
Keeping Mindful of Modality: A Comparison of Computer
Science Education Resources for Learning
Michael J. Johnson

michael.johnson@gatech.edu
Georgia Institute of Technology

Atlanta, Georgia, USA

Rachel Baker-Ramos
rachelbaker@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Christopher Lynnly Hovey
hoveyc@colorado.edu

University of Colorado Boulder
Boulder, Colorado, USA

Betsy DiSalvo
bdisalvo@cc.gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

ABSTRACT
Educators often use computer science education resources to en-
hance the learning process, which come with a variety of output
modalities (e.g., audiovisual, tangible) and coding modalities (e.g.,
block-based, text-based). While these resources are typically evalu-
ated for their applicability and impact on young populations, they
are not often analyzed through a comparison of their coding and
outputmodalities, nor as awhole to each other. In this paper, we con-
ducted BridgeUP STEM, an afterschool CS course for high school
women and gender non-conforming individuals aimed at develop-
ing their computational thinking skills and exposing them to coding
and CS. We collected and analyzed interview data for 16 partici-
pants on their experiences within the course and attitudes towards
various output and coding modalities. Throughout the study, the
students’ reflections on their own learning revealed the affordances
and drawbacks of each resource in terms of outputs the resources
provided, feedback the students received, and how both affected the
students’ troubleshooting. We present these findings and use them
to provide recommendations for approaches to teaching computer
science.

CCS CONCEPTS
• Social and professional topics→ Informal education; K-12
education.

KEYWORDS
physical computing, screen-based computing, modality, computer
science education, afterschool

ACM Reference Format:
Michael J. Johnson, Rachel Baker-Ramos, Christopher LynnlyHovey, and Betsy
DiSalvo. 2023. Keeping Mindful of Modality: A Comparison of Computer

This work is licensed under a Creative Commons Attribution International
4.0 License.

Koli Calling ’23, November 13–18, 2023, Koli, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1653-9/23/11.
https://doi.org/10.1145/3631802.3631819

Science Education Resources for Learning. In 23rd Koli Calling Interna-
tional Conference on Computing Education Research (Koli Calling ’23), No-
vember 13–18, 2023, Koli, Finland. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3631802.3631819

1 INTRODUCTION
Designing innovative methods for introducing computer science
(CS) to young populations continues to be a prominent area of
CS education research. In recent years, there has been renewed
attention and excitement around teaching CS using tangible arti-
facts that combine programming, electronics, art, and other func-
tionalities. This computing sub-area, broadly known as physical
computing, provides a different dimension to solving CS problems
and an alternative to text-based coding tasks traditionally used in
basic and advanced computer science education (CS ed). The use
of physical computing is part of broader efforts in the education
community to better introduce novice learners to computational
thinking: the attitude that involves solving problems, designing
solutions, and troubleshooting in ways fundamental to understand-
ing computer science concepts [28, 37]. Research on incorporating
physical computing into the classroom spans decades of growth
and development of “low-floor”, “high-ceiling”, and “wide-walls”
initiatives to get young learners interested in computing [27]. Phys-
ical computing is reported to increase motivation as the learning
experience and outcomes are “visible, not virtual”; a visibility that
further facilitates connections and engagement for learners [12].
To evolve past “traditional” CS ed practices, many interventions
utilize a range of modalities that determine the medium and man-
ner of input and output interactions with the user. This range of
modalities demonstrates that there is likely no clear, single “best”
alternative to traditional text-based programming. For example,
several non-tangible, screen-only resources support the cultivation
of students’ CS programming skills and computational thinking.

Despite this diversity of modalities, CS ed research has focused
on assessing if an intervention’s content establishes computational
thinking skills, with little consideration of the modalities used. Most
past literature that has investigated the benefits of incorporating
physical computing into educational contexts does so without com-
paring it to existing computing education methods [32]. In response
to this gap in the literature, this paper’s research focuses on dif-
ferences between modalities to unpack nuances they provide for
learning CS, emphasizing understanding how modality impacts

https://orcid.org/0000-0001-7350-3723
https://orcid.org/0009-0005-5488-8038
https://orcid.org/0000-0001-5045-4180
https://orcid.org/0000-0003-1804-7387
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3631802.3631819
https://doi.org/10.1145/3631802.3631819
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3631802.3631819&domain=pdf&date_stamp=2024-02-06

Koli Calling ’23, November 13–18, 2023, Koli, Finland Johnson et al.

problem-solving. We propose that exploring CS ed can identify the
affordances and drawbacks of modalities, and that understanding
these factors is key to implementing better CS ed experiences for
learners. In this paper, we explore a study conducted on the first
cohort of BridgeUP STEM (BUS)—an afterschool CS course for high
school women and gender non-conforming individuals—to com-
pare how different modalities of CS activities were experienced
by high school students. Our analysis is guided by the following
research questions:

RQ1. What drawbacks and affordances can be identified
from examining CS activity output modalities?

(a) How does modality affect a learner’s conceptual
models of CS principles?

(b) Howdoesmodality affect a learner’s troubleshoot-
ing process?

RQ2. How can an understanding of modality contribute
to improved CS experiences for learners?

Throughout the program, students interpreted feedback, de-
bugged errors, and reflected on their skills as programmers to vary-
ing degrees. Variations in success appeared to stem from differences
in coding and output modality. We aim to uncover the meaning
behind these differences to understand and leverage them toward
improving CS learning. Finally, we recommend several beginning
courses of action the CS ed community can take to further develop
computing education activities for broader use and reach.

1.1 Definitions
It is necessary here to clarify what is meant by the terms ‘coding
modality’ and ‘output modality’. We define coding modality as the
means by which writing code is done. In BUS, this was either text-
coding or block-based coding, sometimes referred to as the format
of the coding editor (e.g., [15]). Output modality is the medium
through which output is given, which is subject to the materials
used. Output modalities not only return information to a user or
enact a set of behaviors outlined in the program but also convey
information about a code’s success. An example of the latter is
progress notifications, such as error messages printed to the console,
a browser pop-up window, or a physical light blinking to indicate
code was uploaded.

Students’ reflections on thesemodalities often referred to ‘output’
and ‘feedback’ synonymously, and prior literature does not offer a
distinct definition of either [8, 31]. However, for clarity, this paper
will distinguish the difference between the two terms to help avoid
them being conflated. We define feedback as one aspect of output
modality, which individuals determined. In other words, feedback
is information provided by the output. Additionally, a single output
and its feedback are not mutually exclusive. For example, think
of a cellphone receiving a phone call. The phone might ring and
display an “incoming call” notification on the screen. Both outputs,
the audio ring and the visual display, convey the same feedback to
a user: there is an incoming phone call. Likewise, two individuals
may both hear the same phone ring, with one supposing it is an
incoming call and the other supposing a timer may be going off.
In this example, the same output leads to different feedback per
person. As we proceed in this paper, we will continue to distinguish
between output and feedback while discussing our findings.

2 RELATEDWORK
2.1 The Current Landscape of Physical

Computing Education
While the focus of this paper is to explain the comparison of feed-
back modalities beyond those found in physical computing, some
background in the rise of the physical computing education sub-
field contextualizes its influence on computer science education
and where future research is needed.

