rk

⌉
− 1;

13 return pr e ;

// Calculate CNN inference time

14 Function InferenceTime(R):

15 Initialize Op1 =

⌈
W 1

o ×H 1
o

R1

⌉
;

16 for i ← 2 to L do

17 N ormalOpi ←
⌈

W i
o ×H i

o

Ri

⌉
;

18 Pr eOpi ← max
0<k<i

{
PreOpInterval(i, k ) + Pr eOpk

}
;

19 T ail i ←
⌈

W i
o ×

⌊
P i

c /Si
c

⌋
Ri

⌉
;

20 Opi ← max
{
N ormalOpi + Pr eOpi , Opi−1 +T ail i

}
;

21 T i
A
← ∑

h∈hier ar chy

Dat aSizei,h
BWh

;

22 T i
st ep ← max

{
T i

A
, T i

C

}
;

23 Tst ep ← max
1≤i≤L

{
T i

st ep

}
;

24 return OpL ×Tst ep ;

to be analytically modeled. Instead, we introduce line 20 to estimate the total number of steps
approximately. Moreover, line 20 involves Tail to describe a special case in Figure 5(b). In this
case, due to the existence of padding, layer 3 has to continue its computation even if there is no
input produced from layer 2. We useTail to represent the overhead of these additional operations.
Eventually, after traversing all layers in lines15-24, the total number of steps to complete the entire
CNN inference is expressed as OpL .

By minimizing OpL under the constraints defined in Equations (3)–(6), one can get the opti-
mal crossbar allocation scheme that minimizes the number of steps required to complete a CNN
inference process. From Algorithm 1, we can draw the conclusion that the modeled number of
computational steps to complete CNN inference only depends on the allocation scheme of ReRAM
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crossbars, and has nothing to do with detailed architectural information. This is because we model
the essential computations in the CNN inference process in an abstract and unified way. This also
implies that our framework is applicable to different hardware architectures as long as they follow
the general and abstract pipelined execution flow illustrated in Figure 4.

3.2.3 Bandwidth Consideration. Till now we have built the general relationship between Op
and R without considering any architectural factors. People have pointed out that in CNN accel-
erators, communication (i.e., data access) which is constrained by the memory bandwidth is also
an important factor that should be optimized [3, 9]. In order to take into account data access la-
tency, Tstep in Equation (7) should be modeled. In order to not only take into account the impact
of architectural factors on data access latency, but also ensure the generality of our mathematical
framework, in this subsection, we supplement the previous model with user’s given architectural
information and make a simplified but unified model for the data access latencies for all layers.

For each layer, data access and computation are executed in a pipelined way, as shown in
Figure 4(c). The modeling of the latency of a computation stage (T i

C
) is trivial. In ReRAM-based

CNN accelerators, computing resources are organized in basic processing units as the minimum
granularity of computing resources. A processing unit consists of certain numbers of crossbars,
DACs, ADCs and other components. As all the processing units in Ri crossbar sets compute in
parallel,T i

C
only relates to the time taken for inputs to flow through a basic processing unit. It can

include many factors, like the delays of ADCs and S&A units and so on. In ReRAM-based CNN
accelerators, pooling layers are typically implemented by digital circuits and can hardly influence
the inference time, so the delay can be included in TC . Thus, T i

C
is a constant and has nothing to

do with the crossbar allocation scheme.
If the memory bandwidth is sufficient, T i

step equals to T i
C

and the CNN inference time is repre-

sented byOpL . However, in fact, when the intra-layer parallelism R increases, the required amount
of data in each clock cycle will also increase and the most important limiting factor will be the
memory bandwidth, which will eventually become the performance bottleneck of the accelerator.
Hence, it is interesting to figure out how the memory bandwidth affects the performance. With a
limited memory bandwidth, computation and communication should be “balanced” in some way.
Without loss of generality, we consider an architecture with multiple memory hierarchies, so the
data access latencyT i

A
will be accumulated by the time of fetching inputs from the farthest memory

hierarchy to the nearest memory hierarchy.
Based on the above analysis, the bandwidth-related parameters are modeled as

T i
A

=
∑

h∈hier archy

DataSizei,h

BWh
, (9)

