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ABSTRACT
Eosinophilic Esophagitis (EoE) is an allergic condition increasing
in prevalence. To diagnose EoE, pathologists must find 15 or more
eosinophils within a single high-power field (400X magnification).
Determining whether or not a patient has EoE can be an arduous
process and any medical imaging approaches used to assist diag-
nosis must consider both efficiency and precision. We propose an
improvement of Adorno et al’s approach for quantifying eosin-
phils using deep image segmentation. Our new approach leverages
Monte Carlo Dropout, a common approach in deep learning to
reduce overfitting, to provide uncertainty quantification on cur-
rent deep learning models. The uncertainty can be visualized in an
output image to evaluate model performance, provide insight to
how deep learning algorithms function, and assist pathologists in
identifying eosinophils.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification; Neural networks; Cross-validation.
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1 INTRODUCTION
Eosinophilic esophagitis (EoE) is an inflammatory disease of the
esophagus characterized by the prevalence of a type of white blood
cell (eosinophil). Approximately 0.5-1.0 in 1,000 people have EoE
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Figure 1: Example Image Data from Gastroenterology Data
Science Lab

and it can be seen in 2-7% of patients that undergo endoscopies
[5]. Although the cause of EoE remains unclear, pathologists be-
lieve EoE to be triggered by a patient’s diet. Furthermore, EoE is
only increasing in prevalence [4] leading to an increased load on
pathologists. Patients with EoE typically present with swallowing
difficulties, food impaction, and chest pain [12]. To diagnose EoE, pa-
tients must undergo an endoscopy where eosinophils biopsy tissue
samples are then evaluated for concentration of eosinophils. Pathol-
ogists diagnose the patient with EoE if at least one High-Power
Field (HPF; 400× magnification adjustment) within a patient’s tis-
sue biopsy slide contains 15 or more eosinophils [6]. The dataset is
obtained from the Gastroenterology Data Science Lab from UVA
Hospital patient data. A sample image is given in Figure 1. Each
image is 512x512x3 large and there are 514 images/masks in the
dataset spanning 30 UVA Medical Center patients. We will keep
the three channels [r,g,b] for the image but will import the masks
as grayscale. All data is obtained from subjects under conditions of
academic use only. No personal health information (PHI) is present
in the data.

1.1 Related Work
The frequency of use of ResNet and UNet models to detect diseases
has been increasing in recent years; classification and segmenta-
tion of medical images using these models has shown efficient
results [8][13]. Namely, Adorno, et al.[1] demonstrated impressive
performance in segmentation of Eosinophils to assist diagnosis
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of Eosinophilic Esophagitis. However, applications of these mod-
els in deep neural networks have caused concern among scholars
about their inability to measure uncertainty [3]. There are two com-
mon approaches to quantifying uncertainty in machine learning:
aleatoric and epistemic. Aleatoric uncertainty refers to the vari-
ability in outcomes with random effects, and epistemic uncertainty
refers to a lack of information in applying models [9]. For exam-
ple, while one could include more weights in the neural network
to address epistemic uncertainty, aleatoric uncertainty cannot be
addressed, only identified. Here we attempted to quantify aleatoric
uncertainty using MCD UNet, which has proven effective in other
applications without changing or optimizing architectures [2]. Moti-
vation for this work stems from the drive in medical image analysis
to increase efficiency and precision in results. Increasing the effi-
ciency of a model and thereby reducing the time needed to train
disease detection models can reduce the load on medical providers
and lead to better overall patient outcomes while increasing the
precision in the results can reduce the probability of error. In the
case where a model is attempting to detect a disease and potentially
affect a patient’s treatment, there is little room for error.

2 METHODOLOGY
2.1 Mathematical Linkage Between Problem

and Method
We will treat the data as discrete since the image is made up of a
three dimensional tuple [𝑟, 𝑔, 𝑏]. Since we have a very large dataset,
we will use variational approximation, specifically minimizing KL
divergence, in order to approximate the distribution of the affected
cells. KL divergence is given by

KL(𝑞(Z| |𝑝 (Z|𝐷))) =
−(𝐸𝑞 (log𝑝 (𝐷,Z)) − 𝐸𝑞 (log𝑞(Z))) + log𝑝 (𝐷)

Since maximizing the evidence lower bound (ELBO) is largely
impractical, we will be using a Monte-Carlo approximation. We
will use a UNet convolutional neural network architecture and use
Monte Carlo (MC) Dropout as a Bayesian approximation to identify
which image segments correspond to different cells [7]. In Bayesian
neural networks, each weight is represented by a probability distri-
bution which we will assume is Gaussian instead of just a number.
The learning aspect corresponds to Bayesian inference which we
will use MC Sampling. We will measure uncertainty for every pixel
using cross-entropy over two classes of "background" (𝐶 = 0) and
"foreground"(𝐶 = 1):