Physical computing has received multiple definitions since its
inception. It has sometimes referred to the process of designing
interactive, electronic objects that can communicate with humans
via sensors and actuators controlled by programmable hardware
[3, 24, 25, 30]. That process is often discussed in the context of CS
education, where those interactive objects and their corresponding
software are used to teach students computational thinking skills
with hands-on activities [17, 18]. At other times, physical comput-
ing is used as a term to encompass the programmable interactive
objects themselves [12, 24]. Early work by Marshall [21] on the
benefits of physical computing provided an analytic framework of
six perspectives that might guide research on tangible interfaces
for learning. Of these were possible learning benefits afforded by
these interfaces, which included: the use of physical materials might
change the nature of knowledge gained compared to virtual mate-
rials; tangible interfaces may be more suited for engaging children
in playful learning with a physical action that causes digital effects;
and collaborative learning is well-supported by group work with
tangible interfaces. Still, the relative benefits of combinations of
concrete and abstract representations regarding physical compo-
nents have yet to be investigated [21]. In addition, Hodges et al. [12]
summarizes the benefits of physical computing as seen through
their experimentation with the BBC micro:bit [2] in the classroom.
They generalized their findings to all physical computing devices
to claim that physical computing increases motivation because the
learning experience and outcomes are “visible, not virtual,” and
that tangibility yields natural connections for learners. They also
stated that the interactivity of physical computing leads to a bet-
ter understanding of programming concepts when debugging, as
the multiple potential solutions to a problem promote a trial-and-
error approach. Other reported benefits include students exhibiting
higher creativity in what they build, and strengthening engagement
with the physical task. These types of activities then open the door
for more collaborative practices in group work [12].

Some studies have focused on how incorporating physical com-
puting into curricula may affect educators. Sentance et al. [30]
investigated the use of micro:bits for classroom instruction and
culminated their findings into providing recommendations to sup-
port teachers better. They emphasized that teachers need prep
time to add physical computing to a curriculum, and should be
provided with professional training in using those devices them-
selves. Sentance et al. also stated that researchers or designers of
educational interventions should try to consult with ‘expert’ teach-
ers who can develop teaching material with strong pedagogical
approaches. They suggest that educators have projects spanning
multiple weeks with supporting assessments linked to the curricu-
lum, which will be better than short, un-sequenced activities taking
place over smaller amounts of time [30]. Kalelioglu and Sentance

Keeping Mindful of Modality Koli Calling ’23, November 13–18, 2023, Koli, Finland

[14] explored teachers’ pedagogies and strategies for using physical
computing in their curriculum. Teachers shared responses indicat-
ing themes of easy use for students, with higher motivation being
attributed to receiving “immediate feedback”. Themes of the poten-
tial for enhanced feedback from tangible devices have also made
way for robotics to be researched as learning objects with high
potential for changing teaching and learning practices [7]. Many of
the above studies agree upon these benefits. However, these studies,
and those from other literature, generalize too much on “physical
computing” as a whole. Instead, we aim to take a nuanced look at
its components for further insights.

2.2 Perceptions of Feedback and Errors
The importance of feedback in computer programming has mostly
been explored in terms of how users interact with programming
error messages (PEMs), and with good reason. PEMs are often the
most informative output reflective of the status and failure of a
program, which in turn supply users with feedback towards de-
bugging issues [33]. Users not only read PEMs, but also spend a
significant amount of their time doing so when debugging code
[4]. Therefore, they become a major, though informal, teaching
tool for those learning CS programming, or as Becker et al. [5]
put it, “Programming error messages are pedagogically important,
particularly in their roles as feedback agents. This is unlikely to
change for some time.” Prior research on the challenges faced by
novice programmers interpreting compiler error messages dates
back to as early as 1965 [5] and continues to this day. Recent ef-
forts exploring the helpfulness of PEMs have resulted in numerous
guidelines for their improvement, summarized by Becker et al. [5].
Of these guidelines, increasing the readability of the errors has been
mentioned as a prominent step towards clearly conveying their
meaning. Denny et al. [8] followed up on this topic by developing
four concrete design guidelines to increase readability in error mes-
sages: 1) use commonly understood words (i.e., remove jargon), 2)
write messages in complete sentences, rather than strings of broken
words and symbols, 3) use simple vocabulary, and 4) use no more
or fewer words than necessary to get the point across.

Notably, much of the work in improving the interpretation of
error messages has been done in instances where compilers print
out errors to a console. As this paper will discuss, there are many
potential output modalities that convey a program’s success or
failure. There has been some work in robotics that has looked at
tangible feedback and how it could be more impactful than virtual
work [25], but perceptions of feedback and errors remain under-
explored when accounting for methods beyond console output.

2.3 Modalities of Computer Programming
Research into coding modalities has often highlighted the differ-
ences between block-based and text-based programming. Studies
show that block-based editors help K-12 students develop compu-
tational thinking concepts and practices, but fail to scale to larger
programs [11, 15, 26, 36]. Users also report that block-based editors
feel less authentic and take more time [10, 15, 35]. Comparison
work has found differences in learning gains [36], ease-of-use [35],
and retention of information post-transition from blocks to text
[15]. On a more abstract level, there has been research investigating

the transparency of programming modalities [22] and in physical
computing toolkits [9]. However, these studies have not looked
at the output given in a computing context. Given the prevalence
of literature comparing other pedagogical methods of CS ed, we
are suggesting more research be conducted in comparing output
modalities.

One notable paper that begins to address this gap in the liter-
ature is a recent study by Love and Asempapa [18] that took an
attitudinal approach to evaluate the differences between screen-
based and physical computing activities. The study compared two
groups learning CS. The first group employed Scratch for a game
design unit. The second group used the Crumble microcontroller
and programming platform to create vehicles for a collision avoid-
ance design challenge unit. Both units were designed to cover basic
programming skills (e.g., variables, loops, and functions), but dif-
fered in what the students themselves designed. The authors found
that students in the screen-based unit group exhibited stronger
attitudes (indicating a favorable disposition) towards coding in the
classroom and applicability in their career/future than those using
physical computing, even when controlling for prior engineering
or CS coursework. Including those with this perceived advantage,
the majority of their students felt learning with physical computing
would make learning CS easier. While some students expressed
concern about using hands-on devices that could malfunction or
be difficult to troubleshoot, a similar percentage of students ex-
pressed that the hands-on experience was beneficial for providing
“real-time tangible feedback”. Surprisingly, the two groups had no
significant difference in interest or comfort in coding. Instead, their
findings suggest more nuance about the modality used.

This research corroborates our own efforts in recognizing the
nuances of different output and coding modalities. It also suggests
that more exploration is needed on leveraging affordances for phys-
ical computing while considering the advantages of screen-based
interactions, which are far more common in real-world comput-
ing. Our study expands on Love and Asempapa’s work by seeking
to identify the benefits each modality offers and explore how to
balance affordances and address the shortcomings of each modality.

3 CONTEXT
3.1 BridgeUP STEM Overview
BridgeUP STEM is a program conducted in partnership with the Na-
tional Center for Women & Information Technology (NCWIT) and
sponsored by the Helen Gurley Brown Foundation. In it, women
and gender non-conforming high school students are exposed to
collegiate-level research practices while learning CS at a research
university. BUS was piloted at the Georgia Institute of Technology
during the 2021-2023 school years. We recruited through connec-
tions with Atlanta-area high schools. We incentivized students to
participate in BUS via $2,000 stipends distributed over the two-year
program, contingent on having at least 90% attendance across ses-
sions. Applications were open to all eligible students, promoted
through their high school teachers, and made publicly available on-
line on NCWIT ’s website. Our goal was to recruit 20–25 students,
with the expectation that some may drop off during the year. In
2021, 22 students applied to the program, all of whomwere accepted
and enrolled.

Koli Calling ’23, November 13–18, 2023, Koli, Finland Johnson et al.

Table 1: Details about the five major resources used in the BridgeUP STEM programming course.