T i
step = max

{
T i

A, T
i
C

}
, (10)

Tstep = max
1≤i≤L

{
T i

step

}
, (11)

where DataSizei,h means the size of data that are located in memory hierarchy h and need to be
transferred to layer i , and BWh denotes the corresponding bandwidth. It is emphasized that though
the calculation of Equation (9) depends on architectural information, the model is universal as
Equation (9) only involves very few common parameters of any architectures. We take ISAAC [25]
as an example to explain how to use Equation (9). In ISAAC, as Figure 4(a) displays, each tile
(corresponding to a sub-chip in Figure 4(a)) has an input buffer and an output buffer. Data within
a tile flow through an on-chip bus, while data from different tiles are communicated with an inter-
bus. According to the architectural information of ISAAC, we find that generally one CNN layer
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will be mapped to multiple tiles. Denote the number of crossbar sets in one tile as r , the number
of tiles in layer i and layer i − 1 as T i and T i−1, respectively. The intra-tile data access size equals
to r i × K i

C
× K i

C
× Ci

i . When layer i needs to access inputs from layer i − 1, all T i−1 tiles’ results

should be broadcast to T i tiles, which means that the data size communicated across tiles is T i ×
T i−1 × r i−1 ×Ci−1

o . Considering the worse case, T i
A

is the sum of both intra-tile and inter-tile data
access latencies, i.e.,

T i
A =

r i × K i
C
× K i

C
×Ci

i

BWintr a−t ile
+
T i ×T i−1 × r i−1 ×Ci−1

o

BWinter−t ile
. (12)

In Section 3.2.2, we have modeled Op (number of steps to complete all layers) as a function of
R. Once given the abstract architectural information, the proposed mathematical framework can
be used for various architectures by taking into account detailed latencies of computation and
data access. As shown in lines 21-23 of Algorithm 1, with the given crossbar allocation scheme
and bandwidth information, we can calculate Tstep , which in turn, decides the inference time of
the CNN model in line 24. Since both Op and Tstep depend on the crossbar allocation scheme R,
how to find the optimal crossbar allocation scheme to balance communication and computation,
as well as to minimize the inference time of the entire CNN model, is also a key problem. In the
next subsection we propose a solver for the constructed optimization problem.

3.3 Dynamic Programming based Solver

In the previous subsection, we have constructed a constrained optimization problem to optimize
crossbar allocation for ReRAM-based CNN accelerators. The size of the search space is the number
of positive integer solutions {R1, . . . ,RL } of the inequality

set1R1 + set2R2 · · · + setLRL ≤ Total , (13)

which is a linear Diophantine inequality. As far as we know, there is no closed form expressing
the number of positive integer solutions of a general linear Diophantine inequality. Considering
a simpler case where all set l (l = 1, 2, . . . ,L) values are identical (denoted as set ), the number of
positive integer solutions of R1 + R2 + · · · + RL = Total/set = N is simply CL−1

N−1, where Ck
n is the

number of selections of k items from n items. This can be explained as follows. L−1 separators can
be placed among N horizontally placed identical items to partition the N items into L non-empty
subsets (the number of items in the l-th subset is Rl ), where a partitioning one-to-one corresponds
to a positive integer solution of the simpler case. Clearly, there are N − 1 positions in which each
can hold one separator at most, so the number of selections isCL−1

N−1. Accordingly, for Equation (13),

the number of positive integer solutions is roughly O (CL−1
T otal/ set−1

) where set is the mean value

of set . The actual complexity is larger because the use of set to derive the complexity simplifies
the problem and reduces the complexity. It is typically an astronomical search space that is impos-
sible to be fully traversed. Based on our analysis, we can find that the problem has the optimal
substructure property of dynamic programming, which means that the minimum inference time
cost by layers 1 to l is determined by the larger one between the minimum time cost by layers 1
to l − 1 and the inference time of layer l , so that the optimal solution of the problem should obey
the property shown in lines 9–13. Hence, we employ dynamic programming to quickly find the
near-optimal crossbar allocation scheme, as described in Algorithm 2.

