
Decades of Striving for Pedagogical and Technological Alignment
Lassi Haaranen

lassi.haaranen@aalto.fi
Aalto University
Helsinki, Finland

Lukas Ahrenberg
lukas.ahrenberg@aalto.fi

Aalto University
Helsinki, Finland

Arto Hellas
arto.hellas@aalto.fi
Aalto University
Helsinki, Finland

ABSTRACT
Computing educators have a tradition of building systems for sup-
porting students and teachers alike. Systems and their evaluations
are also an important topic in computing education research. Learn-
ing systems range from very specific such as algorithm visualiza-
tions to broad learning management systems, including supporting
systems such as Q&A services. Over the years, calls for interop-
erability have also emerged, fueled by the desire for sharing best
practices and content.

In this discussion paper, we consider the challengeswith evolving
technology and aligning technology with pedagogy. We see that
building and using systems is a learning effort that can help the
community grow, while we also note that there are no perfect
solutions and that there always will be trade-offs in developing and
using technology in computing education.

CCS CONCEPTS
• Applied computing→ Education; Learning management sys-
tems; E-learning; Computer-managed instruction.

KEYWORDS
computing education, pedagogical alignment, learning technology,
interoperability, learning management system, automated assess-
ment

ACM Reference Format:
Lassi Haaranen, Lukas Ahrenberg, andArtoHellas. 2023. Decades of Striving
for Pedagogical and Technological Alignment. In 23rd Koli Calling Inter-
national Conference on Computing Education Research (Koli Calling ’23),
November 13–18, 2023, Koli, Finland. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3631802.3631809

1 INTRODUCTION
Our behavior with systems is shaped by the design of the sys-
tems [17, 44]. Shaping of behavior can be explicit as in gamification
where positive behaviors are linked with rewards [25], implicit as in
providing a user interface for exploration [13] and hoping that the
user learns to use it, or unintentional as in users learning to exploit
a system (e.g. speedrunning games by exploiting bugs [53]). The
way how the systems are connected and connect individuals can
also shape our behaviors and actions – in the words of Bucher [10]:

This work is licensed under a Creative Commons Attribution International
4.0 License.

Koli Calling ’23, November 13–18, 2023, Koli, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1653-9/23/11.
https://doi.org/10.1145/3631802.3631809

“Facebook and other software systems support and shape
sociality in ways that are specific to the architecture
and material substrate of the medium in question.”

Although small things in user interfaces – such as Facebook’s
like button [20] – can influence behavior significantly, shaping
of behavior is not limited to user interfaces but relates also to
the underlying technology and infrastructure. As an example, the
performance of an underlying server can influence the usability of
a user interface that is in interaction with the server.

The same phenomena exists also in systems built for teaching
and learning. Design choices and underlying technology and infras-
tructure have an impact on users, namely learners and instructors.
By extension, they also have an impact on learning and pedagogy.
While some technical contributions where learning is at the core
do discuss pedagogical underpinnings and context (e.g. [15, 63, 64]),
they are omitted from other articles (e.g. [24, 57]). Computing edu-
cators are known for their tendency for building systems [19].

In this work, we discuss the interplay of technology and peda-
gogy in computing education research (CER), including recent calls
for system interoperability. Our discussion is framed through anal-
ysis of our prior experiences in both building and using a multitude
of educational systems. We frame the discussion through a loose
collection of case studies outlining issues in possible approaches to
CS learning systems that we are aware of.

We start our discussion by presenting two perspectives of the
evolution of the computing education research field in Section 2;
one of them focuses on evolution of systems while the other focuses
on the evolution of pedagogies for programming, followed by a
discussion on the recent call for interoperability. In Section 3, we
outline loose collection of case studies with the issues relating to
misalignment between technology and pedagogy. In Section 4 we
consider and discuss the implications of our work. We conclude in
Section 5 by calling the community to action.

2 BACKGROUND
2.1 Evolution of Supporting Systems and

Learning Content
The development and study of systems for supporting computing
education and learning programming has a history spanning over
half a century. Automated assessment tools for programming have
been developed at least since the late 1950’s [26], and there has been
an ongoing evolution since [4, 12, 28, 45, 61]. The developments
have included supporting and adopting specific programming ap-
proaches such as Test-Driven Development [15], making it easier
to submit exercises for assessment and to facilitate feedback from
tutors [30], making technological advances in how exercises are
submitted [34], and emphasizing the need for professional tools and
being supported within them while learning programming [5, 63].

https://orcid.org/0000-0002-6500-6425
https://orcid.org/0009-0000-1450-3678
https://orcid.org/0000-0001-6502-209X
https://doi.org/10.1145/3631802.3631809
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3631802.3631809
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3631802.3631809&domain=pdf&date_stamp=2024-02-06

Koli Calling ’23, November 13–18, 2023, Koli, Finland Haaranen et al.

During this evolution, there has been a call to help students
understand how programs work [52] to avoid forming a faulty
picture of how programs are executed [6]. One stream of research
that has sought to address this is the work into algorithm and
program visualization tools [22, 35, 47, 58] that are used to create
and play animations of program execution, possibly line by line or
even at a finer detail [56]. Due to the observation that engagement
with such tools is one of the key contributors to learning [43], more
recent program visualization tools have included the possibility to
interact with the visualizations and use them as exercises [60].