Unit Resource Materials Coding Modality Output Modality

Music-
Mixing EarSketch mouse, keyboard, web browser text-coding audio, custom music, visual DAW

representation

Artificial
Intelligence

Jupyter
Notebooks mouse, keyboard, web browser text-coding console output, game board GUI (final

project only)

Inputs &
Outputs

Arduino
Makeblock Kits

mouse, keyboard, Arduino IDE
software, physical computing kits
(sensors, motors, lights, etc.)

text-coding
physical interaction with sensors,
lights, motor movement, Arduino

serial monitor output

Complex
Adaptive
Systems

StarLogo Nova mouse, keyboard, web browser block-coding GUI canvas, buttons, simulated
movement, drawings

MakeCode
mouse, keyboard, web browser,

micro:bit, Yahboom
line-following robot

block-coding lights, robot vehicle movement

Participants for BUS were required to meet the following criteria,
as outlined by the sponsor:

• Identify as a woman or non-binary individual
• Is 13 years of age or older at the time of application
• Is enrolled in 9th, 10th, or 11th grade as of the start of the
program

• Is able to commute to the Georgia Tech campus approxi-
mately once or twice per week after school

• Have minimal or limited prior coding experience
• Is not an NCWIT or Georgia Tech employee or have an
immediate family relationship with employees or either or-
ganization

Participants were also subject to additional tax reporting and legal
requirements because they received a stipend.

In the program’s first year, students attended a CS programming
course taught at Georgia Tech. The course’s goal was to introduce
the students to basic computer programming skills through means
determined by Georgia Tech facilitators. It was held as an after-
school program that met twice weekly in 2.5-hour sessions from
November 2021 to May 2022 (20 weeks).

3.2 Programming Course Overview
The Georgia Tech computing outreach department chose the first
author of this paper to design and instruct the programming course.
The first author served for six years as an in-person and online in-
structor for extracurricular computing courses at Georgia Tech, and
was familiar with the staff and materials available for the course.
These advantages allowed the course to be quickly constructed in
a short time period. The first author is also a computer education
researcher at Georgia Tech and designed the course to highlight
the differences between output modalities in computing activities
to then study with the students as research participants. Activities
selected sought to expose the students to various computational
thinking practices [34]. These included collecting and visualizing
data, programming and debugging, developing modular computa-
tional solutions, and constructing models to understand concepts.

As mentioned in Section 3.1, students were expected to have mini-
mal or limited prior experience with computer programming when
enrolling in BUS, which resulted in a range of experiences among
students. Therefore, all activities were planned to teach program-
ming basics from the ground up, with room to challenge advanced
students. The course contained four units, each meant to build on
the next while exposing the students to a range of computational
tools and resources in various modalities. The five major resources
used in the units covered two major coding modalities: block-based
and text-based programming. Table 1 shows an overview of each
resource, the materials it used, and the associated coding and output
modalities. The course syllabus can be found in Appendix A.1.

3.2.1 Music-Mixing Unit. The first unit introduced the Python
programming language using EarSketch [19]. EarSketch combines
computer programming with music mixing and creation in an on-
line text-based coding editor. Written code populates an on-screen
digital audio workstation (DAW) with music clips from an extensive
sound library. Sound effects (e.g., volume gains, tempo changes, and
other modulations) are applied by referencing the EarSketch API.
EarSketch introduced Python basics—such as creating and running
scripts, using variables and loops, and simple debugging—from a
combination of the built-in EarSketch curriculum and the instruc-
tor’s own experience. The CT practices covered by this unit included
programming, developing modular computational solutions, and
debugging.

3.2.2 Artificial Intelligence Unit. The second unit introduced arti-
ficial intelligence (AI). The curriculum was adapted from an IBM
SkillsBuild course on AI [13], as well as the instructor’s prior experi-
ence. Students were introduced to various types of AI and machine
learning methods through interactive online resources, coding ac-
tivities, and small-team research projects. Students used Jupyter
Notebooks [16] embedded with instructions as the medium for all
programming work. The CT practices covered by this unit included
preparing problems for CT solutions, programming, assessing dif-
ferent approaches to a problem, and debugging.

Keeping Mindful of Modality Koli Calling ’23, November 13–18, 2023, Koli, Finland

(a) An interactive, Arduino Makeblock lamp created by P3 and P12
using LED lights, a sound sensor, and a motion sensor.

(b) A student programming multiple Yahboom line-following robots
with MakeCode.

Figure 1: Images of projects from (a) the Inputs & Outputs unit and (b) the Complex Adaptive Systems unit.

3.2.3 Inputs & Outputs Unit. In the third unit, students used Make-
block Arduino, a physical computing kit containing numerous in-
teractive electronic modules [20]. The modules attach to a modified
Arduino Uno (called a Makeblock Orion) via RJ25 wires and are
programmed in the Arduino IDE coding environment. Among the
modules are several types of sensors, a joystick, LED lights, a servo
motor, and a 7-segment display. As the Arduino programming lan-
guage is fairly different from Python, the students relied on a set
of example code provided by the kits and the instructor to under-
stand their functionality. The instructor introduced each module
individually, then revealed how input and output modules could
be combined to interact with each other. Students then worked in
small groups to design interactive objects with the kits and craft
materials (see Figure 1a). The CT practices covered by this unit
included collecting data, programming, choosing effective tools,
and debugging.

3.2.4 Complex Adaptive Systems Unit. The final unit introduced
the students to complex adaptive systems (CAS). CAS can be de-
fined as multi-agent, leaderless environments where each agent
individually acts out a similar set of commands without a central-
ized communication hub. The students experimented with these
systems through two complementary activities. First, they used
StarLogo Nova [23], an online programming editor, to create com-
plex systems on a 3D canvas. The instructor followed the Project
GUTS curriculum [29] to introduce students to programming in
StarLogo Nova and enacting their own CAS for experimentation.
The activities progressed from each other, ending in the creation of
a pandemic outbreak model with integrated tools to monitor and
change relevant variables. Students then programmed Yahboom
line-following robot vehicles [38] to act as a physical representation
of agents in a toy environment (see Figure 1b). These vehicles were
controlled by BBC micro:bits [1] and programmed online with the
MakeCode editor [2]. StarLogo Nova and MakeCode both support
block-based programming, which exposed students to this coding
modality for the first time in the course. The CT practices covered
by this unit included collecting data, visualizing data, using models

to understand a concept, constructing models, programming, and
investigating a complex system as a whole.

4 METHODS
Of the 22 students enrolled in BUS, 16 opted in to be participants
in our study. Enrollment to BridgeUP STEM was required to par-
ticipate in our study, but participating in the study was not a re-
quirement of BridgeUP STEM. Recruitment for participation in the
study was handled on the first day of the course via word-of-mouth.
Participants did not receive additional compensation for being a
part of the study.

4.1 Sampling Frame
At the start of the program, 5 students (31%) were first years, 7 (44%)
were sophomores, and 4 (25%) were juniors in high school. Slightly
over half (9 students, 56%) had previously participated in at least
one computer, technology, robotics, or programming club inside
or outside of school, and all but two students (88%) have taken one
or more computer science courses in middle or high school. The
grade level makeup is visualized in Figure 2.

In line with the broader goals of this program, a majority of
participants came from historically underrepresented groups in
computing. We report demographics; however, differences between
demographic groups were not a focus of our study. While gender
or race in relationship to modalities of output and programming
might have impacted students learning, we did not see evidence
in our analysis. This may be an area for future study. All students
who participated in the study identified as women/girls or non-
binary/gender non-conforming. Ten (63%) participants identify as
Black or African American; 3 (19%) as Hispanic, Latina, or Lat-
inx; and 3 (19%) as white. All students were born in the United
States, and 2 students (13%) reported that they speak English as a
second language. When asked, “Are you living with a disability?
This can be either visible or invisible,” 5 students (31%) selected
“I’m not sure” or left this item blank. Using U.S. census data and
mapping home zip codes with median income data, 3 (19%) hailed
from zip codes defined as low-income communities, 12 (75%) from

Koli Calling ’23, November 13–18, 2023, Koli, Finland Johnson et al.