Algorithm 2 aims at optimally allocating Total crossbars across L layers to maximize the ac-
celerator performance. In Algorithm 2, we construct two 2D matrices, Ropt and Tmin , which re-
spectively record the optimal crossbar allocations and the minimal inference time for different
problems. Each problem is specified by variables i andG, where i varies from 1 to L, andG ranges
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ALGORITHM 2: Dynamic programming based solver.

Input: Number of layers L;

Parameters
{
Ci , Co, Wo, Ho, Kc , Kp , Sc , Sp , Pc , Pp

}
;

Number of crossbars in crossbar sets set .

Output: The optimal allocation scheme Ropt [L, T otal ].

1 Initialize Tmin ← +∞ ;

2 for i ← 1 to L do

3 for G ← ∑i
k=0

set k to T otal −∑L
k=i+1

set k do

4 if i = 1 and (G mod set 1 ) = 0 then

5 Ropt [1, G]←
⌈

G
set 1

⌉
;

6 Tmin [1, G]← InferenceTimeRopt [1, G];

7 else

8 for j that satisfies the constraints in Equations (3)–(6) do

9 Rt emp ← Ropt [i − 1, G − j] +
⌈

j

set i

⌉
;

10 Tt emp ← InferenceTime(Rt emp );

11 if Tt emp < Tmin then

12 Ropt [i, G]← Rt emp ;

13 Tmin [i, G]← Tt emp ;

between
∑i

k=0 set
k and Total − ∑L

k=i+1 set
k , as depicted in lines 2-3. Specifically, Ropt [i,G] indi-

cates the optimal solution of allocating G crossbars to layers 1 to i , and Tmin[i,G] is the CNN
inference time of the corresponding problem, which is calculated using Algorithm 1. The optimal
crossbar allocation is finally determined by Ropt [L,Total], which can be derived through itera-
tively solve its sub-problems, where i ≤ L and G ≤ Total . Lines 4–6 imply that if there is only
one layer, the optimal solution is exactly allocating all crossbars to it. Subsequently, in lines 8-13,
Ropt [i,G] is iteratively solved through traversing its sub-problems Ropt [i−1,G− j] over j, where j
represents the number of crossbars allocated to layer i . In each iteration, j and Ropt [i−1,G− j] are
combined for generating an intermediate variable Rtemp . Ropt [i,G] represents the corresponding
Rtemp when its inference time is minimized. The dynamic programming based solver is expected
to find the optimal solution. However, as analyzed in Section 3.2.2, the modeling of Nop is not
completely precise so the solution may not be globally optimal. We will show by experiments in
the next section that the solved solutions are almost identical to the results of exhaustive/random
searches, with negligible differences, while our solver is much faster than exhaustive searches.

It can easily be derived that the time complexity of Algorithm 2 is O (L2 × Total2) (the time
complexities of the loops at lines 2, 3 and 8 are O (L), O (Total ) and O (Total ), respectively, and the
time complexity of InferenceTime isO (L)), which is much lower than that of exhaustive searches.

4 EXPERIMENTAL RESULTS

Benchmarks: To verify the correctness and effectiveness of the proposed mathematical frame-
work, we benchmark five popular CNN models, including AlexNet [18], VGG-A [26], VGG-E [26],
ResNet-18 [13] and MobileNet-v1 [14]. Table 2 lists the parameter models of these CNNs, where
each grid contains a specific parameter list of all layers in a CNN model. It should be noted that a
layer here actually refers to a fused layer, instead of an original layer, according to our parameter
model proposed in Section 3.1.

Evaluation Methodology and Baselines: To obtain the ground-truth of the number of
steps needed for the inference of CNN models, we design a behavior-level simulator, which
simulates the CNN inference process at the cycle level. The simulator has been verified against an
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Table 2. Parameter Models of Benchmarks