𝑈 = −(𝑝𝐶=0 · ln(𝑝𝐶=0) + 𝑝𝐶=1 · ln(𝑝𝐶=1))

We will also explore if we can use aleatoric uncertainty to mea-
sure performance. This is given by

𝐸𝑝 (𝑧 |𝐷 )𝐻 [𝑝 (𝑦 |𝑧, 𝑥)] =

−
∫

𝑝 (𝑧 |𝐷) ©«
∑︁
𝑦∈𝑌

𝑝 (𝑦 |𝑧, 𝑥) log 𝑝 (𝑦 |𝑧, 𝑥)𝑑𝑤ª®¬
2.2 Bayesian Methods
Work from Gal and Ghahramani in 2016 [7], suggest that a Monte
Carlo Dropout UNet is equivalent to the deep Gaussian process used

Figure 2: UNet Architecture

in Bayesian Neural Networks. Essentially, we can minimize the KL
divergence using approximation through Monte Carlo integration
to get an unbiased estimate. Minimizing the KL divergence between
the approximate posterior 𝑞(𝑤) and the posterior of the full deep
Gaussian Process 𝑝 (𝑤 |𝑋,𝑌 ) is given by the objective function:

−
∫

𝑞(𝑤) log𝑝 (𝑌 |𝑋,𝑤)𝑑𝑤 + 𝐾𝐿(𝑞(𝑤) | |𝑝 (𝑤))

The first and second term can be represented by a sum and approx-
imated by Monte Carlo integration. For the Monte Carlo Dropout
UNet, we apply dropout before every weight where dropout is
defined as switching off neurons at each training step.

3 RESULTS
The UNet is convolutional network architecture for fast and pre-
cise segmentation of images [11]. It has been shown to outperform
what was previously considered the best method (a sliding-window
convolutional network) on the ISBI challenge for segmentation of
neuronal structures in electron microscopic stacks. For the UNet
model, we used 23 convolutional layers with batch normalization.
In both the encoder and decoder steps, we used a ReLU activation
function, and for the final layer we used a sigmoid activation func-
tion. Loss was computed using binary cross entropy and ADAM
was used as the optimizer. To prevent overfitting, we implemented
early stopping and data augmentation. The four models we used are
MCD UNet, UNet, DenseNet, and ResNet50. All training was done
on 4 NVIDIA A100 GPUs with 300GB of RAM in TensorFlow/Keras
2.7. Each model run was ran for 100 epochs with a learning rate of
0.001.

The underlying architecture of the UNet model is shown in
Figure 2. At first, the encoder is used to obtain and normalize the
transformation of the input volume, using a Leaky ReLU activation
function at each layer. At the bottleneck of this architecture, the
volume will be in the size of 2×2×2 which represents the reduction
of dimensionality prior to using a sigmoid activation function for
segmentation. The decoder then up-samples this transformed 2×2×2
volume to reconstruct the image with this segmentation.

Our main evaluation of the algorithm is through a combination
of the Binary Cross Entropy Loss and Sørensen-Dice Loss given by
the Dice Coefficient. For each segmentation method, we will tune
the hyperparameters to minimize our loss function.

3.1 Sorensen-Dice Coefficient
The dice coefficient is the industry and academic standard for eval-
uating medical image segmentation and classification results. Eval-
uation is given through a scale of 0 to 1. Given two images 𝑋 and 𝑌 ,
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Figure 3: Adorno et.al. Dice Values [1]

a zero dice coefficient indicates that there is no similarity between
two images while a one dice coefficient indicates that the images
are exactly the same down to the pixel. The equation for the metric
is given by

DCS =
2|𝑋 ∩ 𝑌 |
|𝑋 | + |𝑌 |

From the literature review, most state-of-the-art dice scores on
medical images range from 0.3 to 0.7. Much like a regression metric,
a dice score of 0 or 1 are usually causes for concern since no two
images from real-world data are truly the same. Although accuracy
is often used as an evaluation metric, it is important to note that the
dice score may be low even if the training and validation accuracy
are high on a given dataset.

Once again, our dataset is 514 images from the GI Data Science
Lab and sized 512x512x3. To improve upon Adorno, et. al. [1], we
augment the data through flipping and rotation for each image.
This means that for each input image, we have created a flipped
and rotated image as well, effectively tripling our input dataset.
Data augmentation here makes the model generalize better due
to the larger amount of training data. For reference, the results
from Adorno, et. al. [1] are shown in Figure 3. The size field in
Figure 3 refers to the total number of parameters of each model.
For comparison, our UNet results are shown in Table 1.