Figure 2: Grade level for BridgeUP STEM participants en-
rolled in the study.

middle-income communities, and 1 (6%) from a high-income com-
munity.1 12 students (75%) reported having at least one parent who
had earned a four-year college degree, and 7 students (44%) reported
that one or more parents had completed a post-graduate degree.
The racial/ethnic identity and community poverty status makeups
are visualized in Figure 3.

4.2 Data Collection
To fully capture students’ thoughts and reflections, we conducted in-
terviews before and after the course. Pre-interviewswere conducted
by multiple researchers following the same interview protocol and
held during the first two weeks of the course while the students
worked on the EarSketch unit. We gathered basic information about
the students, such as their interest in the BUS program itself, their
thoughts on technology, and their access to computing at home
and school. The pre-interviews also captured students’ attitudes
and perspectives on computing and their plans for the future. The
post-interviews were conducted by the first author and began the
week after the course concluded. These interviews focused on the
students’ experiences from BUS. We asked about their favorite and
least favorite activities, experiences working with other students,
and how they would compare learning with certain resources to
others. The post-interview also contained the same questions on
the students’ attitudes towards technology and computing and on
their plans for the future. In addition to individual interviews, the
first author conducted two rounds of focus groups throughout the
course consisting of four students chosen by random selection.
Three focus groups were held in the first round, while only two
were held in the second round due to absences. Each focus group
lasted approximately 30 minutes and asked the students to discuss
their current thoughts on the course and to reflect on the activities,
materials, and overall structure of the class.

4.3 Analysis
An automated transcription service transcribed audio recordings
of the interviews and focus groups; then, researchers edited them
1A low-income community is defined as an area where the median household income
is 80% or less of the metropolitan statistical area’s median household income. A high-
income community is an area where the median household income is 120% or more of
the metropolitan statistical area’s median household income.

for correctness. The first and second authors used thematic anal-
ysis [6] to analyze the transcripts. Thematic analysis consisted of
an initial round of individual open-coding on a subset of the data.
This was followed by the researchers drafting a codebook with an
emphasis on how students interacted with each activity’s materials,
their sense of ownership of their work, and their troubleshooting
processes. After a second round of coding, the researchers recon-
vened to revise the codebook, establishing categories of confidence
and metacognition, as well as consolidating previous codes into
an overall list of steps of problem-solving. After achieving inter-
rater reliability of 85%, the finalized codebook was applied to all
transcripts and coded excerpts extracted. Among the excerpts, we
searched for notable common themes and selected to focus on out-
put, feedback and troubleshooting. These themes are reported in
Section 5 and further discussed in Section 6.

5 FINDINGS
5.1 Student Reflections on Output & Feedback
Throughout the program, students consistently self-reported their
experiences with the material interfaces. In line with the traditional
“trial-and-error” pipeline, the output of CS ed tools provides the stu-
dents feedback on success and failure. The knowledge gained from
this feedback improves students’ understanding of the system they
are working with, of similar systems they have experienced, and
of computer programming. While all students seemed to indicate
that feedback was at the forefront of their minds, they held a wide
array of preferences about the way feedback was observed, if at all,
based on how the output of the system was delivered.

5.1.1 Screen-basedModalities. The standard output produced from
screen-based resources is text, as most coding editors simply print
words to the console. However, more expressive outputs, such as
sound or visuals, are also common. In environments such as Jupyter
Notebooks, the text-based coding cells produce more text when
run, whereas programs like EarSketch produce music. Both forms
of output convey vital information on the success or failure of the
code, but they are fundamentally different.

In general, students responded more positively to resources that
supported expressive and/or audiovisual feedback modalities, re-
garding them as more exciting and engaging. Two students, P1 and
P2, each discussed how the visual and musical output of EarSketch
stood out to them. P1 explained that she liked how the EarSketch
interface displayed information similar to how physical modalities
produced output: “With EarSketch, I liked how it’s kind of the same...
there’s the interface where you could see the music overlays and stuff,
just kind of similar to how you could see what your code does to a
robot with physical computing.”

For P2, the musical output and the process of making music were
more engaging than the text output of other screen-based activities.
When asked how EarSketch related to her thoughts on text-based
coding, P2 expressed a preference for the former: “I think it was the
output, like, ‘cause we were able to make music with it. Whereas, you
know, with the Jupyter Notebook, it was plainly text-based.”

Similarly, in a focus group, several students shared that they
found the visual output of StarLogo Nova to be engaging and un-
derstandable. P12 gave a specific example of how the visual output

Keeping Mindful of Modality Koli Calling ’23, November 13–18, 2023, Koli, Finland

Figure 3: Race/ethnicity and community wealth of BridgeUP STEM participants enrolled in the study.

of StarLogo Nova assisted her understanding of the random func-
tion, stating that “StarLogo Nova kind of helps [me] see it more,
especially when we did like the bumper car ones when they changed
color. And, like, I did one where I did like a random number of turtles
on the screen at a time and it kind of like put into perspective like
how the computer generates random [choices].”

In contrast, students expressed dissatisfaction with screen-based
resources that produced text output. P3 explained how text output
can feel underwhelming and lead to a lack of fulfillment: “...the ones
that were just the coding part, you would finish the code and then
you’d click ‘run’ or ‘save’ or whatever. And you just watch the little
thing on the screen or hope that it [doesn’t] give you an error.”

P4, meanwhile, compared general scenarios of screen-based com-
puting to physical computing, citing that in the former, “what you
do might not always be immediately seen.” She found that gathering
feedback from screen-based output was more time-consuming than
gathering feedback from tangible output. This delay in feedback
increased her frustration, making screen-based resources more dif-
ficult to work with. P4 later remarked that she would have liked
screen-based computing activities to give more expressive output.
She reflected on this statement regarding the AI unit and how it
could have been improved: “It doesn’t have to be physical arts and
crafts. In my mind, even doing something like, if we went back to the
AI unit, creating an AI that could make art. I don’t know if that’s
possible, but doing an arts and crafts like that—I feel like that would
have made me even more excited.”

While many students expressed that text-based output was not
visually stimulating, one student ignored it altogether. P2 disre-
garded text as an output as it did not engage her senses. When
asked for clarification, she responded that she doesn’t view reading
text as a sensory experience.

Interviewer: “What does it mean to be output to
you?”
P2: “Being able to, I guess, use one of my five senses.
Five senses, and for it to not be text.”
Interviewer: “Okay. So reading the text doesn’t count
as using that sense.”
P2: “Yeah.”

Based on the definitions we are using throughout this paper, we find
it is more appropriate to assume that P2 recognized that text was
an output produced by some resources, but that she was unable to
gain meaningful feedback from it to the point where it was almost
as if the output did not exist.

5.1.2 Physical Modalities. With physical computing resources,
feedback is front and center; the materials can produce a variety of
output, such as light and movement, that convey a range of informa-
tion. Many students found this output satisfying and engaging. P5
homed in on the tangibility afforded by physical computing materi-
als, saying, “I liked how we’re able to actually, in-person, manually
see our work come to life. And I think that’s much more encouraging
than just doing it on a computer. And maybe it says it works, but
is not the same [satisfaction] when it is something you can touch or
actually see happen in real life.”

Parallel to the frustrations voiced with console text output (in
instances where one cannot “see” the code), students explained that
they could “see” the output with physical modalities. P1 explained
that seeing the “cause and effect” with physical computing gave her
more information than when only receiving it from the computer.
Likewise, P6 spoke about the Yahboom robots and how she enjoyed
observing themovements of the robots, stating that “actually seeing”
the robot operate was “cooler than just coding it.”. Other students
such as P14, P7, P6, P10 and P13 echoed this sentiment during focus
groups.