Para. AlexNet VGG-A VGG-E ResNet-18

Ci [3, 96, 256, 384, 384] [3, 64, 128, 256#2a , 512#3] [3, 64#2, 128#2, 256#4, 512#7] [3, 64#5, 128#4, 256#4, 512#3]
Co [96, 256, 384, 384, 256] [64, 128, 256#2, 512#4] [64#2, 128#2, 256#4, 512#8] [64#5, 128#4, 256#4, 512#4]
Wo [55, 27, 13, 13, 13] [224, 112, 56#2, 28#2, 14#2] [224#2, 112#2, 56#4, 28#4, 14#4] [112, 56#4, 28#4, 14#4, 7#4]
Kc [11, 5, 3, 3, 3] [3, 3, 3, 3, 3, 3, 3, 3] [3#16] [7, 3#16]
Kp [3, 3, 1, 1, 3] [2, 2, 1, 2, 1, 2, 1, 2] [1, 2, 1, 2, 1#3, 2, 1#3, 2, 1#3, 2] [3, 1#16]
Sc [4, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1] [1#16] [2, 1#4, 2, 1#3, 2, 1#3, 2, 1#3]
Sp [2, 2, 1, 1, 2] [2, 2, 1, 2, 1, 2, 1, 2] [1, 2, 1, 2, 1#3, 2, 1#3, 2, 1#3, 2] [2, 1#16]
Pc [3, 3, 1, 1, 3] [1, 1, 1, 1, 1, 1, 1, 1] [1#16] [3, 1#16]
Pp [0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0] [0#16] [1, 0#16]

a The notation par ameter #r epeat means that par ameter is repeated r epeat times (for simplicity and to save

space).

Table 3. Parameters of ISAAC-like Architecture [25]

Component Parameter Value

Tiles (sub-chips in Figure 4(a)) Number Variableb

Crossbars per tile Size, number 128 × 128, 72
ADCs per crossbar Resolution, number 8-bit, 1
DACs per crossbar Resolution, number 1-bit, 128
On-chip buffer Bandwidth 128 GB/s
Inter-bus Bandwidth 12.8 GB/s
Computation stage Latency 21 cycles
Clock Period 100ns
Inputs/weights Precision 16-bit

b Since we will compare our method with ISAAC with different number of crossbars,

the number of tiles is set to a variable.

open-source simulator, MNSIM [36], using the built-in CNN models (LeNet, AlexNet, VGG8,
VGG16 and ResNet18) of the MNSIM package. Since MNSIM does not support weight duplication,
our simulations without weight duplication show that the difference between the results of our
simulator and MNSIM is 9.92% on average. The simulation results are used to evaluate the accuracy
of the inference time modeling. To validate the optimality of the solutions obtained by the proposed
crossbar allocation methodology, we compare our method with exhaustive/random searches. Our
method is also compared with three heuristics. Each of them corresponds to a crossbar allocation
strategy proposed in a previous work. Specifically, PipeLayer [28] ensures the crossbar duplication
ratios proportional to Wo × Ho

3. ISAAC [25] applies the heuristic S2
c -based weight duplication

and PRIME [7] adopts a method similar to the identical weight duplication which we will evaluate.
We further make detailed comparisons with an ISAAC-like architecture whose key architectural
parameters are summarized in Table 3. The ISAAC-like architecture has the same structure as
ISAAC, but with different parameters, like the number of tiles and the number of crossbars in
one tile.

4.1 Accuracy of Inference Time Modeling

As mentioned in Section 3.2, since Nop is difficult to be precisely modeled, the inference time
evaluated by Algorithm 1 may not be precise, either. Table 4 lists the error rate (ER) of the
evaluated number of steps needed for CNN inference, taking the results of behavior-level

3In this paper, a multiplication between two vectors means an element-wise multiplication and the result is still a vector.
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Table 4. Inference Time Modeling Error and Accuracy

CNN model ER <1% ER 1 − 5% ER >5% Average accuracy

AlexNet 89.2% 8.4% 2.4% 99.6%
VGG-A 64.8% 34.7% 0.5% 99.1%
VGG-E 51.4% 47.7% 0.9% 98.8%
ResNet-18 67.7% 30.1% 2.2% 98.9%
MobileNet-v1 60.2% 34.1% 5.7% 97.1%

Fig. 6. Inference time of solutions obtained by our framework and exhaustive/random searches. (a) Without

bandwidth constraints. (b) With bandwidth constraints.

simulation as the ground-truth. We simulate the CNN inference process cycle by cycle, and make
a comparison with the calculated OpL . We randomly generate 10,000 crossbar allocation schemes
and collect the proportions of cases with ≤1% error, 1-5% error, and ≥5% error, respectively. As
Table 4 shows, for most cases, the error rate is below 5%. The maximum value of ER is 15%. For
cases with slightly large ERs, they are caused by large Nop values as Nop is the only error source
in our inference time model. Large Nop values generally imply long inference time. Solutions
of long inference time will be eliminated by our solver. Hence, the cases with slightly large ERs
can hardly impact the solution optimality of our solver. The average modeling accuracy is higher
than 98%, indicating the correctness of our inference time model.