While the above highlights examples of the evolution of sup-
porting systems for learning programming, there has been also
a broader evolution in the delivery of learning content. Fueled
by the emergence of the web as a platform, computing education
researchers have explored the possibility of integrating program
visualizations into online learning materials [51] and considered
the broader needs for interactive online materials [33], highlighting
also the need for interoperability of existing systems [9]. This work
has in part also included open online ebook projects such as the
OpenDSA [54] and Runestone interactive [41] platforms.

As with any software and systems, there is bound to be decay and
abandonment as the chosen technologies and approaches age and
newer options emerge. A recent ITiCSE working group [7] charted
software used by computing educators and researchers. Through
literature review and surveys, they identified software to facilitate
the building and maintenance of it by the community – in essence,
calling for increased community adoption and maintenance and
reduced duplicate effort. However, within computing education
and CER, we like to create systems [19].

2.2 Evolution of Pedagogy and Pedagogical
Innovation

Similar to systems used to support teaching programming, ped-
agogy of programming has also evolved over time [16, 38, 50].
Introductory programming education aims to help the learner to
form an understanding of how computer programs are written
and how they function. The interpretation of the functionality of
programs might differ from the reality, as students might be pre-
sented with an idealized form of how the programs work [14, 18]
with the objective of helping with the oft-mentioned problem of
students struggling to write and trace programs [36, 37, 40]. The
pedagogical approaches are many-fold, including using tools to pro-
vide students with something to reason about the execution of the
programs [18, 46] to working with and manipulating specific types
of objects such as media [21].The way how classroom instruction
is organized has also been explored, where teaching approaches
like peer instruction [55] have gained popularity along with media
computation and pair programming [48].

The research evidence seems to point out that effort into improv-
ing programming courses yield benefits, as articles on the topic
tend to have positive outcomes [62]. There is, however, a possibil-
ity of reporting bias, where researchers tend to report successes
whilst hiding failures [11], and the lack of incentives for conducting
replication studies [3] does not certainly improve the situation.

Many of the pedagogical innovations have been backed by tech-
nology. For example, the original LOGO project had a physical

“robot” that followed instructions [46], newer notional machines
tend to be interactive and hosted online [18], media computation
to some extent has relied on a tailored solution for working with
graphics [21], peer instruction has required clickers or some other
way to facilitate answering of questions [55], including tools for
writing programs in peer instruction classes [64], and so on. This
explicit interplay of technology and pedagogy is rarely discussed,
however, even though researchers and practitioners have called
for increased adoption of educational systems [7] and increased
interoperability of the systems [9].

2.3 Increasing Interoperability and Technology
Adoption

There have been various efforts over the years to imbue learning
tools with interoperability protocols such as SCORM [8], LTI [29],
and xAPI [2] and other systems and approaches for incorporat-
ing learning materials and online learning activities from multiple
sources (e.g. [31, 57]). But managing content, especially if it is inter-
active and technically complex, in multiple places is not trivial [24].

Clearly, a call and a desire to increase adoption of different learn-
ing technologies exists within the community. In 2014, an ITiCSE
working group [9] sought to classify smart learning content (SLC)
and increase its adoption. Almost a decade later their proposed
“ideal vision for embedding SLCs and storing data collected by them
using new standards and protocols [...]” has not yet arrived, which is
also the case for the “[...] pragmatic vision for achieving these goals
based on existing, albeit imperfect, standards and protocols”. There
have been some advances on that front, however. As an example,
the community has developed formats for sharing programming
snapshot data [27, 49], and there have been attempts to increase
interoperability and reuse of programming exercises [42]. While the
future remains to be seen, so far the not-invented-here syndrome
seems to still remain somewhat strong, and we foresee that many
practitioners continue to stick to their own existing approaches –
what incentives or reasons would they have to change this?

We see that one of the key problems in adopting existing inter-
operable content is the pedagogical alignment of objectives and
technologies. We draw on an analogy of a book written so well
that it is hard to put down – the likelihood of such a book being
written by multiple authors who have not discussed the overall
narrative with each other is rather rare. A course that draws upon
multiple technologies, each written by specific teams with their
own pedagogical viewpoints and contexts, would potentially end
up reflecting even conflicting pedagogical objectives. Following
Norman, we see that like with all design, course design “is really
an act of communication, which means having a deep understanding
of the person with whom the designer is communicating” [44].

3 A LOOSE COLLECTION OF CASE STUDIES
Combined, the three authors have over half a century of higher
education teaching experience. During the years, the authors have
built and developed both general purpose and tailored learning
systems, used numerous learning systems – also those dubbed as
interoperable – witnessed multiple university-wide learning man-
agement system (and other system) transitions, and participated in
university-level committee work on future directions of learning

Decades of Striving for Pedagogical and Technological Alignment Koli Calling ’23, November 13–18, 2023, Koli, Finland

management systems. In addition, the three authors also have years
of industry experience ranging from founding their own compa-
nies and building software for and through those companies to
consulting some of the largest companies in the world.

In the following, we describe a loose collection of case studies,
starting from building systems to support learning and the eventual
software decay, proceeding to more specific cases with issues in
the use and adoption of software.

3.1 Platforms and Software Decay
The first case study draws from experiences building platforms for
delivering interactive online learning materials. Over the years, the
authors have been involved with developing multiple platforms
and tailored services, including adopting existing services and com-
ponents. The technologies used to deliver content to students have
evolved over time, as have the expectations from the technologies.
The authors have explored Java-based desktop applications, Java
Applets, IDE integrations, HTML with JavaScript and CSS, and
more modern approaches to delivering content on the web, includ-
ing the use of somewhat more modern web libraries such as React1,
not to mention a range of server-side technologies used to create
interactive content and allow remote experiences that have also
evolved over the years. Already these evolutions have led to mul-
tiple software rewrites, refactorings, and the development of new
platforms, in part due to the decay of the technolgies and software.