During her interview, P7’s comparison of physical computing
output to screen-based output devalued the latter, equating its
feedback to nonsense: “So it gives you something other than just,
‘Oh, I can make the computer system print one plus one equals two.’
It gives you something fun to make out of it and makes it just a little
bit more enjoyable from a kid standpoint—doesn’t really need it to
complete a project or have a goal in the end; it’s just to learn. So it
made it more interesting because you got a more physical output than
just a computer giving out a random print statement or number letter
string, all that.”

5.2 Student Reflections on Troubleshooting
Another prominent aspect of working with CS ed materials is
how well they support the user when mistakes and errors occur.

Koli Calling ’23, November 13–18, 2023, Koli, Finland Johnson et al.

Troubleshooting methods, often referred to as debugging, are an
integral part of a student’s problem-solving process. Feedback, as
mentioned in the previous section, indicates to a user if their de-
sign was successful; troubleshooting methods indicate how a user
addresses any issues. Just like feedback, these methods are subject
to the resource’s output modalities. However, we also found the
coding modality to have a significant impact on troubleshooting
and share those findings below.

5.2.1 Troubleshooting by Output Modality. Many students found
troubleshooting easier with physical computing because of its tan-
gibility and perceived rationality. P1 noted how the simplicity of
observing tangible output, such as movements or lights, made it
obvious which section of code was not working. “If you see it, in-
person, the wheels not moving correctly or the lights aren’t flashing
the way you want it to, that’s a tangible thing you can look back at
your code. That’s why that’s not working. Um, but with the computer
coding, it’s kind of different. It’s not really feedback.” Most notewor-
thy here is the dismissal of feedback from a screen-based modality,
just as P2 did when not recognizing any feedback from text output.

P8 shared a similar experience, explaining how she identified
errors in her code faster with physical computing. She said the
ability to “actually see” movement allowed her to easily pinpoint
which section of code she should edit to fix a problem: “Most times,
you’ll see a syntax error, but then you have to go and find the direct
problem. But most times, when you actually see something move, then
you’ll know, ‘Oh, maybe I have to go back to this section of the code.’
So, I guess it’s easier to find where the errors are.”

P9 illustrated how physical computing often involved a rapid
prototyping process, which allowed her to immediately spot errors.
She compared this to her experience with screen-based computing,
in which she felt that errors often occurred without indication,
going unnoticed until later: “The activities that were hands on, you
were able to check them out on the computer... in real time actually
see what was wrong and then change it. But online is more—you have
one time to correct it. And if you mess up along the way, you wouldn’t
probably notice. Unlike when you’re hands-on, you notice when you
get it wrong the first time. And when and where.”

P1 also described how physical computing allowed her to tackle
troubleshooting incrementally, testing code step by step, making it
easy to identify which section of the code needed to be edited. She
compared this to Jupyter Notebooks, which she felt required her to
complete her program before running it, making it more difficult
to troubleshoot. She described how in the Jupyter Notebooks, “you
had to complete the code before you ran it more. Um, and you knew it
wasn’t working the way it was supposed to, but you didn’t really know
which step you kind of messed up on. With the physical computing, I
felt it was more like you could make the code little by little and check
at every step if it worked. And then run the code as a whole and you
could troubleshoot from there. Because there’s a lot of components to
it that were separate with the physical computing.”

In line with troubleshooting by visualizing issues, while working
with the Yahboom robots, it was suggested to the class to display an
icon on the LED matrix of the micro:bits each time they uploaded
new code. This helped evaluate if the new code uploaded correctly
without affecting the performance of the vehicle. P8 commented
on this tip when discussing what she liked about the robots, saying,

“You could like, see actually what you were coding and what you were
doing. And the tip that you gave us to, like, make an icon show to
know that everything’s working. That was fun. I liked it.”

Yet, a few students felt troubleshooting was sometimes an easier
process with screen-based resources than with physical ones. When
debugging, P4 not only found it easier to identify which parts of a
code she desired to change in on-screen environments, but stated
that physical computing makes it harder to pinpoint the source of
errors. She said, “With the physical computing, you know how you
want it to go and you can see immediate results. But sometimes you’ll
think that you have the code correct. And it’s not, and you can’t figure
it out. But with the online coding, you see that it’s not working, you
know, it’s not working. And I can easily highlight where I want to
change.” P13 made a similar point during a focus group where she
claimed when working in the web-based StarLogo Nova that errors
in the code would always originate from the user as opposed to in
physical computing, where the hardware would also be suspect: “I
like in StarLogo Nova how if something’s not working... I know that
there’s something in the code that I need to change or fix. Whereas
with the Makeblock, it’s kind of like, ‘Is this a me thing, or is this... a
hardware thing?’”

5.2.2 Troubleshooting by Coding Modality. Just as the output and
feedback of physical and screen-based resources affected how stu-
dents recognized issues, the type of coding used in a project im-
pacted how students approached troubleshooting. While text-based
coding often posed more of a troubleshooting challenge for stu-
dents, some also found the exercise more beneficial in terms of
creative freedom and learning through one’s mistakes. P1 reflected
on how text-based coding and its more involved troubleshooting
process allowed her to explore coding, discover how to code, and
assign meaning to code. She said, “I like the style of the Makeblock
coding more. I didn’t really like the block-coding as much. I felt like
the Makeblock code—and also with our first unit with the music—it
was a lot more freeing... It was a lot of trial and error. And [I] could
really figure out what I still wasn’t sure about with how to code stuff
and what stuff meant.”

In comparison, students approached block-based coding with
relative ease, with troubleshooting primarily focusing on undesired
outcomes, rather than coding errors. Many students shared the
sentiment that they found block-based coding to be fun; however,
they also recognized its limitations when compared to text-based
coding, acknowledging the creative and learning possibilities that
P1 spoke of. As P6 put it, “I’d want to do more block coding but I
know that I also have to learn, you know, other sophisticated coding
types, I guess. But I did want to, like improve. So even though block
coding is fun, and I would like to use it, I would still want to learn
more about different types.”

We also noted that regardless of whether a student enjoyed text-
based coding, they valued the benefits offered by the text editor.
During one focus group, several students agreed that they preferred
writing code on Jupyter Notebooks over writing code on paper, due
to the visual, color-coded feedback of the editor.

Interviewer: “You all agreed that the Jupyter Note-
books and getting to work on a code was helpful.
What do you think about when we wouldn’t be on

Keeping Mindful of Modality Koli Calling ’23, November 13–18, 2023, Koli, Finland

the computer working on code, but we would be writ-
ing it out like on the worksheets? How was that in
comparison?”
P14: “Much more difficult.”
Interviewer: “More difficult?”
P14: “Because I have to recall from memory and it’s
weird, because it doesn’t show us in color.”
P7: “Yeah, that’s true. I like the color; makes me know
I’m doing it right.”
P3: “And you can’t always tell like, if you made a
mistake with like, if you spelled something wrong, it
doesn’t tell you necessarily like you kind of you have
to pay more attention.”

These students responded positively to the comparatively minimal
visual output that the Jupyter Notebook interface provided. They
cite the editor’s error checking and auto-formatting, both of which
visually change the coding environment, as the reason they would
rather use the interface than hand-write code. They notably do not
mention the text-based console feedback that is also lost when only
using paper.