One may ask a question that since we have a behavior-level simulator, why we use the pro-
posed inference time model, which is not 100% precise, instead of the simulator, for measuring the
inference time in the dynamic programming based solver. In fact, we have compared the runtime
between them. In order to simulate one case, the simulator takes about 1000× longer time than
our model. If we use the simulator in our solver, it will take a few months to complete the largest
case we have tested. Therefore, it is impractical to adopt the simulator in our solver.

4.2 Solution Optimality

Our proposed mathematical framework is aimed at finding the near-optimal crossbar allocation
scheme for minimizing CNN inference time, regardless of the accelerator architecture details. To
prove that, we compare the solutions solved by our framework with the optimal results obtained
by exhaustive searches or random searches with pruning, as shown in Figure 6. With pruning, the
search space shrinks a lot by eliminating many intuitively bad solutions. To determine whether a

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 1, Article 21. Pub. date: December 2023.



Mathematical Framework for Optimizing Crossbar Allocation 21:17

crossbar allocation candidate solution can be pruned, we calculate the cosine similarity between
R andWo ×Ho . Solutions with small cosine similarity means that the crossbar allocation schemes
and the workloads of layers significantly mismatch, so that they tend not to be the optimal solution.
Each benchmark is tested with several cases which are denoted as (# of crossbars, crossbar size4).
The tested cases cover different situations. For example, AlexNet (2048, 256) represents the case
where abundant crossbars are allocated for small-scale CNNs, while VGG-E (2048, 128) represents
the case with a small number of crossbars allocated to large-scale CNNs. To obtain the optimal
results, for small-scale cases, exhaustive searches are performed; while for large-scale cases, due to
the extremely huge search space, we have to run a number of (108) random searches after pruning
to find a quasi-optimal solution.

The results shown in Figure 6(a) are without the bandwidth constraints so they describe the
number of steps for CNN inference. The figure intuitively reveals that there is almost no differ-
ence in the inference time between the solved solutions and the exhaustive/random search (prun-
ing applied) results, which implies the near-optimality of the proposed framework. There are three
cases for which the inference time obtained by our method is worse than that obtained by exhaus-
tive/random searches with pruning, AlexNet (1024, 128), VGG-A (1024, 128) and VGG-E (2048, 128).
They spend 0.43% more steps than optimum/quasi-optimum on average. The small error is caused
by the approximate modeling of Nop, as mentioned in Section 3.2.2.

When considering bandwidth constraints, Figure 6(b) compares the inference time obtained by
the proposed method with the optimal/quasi-optimal solutions obtained by exhaustive/random
searches with pruning. Our solutions achieve 94% of the optimal/quasi-optimal performance on
average, which implies the bandwidth consideration may affect the optimality of our framework a
little. However, we will show in the following comparisons that our method is still far better than
heuristics and ISAAC [25].

4.3 Comparison with Heuristics

In Figure 7, we compare our crossbar allocation strategy with three heuristics (without bandwidth
constraints):WoHo-proportional duplication, S2

c -based duplication and identical duplication. The
three heuristics are explained as follows.

In the first heuristic, R is proportional toWo ×Ho . As a crossbar set stores exactly one copy of
the weights of a layer and can implement Kc × Kc ×Ci ×Co MACs at a time,WoHo-proportional
duplication makes the number of MACs that the crossbars allocated to a layer can complete at a
time be proportional to Kc × Kc ×Ci ×Co ×Wo × Ho , which is the total workload of a layer. This
implies thatWoHo-proportional duplication allocates crossbars to layers based on the workloads
of layers and tends to balance the number of steps among all layers. This is a straightforward
approach that has obvious intuitive insight. PipeLayer [28] uses this heuristic to balance the stage
latencies of the pipeline.