Slightly less than four years ago, there was again a need to
improve the delivery of learning materials to students, to allow
easier development of interactive functionality, and to improve the
user experience. In particular, due to a new effort to provide easy-to-
start learning experiences to life-long learners where the learners
would not have to register but still could practice programming in
an interactive online environment, a call for a system to support this
emerged. Thus Platform Awas developed. At the time, Gatsby2 was
one of the leading technologies for combining content and data and
for improving the performance of websites. Gatsby allowed easy
integration of interactive React components into the materials with
MDX3, where materials could be authored in Markdown format
and interactivity could be easily added through React components
interspersed in the markdown. Similarly, providing a consistent
and contemporary user experience – and design – was a priority.

However, as is the case with modern web software, the technolo-
gies are built on top of existing libraries, some of which cease to be
maintained. As the MDX support for Gatsby was (seemingly) not a
top priority, perhaps in part due to underlying acquisition discus-
sions4, there was a period spanning over a year where the official
MDX integration was not maintained at the same pace with Gatsby.
This led to a situation, where using MDX required an older version
of Gatsby, where both (outdated) versions had security issues. In
addition, during the development of the platform, we had opted
for a user interface style library that has not been continuously
updated with changes to React, which has further blocked some of
the refactoring efforts (and consequently also required refactorings
and partial rewrites).
1https://react.dev/
2https://www.gatsbyjs.com/
3https://mdxjs.com/
4https://www.gatsbyjs.com/blog/gatsby-is-joining-netlify/

At the present state, the platform hosts a handful of courses, and
there is already a need for a major refactoring (or even a rewrite), in
part due to the initial decision of the technology used to combined
data and content (i.e., Gatsby). This need stems from both newer ver-
sions of Gatsby lacking compatibility with older versions, relatively
slow production build times of the platform, and the emergence
of newer technologies such as Astro5 that allow a more versatile
approach in choosing the user interface libraries and improve the
developer experience. This movement highlights the current pace
of contemporary web technologies – we’re slightly less than four
years out from starting the effort, and there is already an effort
underway to move away from the core technology powering the
user interface of the platform.

The technologies used to deliver and display content have
significantly evolved over the years. As the expectations of
users from learning platforms evolve with the expectations of
other software, there is a need to keep up with the technology.
Sticking to old is not always possible, as was evidenced with
Java Applets, while keeping up with the new can also lead to
issues. The evolution of technologies is also intertwined with
improvements to developer experience, which has an effect on
the fun in developing software – not keeping up with the field
also eventually influences whether there are volunteering
students who help in building and maintaining the platform(s).

3.2 Using an Online Platform does not Replace
Local Tooling

The second case study draws from a recent experience from build-
ing an online learning platform and materials for learning web
development. To facilitate a fast start on the topic, the platform pro-
vides an easy-to-use online interface for creating web applications,
including writing server-side and client-side logic and database
functionality within the browser. In addition, the platform provides
feedback on the progress through instructor-authored tests that
are executed by running a suite of unit tests and end-to-end tests
on the web applications that students work on. The materials of
the course and the easy-to-use online interface are hosted on a
platform that intertwines theory and practice, providing a rapid
possibility for practice whenever new topics are introduced.

When the course moves towards more complex topics and the
applications continue to grow, students are provided a Docker
Compose-based walking skeleton that includes Docker images for
a web server, a database, end-to-end tests, and database migrations.
The walking skeleton comes with a worked example that outlines
how a similar project would be created, including demonstrating
how a database running in a container is accessed and how the
Dockerfiles and the Docker Compose file are created and organized.
A video that outlines the use of the walking skeleton and how one
would develop web applications using Visual Studio Code6 and the
walking skeleton is also provided.

5https://astro.build/
6https://code.visualstudio.com/

Koli Calling ’23, November 13–18, 2023, Koli, Finland Haaranen et al.

At this point, the way how course assignments are returned is
also adjusted. Instead of working using the online interface, stu-
dents are encouraged to use a zip-based submission mechanism,
where they return a copy of their local project for grading.

In this case, the problem lies partially in encouragement and
partially in the easy-to-use online interface. In the platform, even
after course assignments become more complex, students still have
the option of reverting to working with the interface instead of
working on the course assignments locally and returning the as-
signments using the zip-based submission mechanism. Due to this,
we have witnessed many cases of the metaphorical frog in the pot,
where students continue working on assignments in the course
platform at a point where they would significantly benefit from
taking the next step that is encouraged in the materials. Ultimately,
this has led to significant amounts of wasted time, both from the
instructors who are supporting the students and from the students
who struggle due to the increased complexity of the projects where
a local environment would trump the online interface.

Course technology, opportunities, and experience of the
technology shape students’ behavior. Even when the
technology of a course is aligned with the course pedagogy
and the course provides a progression mechanism (i.e., a
“scaffolding”), students may seek to maintain their existing
behaviors and avoid the adoption of new technology. In
essence, opportunities provided by online platforms may lead
to local tooling being replaced, even when the use of local
tooling would have the potential for improved learning
outcomes. It seems that, at times, encouragement is not
enough.

3.3 Explicit and Implicit Lock-ins in Platforms
Sooner or later the course materials need to be updated. Reasons
arise from pedagogy when materials are out of date or in need
of significant improvements, or from technology as specifications
are updated or requirements fail. Plenty of CS specific learning
technology was written with Java in the past decades which fell
out of use with web-based approaches (e.g. [32, 39]).