6 DISCUSSION
As we discuss our findings, we want to revisit the definitions given
in Section 1.1. We observed instances where student learning was
primarily subject to an activity’s coding modality—the means by
which code is written—and its output modality—the means by
which output is given. Feedback was information derived by an
individual from output, which we saw had direct and indirect im-
plications on troubleshooting processes. In short, our findings high-
lighted how coding and output modality affected how students rec-
ognized feedback (RQ1a) and engaged in troubleshooting (RQ1b). In
this section, we discuss these results by 1) highlighting the notable
differences between output and coding modalities, and 2) exploring
the implications of teaching methods with each modality.

6.1 Differences in Coding and Output
Modalities

6.1.1 Output & Feedback. The findings illustrated how the mean-
ing, or lack of meaning, that students assigned to feedback varied
by the output modality, with the threshold of meaning dependent
upon the individual. The feedback regarded as the least meaningful
often came from the text-based output, which was the primary
form of output for screen-based computing activities completed
in BUS. Some students found the feedback these outputs provided
less helpful than outputs from other modalities (P3 and P4), while
others dismissed it entirely (P2).

Most students found the feedback from outputs with very sen-
sory experiences the most meaningful. This is in line with many
prior works that cite tangible outputs as the reason for higher
motivation and yielding natural connections for learners [12, 21].
Students generally reacted positively to the tangible nature of Make-
block Arduino, as well as the musical and visual feedback of EarS-
ketch. Because students who generally disliked screen-based re-
sources (e.g., P2) enjoyed working with EarSketch, this suggests

that it is the modality of the output, rather than input, that impacts
how meaningful the feedback is.

While students did not regard the text output modality as highly
meaningful, we are not proposing that encouraging students to find
meaning in text output is futile. Rather, students struggled to know
how to look for feedback when it came to screen-based computing
with text output. P7 referred to text output as “random print state-
ment[s] or number letter string[s],” showing how she viewed the
feedback from this output as nearly indecipherable. Compared to
what is known about how programming error messages are inter-
preted [4, 5, 8, 33], it is surprising to see that even user-controlled
text output is sometimes difficult to draw meaning from. And even
when students found meaning in text-based output, it was seen
as underwhelming and unfulfilling. This displays a clear need to
improve the recognition of text-based feedback as important and
meaningful.

6.1.2 Troubleshooting. When comparing troubleshooting in screen-
based modalities to physical modalities, many students expressed a
strong preference for physical resources, finding that the tangible
output made pinpointing errors in code much clearer. Addition-
ally, students expressed that the rapid prototyping process afforded
by physical computing allowed for incremental ideation and trou-
bleshooting, catching errors easily and often. While this incremen-
tal process can be (and is frequently) employed in a screen-based
setting, students such as P8 and P9 indicated a lack of awareness
of the extent to which troubleshooting methods can be applied.

P4 shared the general sentiment that “seeing” feedback was eas-
ier with physical computing and, therefore, helpful to troubleshoot-
ing, but made an important distinction between knowing when
she’s made a mistake and knowing how to pinpoint an error. With
physical output modalities, she felt that she could immediately see
an error, but could not necessarily pinpoint its cause, especially
if she had thought that her code was correct. She surmised that
screen-based resources made it easier for her to troubleshoot than
physical resources. This is an example of how affordances for trou-
bleshooting are dictated by the type of output modality and the
manner in which students interpret them.

P1 drew a similar conclusion to P4, but did so by comparing text-
based coding and block-based coding in terms of troubleshooting.
P1—one of the few students to focus on coding modality rather than
output modality—attributed her preference for text-based coding to
the incremental troubleshooting process she established, which she
felt encouraged her to learn coding on a deeper level. While P1 is
unique in voicing this idea, other students also assumed there was
greater learning potential for text-based coding. They referenced
the limitations of block-based coding, as covered by DiSalvo [10]
and Weintrop and Wilensky [35]. However, those same students
did not seem able to specify the potential benefits of text-based
coding, such as the incremental writing and testing that P1 re-
counted. It is notable that P1 had comparatively higher levels of
experience with computer programming, which may be correlated
to her thoughts on text-based coding. Regardless, this awareness of
a greater learning potential shows that transitions between coding
modalities deserves more attention, particularly when it comes to
troubleshooting.

Koli Calling ’23, November 13–18, 2023, Koli, Finland Johnson et al.

6.2 Recommended Approaches to Computing
Education Activities

Throughout the course, we found generally higher acceptance and
enthusiasm towards physical computing activities, even though
students championed activities in all modalities. We also found a
significant number of students who drew issues with text output
across all resources. However, the purpose of this research was not
only to determine how each modality was experienced by students
but to also determine how affordances found in one modality can
inform further approaches to others (RQ2). By further reflecting
on our findings, it became clear that the range of feedback gained
and troubleshooting methods taken were vast and under-explored.
Here, we provide a list of recommendations for approaches to CS
ed activities based on further developing these facets of computing
education.

1. Enable a range of expressive output to be available in
screen-based resources. Our efforts to create an engaging and im-
mersive experience in various computing subjects could not appeal
to everyone at all times. For example, in the AI unit, some students
had issues with the screen-based, text-coding, text-output activities.
When reflecting on differences in the units, P4 inspired us to look
toward incorporating artistic expression with AI to improve the
AI unit output and feedback, without fundamentally changing its
content. She mentioned that “creating an AI that could make art,” a
concept that is entirely feasible, would have made her more excited
to explore AI. Therefore, screen-based resources should be designed
with a range of potential expressive outputs in addition to textual
feedback. Findings in Love and Asempapa [18] reinforce the idea
that expressive screen-based CS activities (e.g., Scratch), compared
to physical computing activities, can create a more positive dispo-
sition towards coding in the classroom and applicability in their
career and future. Enabling more expressive output in screen-based
resources could increase user engagement and positively affect
students’ perceptions of coding, while preserving the activity as
screen-based.

2. Teach students how to interpret output. We taught students
how to use CS materials and solve CS programming problems by
focusing on methods and processes. This instruction presented
output as a form of success that a program was operating but
stopped short of teaching students how to interpret and apply this
output. As a result, students like P2 and P7 did not recognize the
significance of basic forms of output, and most of the class preferred
tangible or visual output to indicate success. Since a large amount of
research on student perceptions of feedback while coding focuses
on programming error messages [5, 8], we see room to expand
this field to perceptions of feedback when errors are not present to
ensure learning is still happening to the fullest degree. CS educators
should increase guidance in the interpretation of output so that
students can identify meaningful feedback from all forms of output.

3. Treat some forms of output as midway points to a final
goal. Some students who recognizedmeaningful feedback from text
output did so with low interest and enthusiasm. For example, text
output assisted some students in debugging their code; however,
students did not feel text output alone was a satisfying final result
of a project. Rather than avoiding exposing students to text output,

educators could situate text output as an incremental step toward a
finished product that employs other modes of output for the final
steps. We anticipate that if unpopular forms of output are not seen
as the culmination of a student’s work, but as an important step in
the process, it will destigmatize that output from being considered
unfulfilling. This interpretation of student experiences suggests that
many of the cited benefits of physical computing (e.g., [12, 18, 21])
may be due to students’ satisfactionwith the finality and completion
of tangible output opposed to an intermediary message from text
output.

4. Teach how to troubleshoot in all coding and feedback
modalities. In each modality, whether physical or screen-based
output or text-based or block-based coding, some students spoke
about an inability to test their code before it was finished.While one
can incrementally test their code in all of these modalities, students
did not always feel capable of doing so. Computer scientists would
agree that rapid prototyping solutions through trial-and-error is
common—if not necessary—in modern computing. Accomplishing
this iterative process also takes less time using screen-based re-
sources than physical resources. However, students did not see this
advantage, resulting in students seeing troubleshooting with physi-
cal resources as superior. This suggests an increased emphasis on
teaching students how to apply an incremental approach to coding
will provide students with a more effective model for troubleshoot-
ing. The effectiveness of the incremental coding approach could
be seen when we emphasized that students update the LED matrix
icon on their micro:bits when uploading new code. P8 spoke about
appreciating this lesson and we observed that other students found
it useful, which suggests it helped them reach the learning objective.
Following this approach will enable students to understand their
code on a deeper level and incorporate troubleshooting fluidly into
their problem-solving process.