Model Size Median Min Max
MCD UNet 494K 0.591 0.470 0.650

UNet 494K 0.598 0.442 0.657
DenseNet 7.2M 0.592 0.369 0.645
ResNet 24M 0.612 0.505 0.651

Table 1: Test Results Dice Score

Most significantly, we can see that our approach has only ≈
494,000 parameters while the smallest model in Adorno et al. had
3.1 million parameters and the largest had 10.9 million parame-
ters. Thus, our work is at least one order of magnitude less in size
than Adorno et al. which means our model is less complex. Given
that the same UNet approach, we can assume, holding all other
factors such as GPU availability constant, our approach runs faster

Figure 4: Output comparing the true, predicted, and uncer-
tainty values for an image patch

and more efficiently. Despite the significant difference is model
size, our performance is similar to Adorno et. al with dice scores
around 0.6, matching their Residual UNet and R2UNet results while
outperforming their Attention UNet results.

Possibly the strongest result of this approach is the visualization
possible due to the quantification of our model’s uncertainty shown
in Figure 4.

In this example image, white indicates high amounts of uncer-
tainty while black indicates low amounts of uncertainty. We can
see that the pixels are nearly white around the borders of the
eosinophils essentially "highlighting" them in the output image.
The high uncertainty on boundary pixels around each eosinophil
indicate that until the model sees more of the eosinophil, the model
hesitates to classify the pixels as an eosinophil. We can see this
verified that once the model passes the boundary pixels of each
eosinophil, the uncertainty drops significantly and the interior of
the eosinophil is nearly black. This dramatic shift in values from
the outside of the eosinophil which is black, to the border of the
eosinophil which is white, to the interior of the eosinophil which
is black again creates these "rings" of white in the resulting image.
In areas where multiple eosinophils are clustered, the model seems
to struggle to differentiate between the eosinophils leading to a
"cloud" of high uncertainty around the area. However, we can see
that this output provides valuable information to pathologists as
the highlighting the general area of interest and reducing the visual
load compared to the original input on the far left.

4 ANALYSIS AND INTERPRETATION
For analysis, we plotted the Dice scores of all models in Figure 5.
The boxplots overlapped, which indicates the results from each
neural net are not statistically significantly better than others. This
is important because we can obtain uncertainty visualizations from
the MCD UNet, as shown in Figure 4, whereas UNet and ResNet50
do not allow for this. Monte Carlo Dropout allows us to visualize
the uncertainty through the dropout layers since it randomly turns
off neurons during training, which adds this stochastic element.

As the novel piece in this work, we compared the model’s un-
certainty first through an overview of the raw data and through a
boxplot for visualization. We can see that the uncertainty of almost
all model is comparatively similar with only the DenseNet having
an outlier uncertainty value of 0.05. Considering the significant
difference in the order of magnitude between the sizes of the mod-
els, the relative similarity in the uncertainty values demonstrate
that at least at a sufficient size, model uncertainty stays consistent
regardless of the size of the model chosen.
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Figure 5: Boxplots of Model Dice Scores

Model Size Median Min Max
MCD UNet 494K 0.007 0.004 0.016

UNet 494K 0.007 0.005 0.013
DenseNet 7.2M 0.009 0.006 0.05
ResNet 24M 0.008 0.005 0.01

Table 2: Model uncertainty

Figure 6: Boxplots of Model Uncertainty

5 CONCLUSION AND FUTURE DIRECTIONS
As stewards of patient data, researchers in medical image analysis
must ensure all models perform efficiently and accurately. This
work addresses both concerns demonstrating MCD UNet’s compa-
rable performance at an order of magnitude smaller than current
models and introducing model uncertainty as an evaluation met-
ric. All models in this work had comparable values in uncertainty
indicating that at least after a model reaches a certain size, the
aleatoric uncertainty will stay constant. We then illustrated the
model’s uncertainty through a visualization which highlighted the
eosinophils in the resulting image. Scaling this approach with un-
certainty to full size biopsy images can help pathologists quickly
identify eosinophils while also reducing the mental load. Compared

to a screen full of cells and color, the black and white "rings" circling
the eosinophils can at least narrow down eosinophil locations while
having the potential to count all eosinophils and output a mask
showing their exact locations. One of the most difficult parts of this
work was working with limited patient data which is a common
challenge in the field of medical image analysis. A potential im-
provement to this work would be to incorporate few-shot learning.
While our dataset exists in a high-dimensional space, we only have
a limited number of samples available to us due to the cumbersome
nature of acquiring annotated histology images. Few-shot learn-
ing has significantly improved classification accuracy in medical
imaging datasets [10] and likely would produce competitive results.
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