As described in the first case study in 3.1, Web-based learning
technology is also rapidly changing and evolving from a technology
perspective as is the web itself. Many CS courses (e.g. [54, 59]) have
interactive online materials, often taking the shape of ebooks with
text, images, and examples interspersed with automatically assessed
exercises. These materials can be produced with different markup
languages such as HTML, reStructuredText (RST), Markdown, and
MDX. No matter the technology used, there is always a lock-in in
terms of opportunity cost. Changing from a format, technology, or
platform to another is always costly in terms of time and effort,
not to mention the mental burden that this places on teachers (and
students). When it comes to commercial platforms the lock-in might
be more explicit and tied to the vendor.

This case study concerns such an online course that consists of
approximately 70,000 words of text, dozens of code examples and
illustrations, and automatically assessed exercises using multiple
technologies. The material was originally created with RST – using
directives built by a teacher for another course – with automated

exercises using a combination of exercises graded on the server and
within the browser. Due to the limitation of a prevalent platform
used by many other CS courses in the context of the case study,
the decision was made to implement a new customized platform to
create technology that was more aligned with the course pedagogy.
An additional motivation to move away from the previous platform
was the horrendous developer experience in creating the RST-based
materials. As an added benefit, this migration to the new platform
enabled also conducting research in new ways.

The new platform supported creation of material with MDX
which provided a nicer experience in converting the earlier ma-
terial and writing new components. However, the platform was
written to support the same exercises of the old online course with
interoperability protocols, which meant that most of the old exer-
cises stayed as they were and required no additional significant
efforts. However, maintaining a platform for just a single course
is expensive in terms of effort, so there were plans to migrate the
course to Platform A – described in the first case study. Even though
the platform used very similar technologies (e.g. MDX), migrating
content and especially the exercises proved to be very challenging
and time-consuming, as the core underlying APIs and data formats
of the platforms were different.

Beyond the observed technical challenges, Platform A was writ-
ten with a particular pedagogical approach in mind that was built-in
to the platform. Despite existing interoperability protocols, there
were technical challenges in migrations exasperated by a difference
in pedagogical approaches that were built into the two platforms.

As with the previous case study, course technology,
opportunities, and experience of the technology shape teachers’
creation of material. The platforms we choose influence the
way we write materials, how they are organized, and what
types of exercises we create. Succinctly, the perfect platform
does not exist and even when the instructor creates the
platform there are still issues in material development and
pedagogical alignment. Interoperability does not and can not
address pedagogical alignment.

3.4 Online Support and Chat Systems do not
Replace Dialogue

Chat and collaboration software have become a common ingre-
dient in the set of tools and teaching ’channels’ in many courses.
In many cases they have replaced forums and email for remote
communication. Examples of such software suits and services are
Discord, Microsoft Teams, Slack, Telegram, and Zulip. These tools
are not completely interchangeable, and have different strengths,
weaknesses and specific use-cases. However, they support collabo-
ration in the form of chat channels around named topics, private
messages, and in some cases group messages.

Chats are often employed on courses in the hope that group dis-
cussions will support learning in the form of student participation,
and reduce load on other forms of communication, such as email.
Administratively, it allows students to get in touch with teaching
staff to ask questions and get help. This is potentially beneficial to
students and teachers alike, as general issues (“when will the exam
be ready?”, “the course web pages are down”, “there’s a mistake

Decades of Striving for Pedagogical and Technological Alignment Koli Calling ’23, November 13–18, 2023, Koli, Finland

with the handout”, etc.) can be shared. Pedagogically, such tools can
foster building a community where discussion can help learning,
and questions lead to dialogue.

However, chat systems are not always designed for teaching, nor
with pedagogy in mind. Most are intended to increase and support
communication and collaboration during remote work in company
settings and to allow free-form dialogue between acquaintances.
Some design choices natural for these areas translate poorly to
course settings. In large classes with hundreds – or even thousands
– of students, channels can fill up quickly with repeated questions.
That is, often the same or similar question is asked multiple times
by students. It is often easier for a student to ask the question again
than to search the history of already answered questions.

At the same time, it is hard to keep track of what has been
answered/discussed, and by whom. Some chat systems support
“pinned” posts, which can be used as a FAQ for channels, and thus
alleviate the problem somewhat. But this will not completely solve
the issue, as everyone does not check pinned messages before post-
ing. Overall, this is a self-reinforcing problem – the more posts
there are the harder it will be to check, and thus it is easier to just
ask again.

Another part of this problem is simply that course staff are in-
dividual users on the system - perhaps with elevated moderation
rights, but still separate users - and by default lack the tools neces-
sary to sort through and coordinate, divide work, and support each
other. It is therefore easy that discussions are left in the middle (as
teaching assistants take shifts) or simply missed altogether, which
is frustrating for the student and detrimental to learning.

Additionally, students make use of the private messages to reach
out to course staff directly. While private communication is some-
times necessary, for example when discussing details of individual
tasks or exercises, or private course matters, it removes the intended
benefits of the system, and could in many cases be better solved
by other means. In fact, one of the most common chat questions
in programming courses, “what is wrong with my code?” could be
the start of a dialogue in an exercise session, but hard to follow up
in a chat due to its asynchronous design.