The second heuristic, S2
c -based duplication, has been adopted in ISAAC [25]. It claims that if the

weight duplication multiple of layer i is Ri , Ri−1 should be (S i
c )2 × Ri (Sc is the convolution stride

size). The intuitive meaning is to balance the computation stages of the inter-Conv pipeline. Based
on this principle, the weight duplication multiples of all layers are determined in the layer reversed
order, from the last layer to the first layer. The stride sizes of pooling layers are not considered in
the calculation of the duplication multiples.

In the last heuristic,R’s elements are identical, meaning that all layers’ weights are duplicated by
the same multiple. This means that all layers are allocated the same number of crossbar sets. Note
that the numbers of crossbars allocated to all layers are not necessarily equal, since the number of

4Square crossbars (i.e., M = N ) are used in all experiments.
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Fig. 7. Inference time (number of steps) comparisons with three heuristics, without bandwidth constraints.

(a) AlexNet. (b) VGG-A. (c) VGG-E. (d) ResNet-18. (e) MobileNet-v1.

crossbars in a crossbar set is different for different layers, as expressed in Equation (2). S2
c -based

duplication and identical duplication generate identical results for VGG-A and VGG-E, as their
Sc = 1.

From Figure 7, we can find that our framework generates better results than the three heuristics.
The average improvements in the inference time (number of steps) againstWoHo-proportional du-
plication, S2

c -based duplication and identical duplication are 1.18×, 15.1× and 32.03×, respectively.
ThoughWoHo-proportional duplication generates somewhat similar results as our method, it ig-
nores many practical factors and has several shortcomings.

In some cases, there are no data in Figure 7 for the WoHo-proportional duplication method,
because the given number of crossbars is not sufficient for carrying out that crossbar allocation
strategy. In fact, this is one of the major drawbacks ofWoHo-proportional duplication. SinceWo ×
Ho usually vary much for all layers in a CNN, even when the layer with the smallestWo ×Ho has
the smallest weight duplication multiple, namely, 1, the layer with the largest Wo × Ho may still
need a large number of crossbars, making the total crossbar requirement exceed the given crossbar
number limit.

In practice, the given number of crossbars may not be fully allocated to layers by the heuristics,
and there may be some remaining crossbars that are insufficient for another duplication of weights
for all layers. Table 5 analyzes such a situation. It compares the inference time (number of steps)
between our method andWoHo-proportional duplication for five cases. The proposed framework
can always fully utilize the given crossbars, while the WoHo-proportional duplication heuristic
leads to some remaining crossbars. As a result, our method improves the inference time. For the
five test cases, the average inference time improvement is 28.3%.

Most important of all, the heuristics cannot handle bandwidth constraints but our framework
can. Practical hardware architectures always have bandwidth constraints. The results with band-
width constraints taken into account will be presented in the next subsection.
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Table 5. Inference Time (Number of Steps) Comparison and Number of Remaining

Crossbars ofWoHo -Proportional Duplication Method

Case
Proposed method WoHo-proportional

# of steps # of steps # of remainders

VGG-A (4096, 128) 162 245 253
VGG-E (8192, 128) 280 318 514
VGG-E (4096, 256) 201 295 100
ResNet-18 (4096, 128) 79 101 278
MobileNet-v1 (4096, 128) 147 303 106

Fig. 8. Inference time comparison with ISAAC. (a) AlexNet. (b) VGG-A. (c) VGG-E. (d) ResNet-18.

(e) MobileNet-v1.

4.4 Comparison with ISAAC with Bandwidth Constraints

To validate the effectiveness of our mathematical framework when applied to existing ReRAM-
based CNN accelerators, we compare the inference time between our method (with and without
bandwidth constraints) and ISAAC (with bandwidth constraints), as shown in Figure 8. We use the
architectural parameters listed in Table 3 to evaluate our method and ISAAC, while the number of
tiles (corresponding to sub-chips in the abstract architecture illustrated in Figure 4(a)) varies. Each
tile has 72 128×128 crossbars.