6.3 Limitations
There are a few limitations of this study that must be considered.
While the first author has taught in many informal CS workshops,
he did not have formal educational training, and the course itself
was not designed to adhere to any formal standards. Additionally,
the sampling frame from which this study was conducted was lim-
ited by the sponsor’s participation requirements and may affect
how generalizable the findings are. Students self-selected to partic-
ipate in the study, which may have influenced how they responded
to questions about the program and their experiences.

7 CONCLUSION
Through this study, we developed an understanding of the affor-
dances and drawbacks of popular coding and feedback modalities.
Across several CS resources, we saw that the modality did not
hinder overall learning, but that students experienced key steps
of recognizing feedback and troubleshooting in vastly different
ways. As stated by Love [17], research on how physical comput-
ing education affects the attitudes of students learning with it is
limited, despite the many studies that cite its benefits. This holds
true for other forms of computing, as well. By analyzing what stu-
dents enjoyed, disliked, and reflected upon in the BridgeUP STEM
programming course, we provided suggestions on select areas of

Keeping Mindful of Modality Koli Calling ’23, November 13–18, 2023, Koli, Finland

teaching CS that break from traditional approaches. Our findings
are unique in that few studies of comparative work have been done
across resources with varying output and coding modalities.

Coding modality, output modality, feedback and troubleshooting
should be treated as four different considerations when looking
at what students learn from computing activities. With continued
research in this area, we can highlight opportunities for improv-
ing screen-based computing based on the affordances of physical
computing revealed by the students, and vice versa.

ACKNOWLEDGMENTS
We would like to thank NCWIT for their help and support during
this project. We would also like to thank the Hopper-Dean Founda-
tion and the Alfred P. Sloan Foundation for their support. BridgeUP
STEM was funded by Helen Gurley Brown Foundation and hosted
at Georgia Tech.

REFERENCES
[1] Jonny Austin, Howard Baker, Thomas Ball, James Devine, Joe Finney, Peli

De Halleux, Steve Hodges, Michał Moskal, and Gareth Stockdale. 2020. The
BBC Micro:Bit: From the U.K. to the World. Commun. ACM 63, 3 (feb 2020),
62–69. https://doi.org/10.1145/3368856

[2] Thomas Ball, Abhijith Chatra, Peli de Halleux, Steve Hodges, Michał Moskal,
and Jacqueline Russell. 2019. Microsoft makecode: embedded programming for
education, in blocks and typescript. In Proceedings of the 2019 ACM SIGPLAN
Symposium on SPLASH-E. 7–12.

[3] Massimo Banzi and Michael Shiloh. 2022. Getting started with Arduino. Maker
Media, Inc.

[4] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson
Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error mes-
sages?. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, 575–585.

[5] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bou-
vier, Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-
Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Mes-
sages Considered Unhelpful: The Landscape of Text-Based Programming Error
Message Research. In Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-
WGR ’19). Association for Computing Machinery, New York, NY, USA, 177–210.
https://doi.org/10.1145/3344429.3372508

[6] Virginia Braun and Victoria Clarke. 2012. Thematic Analysis. APA handbook of
research methods in psychology, Vol 2: Research designs: Quantitative, qualitative,
neuropsychological, and biological. 2 (2012), 57–71. https://doi.org/10.1037/13620-
004

[7] Renata Burbaitė, Robertas Damaševičius, and Vytautas Štuikys. 2013. Using
robots as learning objects for teaching computer science. In X world conference
on computers in education. 101–110.

[8] Paul Denny, James Prather, Brett A. Becker, Catherine Mooney, John Homer,
Zachary C Albrecht, and Garrett B. Powell. 2021. On Designing Programming Er-
ror Messages for Novices: Readability and Its Constituent Factors. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama,
Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA,
Article 55, 15 pages. https://doi.org/10.1145/3411764.3445696

[9] Kayla DesPortes and Betsy DiSalvo. 2017. Where are the Glass-Boxes? Exam-
ining the Spectrum of Modularity in Physical Computing Hardware Tools. In
Proceedings of the 2017 Conference on Interaction Design and Children. 292–297.

[10] Betsy DiSalvo. 2014. Graphical qualities of educational technology: Using drag-
and-drop and text-based programs for introductory computer science. IEEE
computer graphics and applications 34, 6 (2014), 12–15.

[11] Shuchi Grover, Roy Pea, and Stephen Cooper. 2015. Designing for deeper learning
in a blended computer science course formiddle school students. Computer science
education 25, 2 (2015), 199–237.

[12] Steve Hodges, Sue Sentance, Joe Finney, and Thomas Ball. 2020. Physical com-
puting: A key element of modern computer science education. Computer 53, 4
(2020), 20–30.

[13] IBM. 2021. IBM SkillsBuild - AI Foundations: A Collaboration of ISTE and
IBM. https://students.yourlearning.ibm.com/activity/PLAN-B2125F145F0E?
channelId=CNL_LCB_1596575854335

[14] Filiz Kalelioglu and Sue Sentance. 2020. Teaching with physical computing in
school: the case of the micro: bit. Education and Information Technologies 25, 4
(2020), 2577–2603.

[15] Majeed Kazemitabaar, Viktar Chyhir, David Weintrop, and Tovi Grossman. 2023.
Scaffolding Progress: How Structured Editors Shape Novice Errors When Transi-
tioning from Blocks to Text. In Proceedings of the 54th ACM Technical Symposium
on Computer Science Education V. 1. 556–562.

[16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol
Willing. 2016. Jupyter Notebooks – a publishing format for reproducible com-
putational workflows. In Positioning and Power in Academic Publishing: Players,
Agents and Agendas, F. Loizides and B. Schmidt (Eds.). IOS Press, 87 – 90.

[17] Tyler S Love. 2023. Examining middle school students’ attitudes toward com-
puting after participating in a physical computing unit. Interactive Learning
Environments (2023), 1–20.

[18] Tyler S. Love and Reuben S. Asempapa. 2022. A screen-based or physical
computing unit? Examining secondary students’ attitudes toward coding. In-
ternational Journal of Child-Computer Interaction 34 (2022), 100543. https:
//doi.org/10.1016/j.ijcci.2022.100543

[19] Brian Magerko, Jason Freeman, Tom Mcklin, Mike Reilly, Elise Livingston, Scott
Mccoid, and Andrea Crews-Brown. 2016. EarSketch: A STEAM-Based Approach
for Underrepresented Populations in High School Computer Science Education.
ACM Transactions on Computing Education (TOCE) 16, 4 (2016), 1–25. https:
//doi.org/10.1145/2886418

[20] Makeblock. 2022. Makeblock. https://www.makeblock.com/
[21] Paul Marshall. 2007. Do Tangible Interfaces Enhance Learning?. In Proceedings

of the 1st International Conference on Tangible and Embedded Interaction (Baton
Rouge, Louisiana) (TEI ’07). Association for Computing Machinery, New York,
NY, USA, 163–170. https://doi.org/10.1145/1226969.1227004

[22] Sandra Y Okita. 2014. The relative merits of transparency: Investigating situations
that support the use of robotics in developing student learning adaptability
across virtual and physical computing platforms. British Journal of Educational
Technology 45, 5 (2014), 844–862.

[23] Jin Pan. 2016. Performance Engineering of the StarLogo Nova Execution Engine.
Ph. D. Dissertation. Massachusetts Institute of Technology.