One might argue that a solution for the issues described above
is a certain amount of discipline for teaching staff and students, so
that repeated questions are not answered, and private messages
ignored. While this is true to an extent, and we have employed
such tactics, we have also observed that it decreases student en-
gagement in the system overall. Students do not necessarily ask
repeated questions because they are too lazy to search, or send pri-
vate messages because they cannot wait. Instead, the usage follow
from opportunities created by technical features and limitations in
the system. We note that the best way to discourage such use is not
by rules, but by providing students with ample opportunity to ask
these questions in other forums, such as exercise sessions, which
provide an opportunity for dialogue and learning.

Chat systems – and other supporting systems – can be
beneficial in teaching computing. However, as they are not
designed with pedagogy in mind, students’ and teachers’ needs
need to be taken into account when using them. As with other
learning tools and systems, students will find their ways of
using available features, potentially causing serious issues,
duplicated effort, or leaked answers.

4 MISERY IS THE ONLY CONSTANT
4.1 Eventual mismatch between pedagogy and

technology
Even if the pedagogy and technology is decided by a single instruc-
tor, mismatches will eventually emerge. Approaches that students
take might not be what was intended by the teachers, as seen in
Section 3.2. This has also been observed in prior literature, which
highlights that students can actively avoid issues that require effort,
like solving merge conflicts [23].

To align pedagogy and technology more closely, we see that
there are different types of systems used in computing education.
Figure 1 arranges the tools we use in our courses along two axes:
whether they are intended for CS education and to what extent
the system has a specific purpose. We encourage instructors, re-
searchers, and developers to consider where the tools they are using
and developing fall into.

"CS Learning Technology" – Particular and Specific: Top right
quadrant is systems intended for CS education that serve a particu-
lar purpose. Examples of these are algorithm and program visual-
ization systems as well as automated graders.

"Supporting Systems" – Particular and Agnostic: These systems
are discipline agnostic – they might be used in many other fields as
well – but they are created for particular pedagogical purpose. Q&A
systems would be one example of these, chat systems – discussed
in Section 3.4 – are another example of supporting systems.

"Learning Management Systems" – General and Agnostic: We con-
sider systems aimed at generally facilitating (online) learning to
belong to the lower left quadrant. These are typically university-
wide learning management systems (LMS) used to host course
material from many disciplines and their use is shaped on a per-
course basis. E.g. some teachers might use them actively for many
purposes (discussions, static assign submissions, hosting lecture
materials) and some might opt out of using them almost completely.
It is worth noting that Blanchard et al. [7] found learning manage-
ment systems being the least favorable class of tools. Potentially
due to them being university-wide tools with little consideration
for pedagogical approaches.

"CE(R) Specific Platforms" – General and Specific: Top left in the
axis are platforms intended for computing education (research).
These are platforms that offer generic functionality that one would
find in a typical LMS but at the same time they offer features that
are tailored specifically for CS education – which might also include
features built for experimentation and CER in mind. Platform A
belongs in this category.

When considering the case outlined in 3.3, one of the issues
was that the Platform A had been built as a CS-specific learning

Koli Calling ’23, November 13–18, 2023, Koli, Finland Haaranen et al.

CS Specific

Discipline Agnostic

General

Purpose

Particular

Purpose

CS Learning Technology

Supporting SystemsLearning Management Systems

CE(R) Specific Plaforms

Figure 1: Different types of systems used in computing education.

platform with a particular pedagogical approach in mind. Seek-
ing to transfer content from one system to another, even when
the approach used to write the concrete materials (i.e. MDX) was
the same, mismatches in the intended course pedagogy and the
pedagogy that the platform had been built in mind with made the
effort rather painful. Similarly, the original creation of the platform
described in 3.3 (i.e., the move away from the prevalent platform
in the context of the case study) emerged from the need to have a
better alignment with pedagogy and technology, which the more
broadly used and prevalent platform failed to support.

4.2 Eventual issues with interoperability
As Andrew Tanenbaum quipped “The nice thing about standards
is that you have so many to choose from”. There have been various
attempts at increasing interoperability, both within the CE(R) com-
munity and also in the larger space of pedagogical technology. We
argue, that even in the ideal world where accessible, functional, and
developer and teacher friendly interoperability protocols would
exist, their adoption would not solve the fundamental issue of
technical and pedagogical alignment. Ultimately, instructors would
still end up implementing their own exercises, and researchers in
computing would still want to “scratch their own itch”.

All this being said, we see interoperability efforts and sharing of
exercises, materials, and tools as highly valuable for both teachers
and researchers. Duplicating the effort of creating similar technol-
ogy or exercises types does not make sense, and adopting existing
technologies should be prioritized. At the same time, we encourage
efforts to keep learning through implementing new tools for CS
education – even if they are not interoperable. That is, coming up
with technological solutions to solve problems is in the veins of
CS educators and researchers, and solving problems by itself is a
learning effort. Would we adopt solutions from others, how familiar
would we be with the design decisions – both pedagogical and tech-
nical – that underlie the adopted solutions, and could we even end
up in a situation where we unintentionally create problems due to
pedagogical misalignment of the solutions that we have adopted?

4.3 Eventual software decay and the need to
reinvent the wheel

As discussed in 3.1, technologies have evolved over time, and there
are times when it is effectively mandatory to switch technologies
(e.g. the abandonment of Java Applets and moving from desktop to
the web). Creating production-ready software in university settings
is challenging at the best of circumstances, and often the setting is
less than ideal for software development. At the same time, creating
software for university settings is software development, and it

should be treated as such [24] – a part of software development is
maintenance, and due to the evolution of technology, there is an
eventual need for larger refactorings and rewrites.