Compared with the S2
c -based duplication method adopted by ISAAC, our method improves the

inference time significantly. The average improvements in the inference time against ISAAC are
6.6× and 13.2×, respectively, for our method without and with bandwidth constraints. We can find
that ISAAC’s allocation strategy that tries to balance the computation stages of the inter-Conv
pipeline introduces unbalanced data access latencies and Conv-pooling pipeline structure, lead-
ing to an apparent performance decrease. With the increase of the crossbar number, the inference
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Table 6. Analysis on Optimal Crossbar Allocation

Case
Optimal allocation scheme & features

L1 L2 L3 L4 L5 L6 L7 L8 σ c

AlexNet(2304, 128)

R 106 21 7 6 6
Wo×Ho 3025 729 169 169 169
Wo×Ho/R 28.54 34.71 24.14 28.17 28.17 3.53
Tstep 2.10 31.17 5.58 2.42 2.11 12.66

VGG-A(2304, 128)

R 200 50 13 13 4 4 1 1
Wo×Ho 50176 12544 3136 3136 784 784 196 196
Wo×Ho/R 250.88 250.88 241.23 241.23 196 196 196 196 27.00
Tstep 2.10 7.57 3.86 3.52 2.10 2.10 2.10 2.10 1.92

AlexNet(2304, 128)

R 26 6 2 22 2
Wo×Ho 3025 729 169 169 169
Wo×Ho/R 116.35 121.50 84.50 7.68 84.50 52.25
Tstep 2.10 2.25 2.10 2.54 2.56 0.23

VGG-A(2304, 128)

R 112 28 10 10 5 4 2 2
Wo×Ho 50176 12544 3136 3136 784 784 196 196
Wo×Ho/R 448.00 448.00 313.60 313.60 156.80 196 98 98 143.26
Tstep 2.10 2.20 2.10 2.10 2.10 2.10 2.10 2.10 0.04

c Standard deviation of the corresponding row.

time of the solutions found by our method without bandwidth constraints decreases continuously,
which implies that data access cost gradually dominates the overall performance. In this case,
optimization without considering bandwidth constraints may not work well. This comparison il-
lustrates the necessity of considering the memory bandwidth in the optimization problem. Nev-
ertheless, our method without bandwidth constraints with pooling stride taken into account can
still achieve better performance compared with ISAAC’s, thanks to the unified layer description
model. Besides, our method with bandwidth constraints can further balance both computation and
communication well, so the obtained inference performance is superior and stable.

4.5 Result Analysis

We have shown by comprehensive results that our framework is able to find near-optimal crossbar
allocation schemes under the given number of crossbars. Furthermore, we would like to find out
some intuitive explanations behind the found solutions, which also helps generalize the principles
for allocating crossbars for ReRAM-based CNN accelerators, as listed in Table 6. Case 1 is AlexNet
(2304, 128) and case 2 is VGG-A (2304, 128), without bandwidth constraints. Cases 3 and 4 are same
as cases 1 and 2, respectively, with bandwidth constraints taken into account. Cases 3 and 4 use
the same architectural parameters as in Figure 8, which are listed in Table 3, where 2,304 crossbars
correspond to 32 tiles.

Without considering bandwidth constraints, we find that the optimal duplication multiples R
are approximately proportional toWo ×Ho (for cases 1 and 2,Wo × Ho/R is similar for all layers
with a small standard variation) to minimize the inference time. In this case, the workloads of all
layers can be well balanced and nop operations are also minimized. This is a universal conclusion
generalized from the bandwidth-unconstrained optimal crossbar allocation schemes, which also
explains whyWoHo-proportional duplication can generate slightly worse results than our method,
as shown in Figure 7. However, from the solutions obtained by our framework, the optimal dupli-
cation multiples are not strictly proportional to Wo × Ho . The reasons are mainly caused by the
practical limitations of theWoHo-proportional duplication method, which have been explained in
the last few paragraphs of Section 4.3.
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Fig. 9. Wo × Ho/R ratios under different bandwidth constraints (layers are fused by our parameter model

presented in Section 3.1 so the X-axis shows the indexes of the fused layers instead of the original layers).