[24] Mareen Przybylla and Ralf Romeike. [n. d.]. Key Competences with Physical
Computing. KEYCIT 2014 ([n. d.]), 351.

[25] Aaron Rasheed Rababaah and Ahmad A Rabaa’i. 2018. Enhancing programming
learning environment with physical computing and robotics: a case study of
the American University of Kuwait. International Journal of Teaching and Case
Studies 9, 4 (2018), 323–346.

[26] Mitchel Resnick. 2008. Sowing the seeds for a more creative society. Learning &
Leading with Technology 35, 4 (2008), 18–22.

[27] Mitchel Resnick, BradMyers, Kumiyo Nakakoji, Ben Shneiderman, Randy Pausch,
Ted Selker, and Mike Eisenberg. 2005. Design principles for tools to support
creative thinking. (2005).

[28] Gabriela T Richard and Sagun Giri. 2019. Digital and physical fabrication as
multimodal learning: Understanding youth computational thinking whenmaking
integrated systems through bidirectionally responsive design. ACM Transactions
on Computing Education (TOCE) 19, 3 (2019), 1–35.

[29] Raja Ridgway. 2018. Project GUTS. Science Scope 42, 3 (2018), 28–33.
[30] Sue Sentance, Jane Waite, Lucy Yeomans, and Emily MacLeod. 2017. Teaching

with Physical Computing Devices: The BBC Micro:Bit Initiative. In Proceedings
of the 12th Workshop on Primary and Secondary Computing Education (Nijmegen,
Netherlands) (WiPSCE ’17). Association for Computing Machinery, New York,
NY, USA, 87–96. https://doi.org/10.1145/3137065.3137083

[31] Ben Shneiderman, Catherine Plaisant, Maxine S Cohen, Steven Jacobs, Niklas
Elmqvist, and Nicholas Diakopoulos. 2016. Designing the user interface: strategies
for effective human-computer interaction. Pearson.

[32] Jane Waite. 2017. Pedagogy in teaching computer science in schools: A literature
review. London: Royal Society 253 (2017).

[33] Christopher Watson, Frederick WB Li, and Jamie L Godwin. 2012. Bluefix: Using
crowd-sourced feedback to support programming students in error diagnosis
and repair. In Advances in Web-Based Learning-ICWL 2012: 11th International
Conference, Sinaia, Romania, September 2-4, 2012. Proceedings 11. Springer, 228–
239.

[34] David Weintrop, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2016. Defining computational thinking for mathe-
matics and science classrooms. Journal of science education and technology 25, 1
(2016), 127–147.

[35] David Weintrop and Uri Wilensky. 2015. To block or not to block, that is the
question: students’ perceptions of blocks-based programming. In Proceedings of
the 14th international conference on interaction design and children. 199–208.

[36] David Weintrop and Uri Wilensky. 2017. Comparing block-based and text-based
programming in high school computer science classrooms. ACM Transactions on
Computing Education (TOCE) 18, 1 (2017), 1–25.

[37] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33–35.

[38] Yahboom. 2022. Yahboom micro:bit Robot Car. http://www.yahboom.net/study/
Bitbot

https://doi.org/10.1145/3368856
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1037/13620-004
https://doi.org/10.1037/13620-004
https://doi.org/10.1145/3411764.3445696
https://students.yourlearning.ibm.com/activity/PLAN-B2125F145F0E?channelId=CNL_LCB_1596575854335
https://students.yourlearning.ibm.com/activity/PLAN-B2125F145F0E?channelId=CNL_LCB_1596575854335
https://doi.org/10.1016/j.ijcci.2022.100543
https://doi.org/10.1016/j.ijcci.2022.100543
https://doi.org/10.1145/2886418
https://doi.org/10.1145/2886418
https://www.makeblock.com/
https://doi.org/10.1145/1226969.1227004
https://doi.org/10.1145/3137065.3137083
http://www.yahboom.net/study/Bitbot
http://www.yahboom.net/study/Bitbot

Koli Calling ’23, November 13–18, 2023, Koli, Finland Johnson et al.

A APPENDIX
A.1 BridgeUP STEM Syllabus

Table 2: Syllabus and learning objectives for the BridgeUP STEM Cohort 1A programming course.

Unit 1: EarSketch

Week 1

Introductions
EarSketch Lesson 1

• creating Python scripts
• coding music into a DAW
• debugging your code

EarSketch Lesson 2
• changing tempo
• code comments
• uploading your own sounds

Week 2

EarSketch Lesson 3
• variables
• making beats

Genres in music, creating genre songs

Week 3

EarSketch Lesson 4
• for-loops
• print statements
• control flow

EarSketch Lesson 5
• effects
• functions
• more debugging tips

Introduce Final Project: Rescore Videos

Week 4 Finish Rescore Videos
Viewing party of Final Mix

Unit 2: Artificial Intelligence

Week 5

Introduction to AI
Types of AI
Machine Learning

• Components of ML
• Types of ML
• Supervised and unsupervised learning
• Activity: How Do Machines Learn?

Week 6

Python: Back to Basics
• Jupyter Notebooks
• Algorithms

Week 7

More Machine Learning
• Demo: building a neural network
• Making a decision tree
• Google’s Teachable Machine

Logic Practice

Keeping Mindful of Modality Koli Calling ’23, November 13–18, 2023, Koli, Finland

Week 8

Algorithmic Bias in AI
• Game: Survival of the Best Fit

AI and Humanity
• Risks and Benefits

Conditions and Logic
• Practice
• If-statement review
• Decision tree review

Week 9 Ethics in AI
Introduce Final Project: Trailblazer Isolation

Week 10

Coding Practice
Minimax Algorithm
Classes
Game-Playing AI

• Minimax Player
• Game-playing strategies

Week 11

Game-Playing AI
• Trailblazer Isolation overview
• Project work time

Week 12
Game-Playing AI

• Project work time
Tournament: Trailblazer Isolation Championship

Unit 3: Arduino Makeblock Kits

Week 13

Introduction to Makeblock Kits
• Parts overview
• Arduino IDE overview

Sensors

Week 14 Actuators
Combining Sensors and Actuators

Week 15 Final Project: Artifact Builds
Unit 4: Complex Adaptive Systems

Week 16

Introduction to Complex Adaptive Systems
• Complex vs. Complicated?
• Activity: Turn & Walk

StarLogo Nova Overview
• Turn & Walk simulation

Week 17

SLN Turtle Activities
• Flower Turtles
• Trailblazer Turtles
• Bumper Turtles

Week 18

Simulation vs. Real-World
SLN Turtle Activities

• Pandemic models
• Measurements
• Experimental Design Form

Activity: Bug Code

Koli Calling ’23, November 13–18, 2023, Koli, Finland Johnson et al.

Week 19

Python Review
Introduction to micro:bit

• Programming the micro:bit
• Line-following robots

Week 20

micro-City
• Constructions
• Robot Parade

	Abstract
	1 Introduction
	1.1 Definitions

	2 Related Work
	2.1 The Current Landscape of Physical Computing Education
	2.2 Perceptions of Feedback and Errors
	2.3 Modalities of Computer Programming

	3 Context
	3.1 BridgeUP STEM Overview
	3.2 Programming Course Overview

	4 Methods
	4.1 Sampling Frame
	4.2 Data Collection
	4.3 Analysis

	5 Findings
	5.1 Student Reflections on Output & Feedback
	5.2 Student Reflections on Troubleshooting

	6 Discussion
	6.1 Differences in Coding and Output Modalities
	6.2 Recommended Approaches to Computing Education Activities
	6.3 Limitations

	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 BridgeUP STEM Syllabus