In addition, evolving technology means that our expectations
of technology, as users and developers, evolve as well. While the
students’ learning is themain goal, learning is shaped by technology
and materials, those who create them, and their experiences while
creating them. Learning is easier when one does not have to learn
to explicitly use a new system; at times, catching up is needed,
as “users prefer your [platform] to work the same way as all the
other [platforms] they already know” [1]7. Not keeping up, on the
contrary, can lead to unnecessary effort, and especially in the case
of lifelong learning where decisions on what content to use can be
made rather rapidly, can also lead to potential students dropping
out.

Contrary to the position outlined in [7], we see that there is a
need to reinvent the wheel every now and then.

5 CONCLUSION
Ultimately, there are no solutions only trade-offs. Technology changes,
standards are replaced, and pedagogical theory improves. In our
experience, the only constant in development, adoption, and use of
educational technology is eventual misery that equates with a need
for change. Sisyphus, in Greek mythology, was cursed to forever
push the same boulder up a hill – as the rock was about to crest, it
rolled back instead, and the toil started anew. This is also the fate of
the computing educator striving to eternally align technology and
pedagogy. However, the inevitable misery is not a reason to give
up; we should keep on building systems and innovating pedagogy
and technology alike. Interoperability is a great asset but it will
not solve all our technology woes, and even platforms with similar
technologies may have been built with a very different pedagogy
in mind.

REFERENCES
[1] Jakob Nielsen. 2000. End of Web Design. https://www.nngroup.com/articles/end-

of-web-design/.
[2] Rustici Software. 2023. What is the Experience API? https://xapi.com/overview/.
[3] Alireza Ahadi, Arto Hellas, Petri Ihantola, Ari Korhonen, and Andrew Petersen.

2016. Replication in computing education research: researcher attitudes and
experiences. In Proceedings of the 16th Koli calling international conference on
computing education research. 2–11.

[4] Kirsti M Ala-Mutka. 2005. A survey of automated assessment approaches for
programming assignments. Computer science education 15, 2 (2005).

[5] Anthony Allowatt and Stephen H Edwards. 2005. IDE support for test-driven
development and automated grading in both Java and C++. In Proceedings of the
2005 OOPSLA workshop on Eclipse technology eXchange. 100–104.

7Author note, replaced “site” with “platform”.

https://www.nngroup.com/articles/end-of-web-design/
https://www.nngroup.com/articles/end-of-web-design/
https://xapi.com/overview/

Decades of Striving for Pedagogical and Technological Alignment Koli Calling ’23, November 13–18, 2023, Koli, Finland

[6] Mordechai Ben-Ari. 2001. Constructivism in computer science education. Journal
of computers in Mathematics and Science Teaching 20, 1 (2001).

[7] Jeremiah Blanchard, John R Hott, Vincent Berry, Rebecca Carroll, Bob Edmi-
son, Richard Glassey, Oscar Karnalim, Brian Plancher, and Seán Russell. 2022.
Stop Reinventing the Wheel! Promoting Community Software in Computing
Education. In Proceedings of the 2022 Working Group Reports on Innovation and
Technology in Computer Science Education. 261–292.

[8] Oliver Bohl, Jörg Scheuhase, Ruth Sengler, and Udo Winand. 2002. The sharable
content object reference model (SCORM)-a critical review. In International Con-
ference on Computers in Education, 2002. Proceedings. IEEE, 950–951.

[9] Peter Brusilovsky, Stephen Edwards, Amruth Kumar, Lauri Malmi, Luciana
Benotti, Duane Buck, Petri Ihantola, Rikki Prince, Teemu Sirkiä, Sergey Sos-
novsky, et al. 2014. Increasing adoption of smart learning content for computer
science education. In Proceedings of the Working Group Reports of the 2014 on
Innovation & Technology in Computer Science Education Conference. 31–57.

[10] Taina Bucher. 2018. If... then: Algorithmic power and politics. Oxford University
Press.

[11] Phillip Dawson and Samantha L Dawson. 2018. Sharing successes and hiding
failures:‘reporting bias’ in learning and teaching research. Studies in Higher
Education 43, 8 (2018), 1405–1416.

[12] Christopher Douce, David Livingstone, and James Orwell. 2005. Automatic test-
based assessment of programming: A review. Journal on Educational Resources in
Computing (JERIC) 5, 3 (2005), 4–es.

[13] Stephen W Draper and Stephen B Barton. 1993. Learning by exploration and
affordance bugs. In INTERACT’93 and CHI’93 Conference Companion on Human
Factors in Computing Systems. 75–76.

[14] Benedict Du Boulay, Tim O’Shea, and John Monk. 1981. The black box inside the
glass box: presenting computing concepts to novices. International Journal of
man-machine studies 14, 3 (1981), 237–249.

[15] Stephen H Edwards. 2003. Using test-driven development in the classroom: Pro-
viding students with automatic, concrete feedback on performance. In Proceedings
of the international conference on education and information systems: technologies
and applications EISTA, Vol. 3. Citeseer.

[16] Gerald E Evans and Mark G Simkin. 1989. What best predicts computer profi-
ciency? Commun. ACM 32, 11 (1989), 1322–1327.

[17] Nir Eyal. 2014. Hooked: How to build habit-forming products. Penguin.
[18] Sally Fincher, Johan Jeuring, Craig S Miller, Peter Donaldson, Benedict Du Boulay,

Matthias Hauswirth, Arto Hellas, Felienne Hermans, Colleen Lewis, Andreas
Mühling, et al. 2020. Capturing and characterising notional machines. In Pro-
ceedings of the 2020 ACM Conference on Innovation and Technology in Computer
Science Education. 502–503.