When memory bandwidth becomes the bottleneck which limits the data access performance,
the above conclusion no longer holds. In this case, our method with bandwidth constraints tends
to generate balanced computation and communication, and balanced bandwidth utilization for all
layers, as suggested by the small standard deviation ofTst ep in cases 3 and 4 of Table 6. From this
analysis we can conclude that when the data access overhead becomes the bottleneck, the

optimal crossbar allocation solution cannot be easily derived from universal heuristic

rules and will vary depending on the CNN model and hardware resources, which further
explains the necessity of using our mathematical framework by taking into account memory band-
width constraints for solving practical problems.

We further analyze the relationship between the bandwidth constraints and the optimal crossbar
allocation scheme, to see when the bandwidth starts limiting the performance and influencing the
crossbar allocation results. For this purpose, we scale the bandwidth values listed in Table 3 by
a factor λ. We use VGG-A (2304, 128) (cases 2 and 4 in Table 6) as an example to illustrate this
relationship. The results are shown in Figure 9. If the bandwidth scale factor is 4, theWo × Ho/R
ratios for all layers are almost identical, indicating that the bandwidth is sufficiently large and is
not the performance bottleneck. When the bandwidth scale factor is 2, the Wo × Ho/R ratios are
slightly different. When the bandwidth scale factor becomes smaller than 2, in other words, when
the on-chip buffer and inter-bus bandwidths are smaller than 256 GB/s and 25.6 GB/s, respectively,
theWo ×Ho/R ratios for all layers start becoming different. From this point, the bandwidth starts
becoming the performance bottleneck. It also implies that in this case the bandwidth that the
hardware architecture can provide is insufficient. From this analysis, one may provide suggestions
on the bandwidth requirements for a given architecture. By doing so, the significance of this work
is extended beyond its original usage of optimizing crossbar allocation for CNNs.

4.6 Runtime of Proposed Solver

Our dynamic programming based solver implemented in Python is fast. Table 7 lists the runtime
of our solver for some cases. For exhaustive/random searches with pruning, we remove some intu-
itively impossible cases to shorten the searching time, but it still takes a very long time to get results.
For small-scale cases, the runtime of our solver is at the magnitude of seconds to minutes, while
exhaustive searches need several minutes to days. For the largest case we have tested, our solver
needs about 4 hours to get the solution. For the same case, if we traverse the entire search space,
the exhaustive search time will be more than 1010 years, estimated based on the time of 10,000
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Table 7. Runtime Results of Dynamic Programming based Solver

Case Time Case Time

AlexNet(2048, 128) 11 sec. AlexNet(4096, 256) 62 sec.
VGG-A(2048, 128) 17 sec. VGG-A(4096, 256) 58 sec.
VGG-E(4096, 128) 257 sec. VGG-E(8192, 256) 1 hour
ResNet-18(4096, 256) 1 hour ResNet-18(8192, 128) 2 hours
MobileNet-v1(2048, 128) 1.5 hour MobileNet-v1(4096, 128) 4 hours

random searches. The extremely long search time prevents the exhaustive method traversing the
whole search space for large-scale cases and it has to search only a number of random candidates.

5 CONCLUSIONS

In ReRAM-based CNN accelerators, crossbar allocation for layers, which affects both intra-layer
and inter-layer parallelism, should be elaborated to maximum the performance and also to balance
computation and communication. This problem is not comprehensively investigated in previous
studies. The impact of communication (i.e., data access) on optimal crossbar allocation has never
been studied. In this work, we build a mathematical framework to find near-optimal crossbar alloca-
tion schemes for ReRAM-based CNN accelerators. By modeling computation and communication
behaviors in an abstract and unified way and solving the optimization problem through a dy-
namic programming based solver, our mathematical framework can obtain near-optimal crossbar
allocation solutions quickly, without time-consuming exhaustive searches. We have demonstrated
that intuitive heuristics trying to balance the weights or workloads for all layers are not optimal
solutions. Instead, solutions obtained by our mathematical framework by comprehensively con-
sidering computation and communication are near-optimal and our method is much better than
the crossbar allocation strategies of previous studies.
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