[19] Sally Fincher and Marian Petre. 2004. Computer science education research. CRC
Press.

[20] Jan Fox. 2018. An unlikeable truth: Social media like buttons are designed to be
addictive. They’re impacting our ability to think rationally. Index on Censorship
47, 3 (2018), 11–13.

[21] Mark Guzdial. 2003. A media computation course for non-majors. In Proceedings
of the 8th annual conference on Innovation and technology in computer science
education. 104–108.

[22] Jyrki Haajanen, Mikael Pesonius, Erkki Sutinen, Jorma Tarhio, Tommi Terasvirta,
and Pekka Vanninen. 1997. Animation of user algorithms on the Web. In Pro-
ceedings. 1997 IEEE Symposium on Visual Languages (Cat. No. 97TB100180). IEEE,
356–363.

[23] Lassi Haaranen and Teemu Lehtinen. 2015. Teaching git on the side: Version
control system as a course platform. In Proceedings of the 2015 ACM conference
on innovation and technology in computer science education. 87–92.

[24] Lassi Haaranen, Giacomo Mariani, Peter Sormunen, and Teemu Lehtinen. 2020.
Complex online material development in CS Courses. In Proceedings of the 20th
Koli Calling International Conference on Computing Education Research. 1–5.

[25] Juho Hamari, Jonna Koivisto, and Harri Sarsa. 2014. Does gamification work?–
a literature review of empirical studies on gamification. In 2014 47th Hawaii
international conference on system sciences. Ieee, 3025–3034.

[26] Jack Hollingsworth. 1960. Automatic Graders for Programming Classes. Commun.
ACM 3, 10 (oct 1960), 2 pages.

[27] David Hovemeyer, Arto Hellas, Andrew Petersen, and Jaime Spacco. 2017.
Progsnap: Sharing Programming Snapshots for Research. In SIGCSE. 709.

[28] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of recent systems for automatic assessment of programming assignments. In
Proceedings of the 10th Koli calling international conference on computing education
research. 86–93.

[29] IMS Global Learning Consortium. 2010. Learning Tools Interoperability. http:
//www.imsglobal.org/toolsinteroperability2.cfm.

[30] David Jackson andMichelle Usher. 1997. Grading student programs using ASSYST.
In Proceedings of the twenty-eighth SIGCSE technical symposium on Computer
science education. 335–339.

[31] Ville Karavirta, Petri Ihantola, and Teemu Koskinen. 2013. Service-oriented
approach to improve interoperability of e-learning systems. In 2013 IEEE 13th
International Conference on Advanced Learning Technologies. IEEE, 341–345.

[32] Ville Karavirta and Clifford A Shaffer. 2013. JSAV: the JavaScript algorithm
visualization library. In Proceedings of the 18th ACM conference on Innovation and
technology in computer science education. 159–164.

[33] Ari Korhonen, Thomas Naps, Charles Boisvert, Pilu Crescenzi, Ville Karavirta,
Linda Mannila, Bradley Miller, Briana Morrison, Susan H Rodger, Rocky Ross,
et al. 2013. Requirements and design strategies for open source interactive
computer science ebooks. In Proceedings of the ITiCSE working group reports
conference on Innovation and technology in computer science education-working
group reports. 53–72.

[34] Andy Kurnia, Andrew Lim, and Brenda Cheang. 2001. Online judge. Computers
& Education 36, 4 (2001), 299–315.

[35] SP Lahtinen, T Lamminjoki, E Sutinen, J Tarhio, and AP Tuovinen. 1996. To-
wards automated animation of algorithms. In Proceedings of Fourth International
Conference in Central Europe on Computer Graphics and Visualization, Vol. 96.
150–161.

[36] Raymond Lister, Tony Clear, Dennis J Bouvier, Paul Carter, Anna Eckerdal, Jana
Jacková, Mike Lopez, Robert McCartney, Phil Robbins, Otto Seppälä, et al. 2010.
Naturally occurring data as research instrument: analyzing examination re-
sponses to study the novice programmer. ACM SIGCSE Bulletin 41, 4 (2010),
156–173.

[37] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships between reading, tracing and writing skills in introductory program-
ming. In Proceedings of the fourth international workshop on computing education
research. 101–112.

[38] Andrew Luxton-Reilly, Ibrahim Albluwi, Brett A Becker, Michail Giannakos, Am-
ruth N Kumar, Linda Ott, James Paterson, Michael James Scott, Judy Sheard, and
Claudia Szabo. 2018. Introductory programming: a systematic literature review.
In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education. 55–106.

[39] Lauri Malmi, Ville Karavirta, Ari Korhonen, Jussi Nikander, Otto Seppälä, and
Panu Silvasti. 2004. Visual algorithm simulation exercise system with automatic
assessment: TRAKLA2. Informatics in education 3, 2 (2004), 267–288.

[40] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz
Wilusz. 2001. A multi-national, multi-institutional study of assessment of pro-
gramming skills of first-year CS students. In Working group reports from ITiCSE
on Innovation and technology in computer science education. 125–180.

[41] Brad Miller and David Ranum. 2014. Runestone interactive: tools for creating in-
teractive course materials. In Proceedings of the first ACM conference on Learning@
scale conference. 213–214.

[42] Divyansh S Mishra and Stephen H Edwards. 2023. The Programming Exercise
Markup Language: Towards Reducing the Effort Needed to Use Automated
Grading Tools. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 395–401.

[43] Thomas L Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer,
Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger,
et al. 2002. Exploring the role of visualization and engagement in computer
science education. In Working group reports from ITiCSE on Innovation and
technology in computer science education. 131–152.

[44] Don Norman. 2013. The design of everyday things: Revised and expanded edition.
Basic books.

[45] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated assess-
ment in computer science education: A state-of-the-art review. ACM Transactions
on Computing Education (TOCE) 22, 3 (2022), 1–40.

[46] Seymour Papert. 1980. Mindstorms: Children, Computers and Powerful Ideas.
(1980).

[47] Willard C Pierson and Susan H Rodger. 1998. Web-based animation of data
structures using JAWAA. ACM SIGCSE Bulletin 30, 1 (1998), 267–271.

[48] Leo Porter, Mark Guzdial, Charlie McDowell, and Beth Simon. 2013. Success in
introductory programming: What works? Commun. ACM 56, 8 (2013).

[49] Thomas W Price, David Hovemeyer, Kelly Rivers, Ge Gao, Austin Cory Bart,
Ayaan M Kazerouni, Brett A Becker, Andrew Petersen, Luke Gusukuma,
Stephen H Edwards, et al. 2020. Progsnap2: A flexible format for program-
ming process data. In Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education. 356–362.

[50] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
teaching programming: A review and discussion. Computer science education 13,
2 (2003), 137–172.

[51] Guido Rößling, Thomas Naps, Mark S Hall, Ville Karavirta, Andreas Kerren,
Charles Leska, Andrés Moreno, Rainer Oechsle, Susan H Rodger, Jaime Urquiza-
Fuentes, et al. 2006. Merging interactive visualizations with hypertextbooks
and course management. In Working group reports on ITiCSE on Innovation and
technology in computer science education. 166–181.

[52] Jorma Sajaniemi and Marja Kuittinen. 2008. From procedures to objects: A
research agenda for the psychology of object-oriented programming education.
Human Technology: An Interdisciplinary Journal on Humans in ICT Environments
(2008).

http://www.imsglobal.org/toolsinteroperability2.cfm
http://www.imsglobal.org/toolsinteroperability2.cfm

Koli Calling ’23, November 13–18, 2023, Koli, Finland Haaranen et al.

[53] Rainforest Scully-Blaker. 2014. A practiced practice: Speedrunning through space
with de certeau and virilio. Game Studies 14, 1 (2014).

[54] Clifford A Shaffer, Ville Karavirta, Ari Korhonen, and Thomas L Naps. 2011.
Opendsa: beginning a community active-ebook project. In Proceedings of the 11th
Koli Calling International Conference on computing education research. 112–117.

[55] Beth Simon, Michael Kohanfars, Jeff Lee, Karen Tamayo, and Quintin Cutts. 2010.
Experience report: peer instruction in introductory computing. In Proceedings of
the 41st ACM technical symposium on Computer science education. 341–345.

[56] Teemu Sirkiä. 2014. Exploring expression-level program visualization in CS1.
In Proceedings of the 14th Koli Calling International Conference on Computing
Education Research. 153–157.

[57] Teemu Sirkiä and Lassi Haaranen. 2017. Improving online learning activity
interoperability with acos server. Software: Practice and Experience 47, 11 (2017),
1657–1676.

[58] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A review of generic pro-
gram visualization systems for introductory programming education. ACM
Transactions on Computing Education (TOCE) 13, 4 (2013), 1–64.

[59] Juha Sorva and Otto Seppälä. 2014. Research-based design of the first weeks of
CS1. In Proceedings of the 14th Koli Calling International Conference on Computing

Education Research. 71–80.
[60] Juha Sorva and Teemu Sirkiä. 2010. UUhistle: a software tool for visual program

simulation. In Proceedings of the 10th Koli Calling International Conference on
Computing Education Research. 49–54.

[61] Draylson M Souza, Katia R Felizardo, and Ellen F Barbosa. 2016. A systematic
literature review of assessment tools for programming assignments. In 2016 IEEE
29th International Conference on Software Engineering Education and Training
(CSEET). IEEE, 147–156.

[62] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A systematic
review of approaches for teaching introductory programming and their influ-
ence on success. In Proceedings of the tenth annual conference on International
computing education research. 19–26.

[63] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel. 2013.
Scaffolding students’ learning using test my code. In Proceedings of the 18th ACM
conference on Innovation and technology in computer science education. 117–122.

[64] Daniel Zingaro, Yuliya Cherenkova, Olessia Karpova, and Andrew Petersen. 2013.
Facilitating code-writing in PI classes. In Proceeding of the 44th ACM technical
symposium on Computer science education. 585–590.

	Abstract
	1 Introduction
	2 Background
	2.1 Evolution of Supporting Systems and Learning Content
	2.2 Evolution of Pedagogy and Pedagogical Innovation
	2.3 Increasing Interoperability and Technology Adoption

	3 A Loose Collection of Case Studies
	3.1 Platforms and Software Decay
	3.2 Using an Online Platform does not Replace Local Tooling
	3.3 Explicit and Implicit Lock-ins in Platforms
	3.4 Online Support and Chat Systems do not Replace Dialogue

	4 Misery is the only constant
	4.1 Eventual mismatch between pedagogy and technology
	4.2 Eventual issues with interoperability
	4.3 Eventual software decay and the need to reinvent the wheel

	5 Conclusion
	References

