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ABSTRACT
Nowadays, thanks to the ever-increasing hardware capacity of Edge

computing, the achievement of Ubiquitous Computing is no longer

a utopia, even though it presents still several challenges. In this pa-

per, we introduce the concept of the Cloud-Edge-Client Continuum,

by extending the well-known Cloud-Edge Continuum paradigm

with the addition of Clients as deployment nodes. Specifically, we

propose both a system architecture and a piece of middleware that

allows a web browser to be used seamlessly as a deployment Client

node, introducing the concept of a Virtual Point of Deployment

(VPod). Our solution allows to: a) leverage the computational ca-

pacity of a huge number of ready-to-use devices that do not require

the installation of any dependencies; b) optimize the use of re-

sources with clear benefits for end users, who can take advantage

of their computing capacity to process sensitive data; c) reduce

infrastructure costs. In addition, our proposal opens toward a multi-

tude of scenarios, as the logical division that exists in the common

client-server architecture is overcome, enabling the creation of a

Cloud-Edge-Client Continuum environment.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Human-centered computing→ Ubiquitous and mo-
bile computing; • Computing methodologies→ Distributed
computing methodologies.
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WASM WebAssembly
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VPod(C) Client-side Virtual Pod
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HVPA Horizontal Virtual Pod Autoscaler

S-Connector Server Connector

C-Connector Client Connector

1 INTRODUCTION
Recently, the Cloud-Edge Computing paradigm has already become a tan-

gible practice for extending the Cloud capabilities to the Edge layer, thus

leveraging resources close to the data sources and end-users.

For the past decade, the trend of exponential growth in the number

and computational capacity of the Internet of Things (IoT), through smart

devices capable of communicating and exchanging data over the Internet,

has already become evident. In particular, the practice of managing the

interoperability of such devices, and their integration within applications,

has made use mainly of Web standards, eventually composing what is

known as the Web of Things (WoT) [26].

Nevertheless, despite the ever-growing computing power at the Edge

layer, the achievement of truly Ubiquitous Computing (or Pervasive Com-

puting) appears to be forthcoming but still hindered by several limitations
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[9], mainly due to heterogeneous hardware characteristics of devices, net-

work constraints, and issues in decentralized application management. In

addition, the ability to integrate Cloud and Edge efficiently, following the

paradigm of Continuum Computing, is to date one of the hottest topics

addressed in the literature. Indeed, there are several challenges still open

including granular IoT management, serverless computing, federated re-

source allocation and management, optimization of energy consumption,

and data locality [4].

In this context, we propose a new system architecture and a piece of

middleware able to extend the Cloud-Edge Continuum (see Figure 1) by

leveraging the web browser as a microservice deployment Client node. This

opens towards a multitude of scenarios with reference to each point high-

lighted above, as the logical division existing in the common client-server

architecture is overcome and a single Cloud-Edge-Client Continuum
environment (see Figure 2), in which application components can commu-

nicate directly and transparently as if they were all in the same network, is

created.

Figure 1: High-level representation of the Cloud-Edge Con-
tinuum composed of multiple nodes distributed between
Cloud and Edge.

Using this novel approach, applications composed of distributed mi-

croservices can benefit from several advantages and possibilities:

• optimization of resource usage: client devices have an increasing

computational capacity, which thus becomes possible to use dynam-

ically without affecting the application design logic (computation

offloading);

• cost reduction: the ability to use their own client resources can be

advantageous both for the end user and for the infrastructure costs

of the application;

• advantages in handling sensitive data: in some contexts, it may be

essential to elaborate or pre-process sensitive data directly on the

client, without it being transferred to the network;

• enable resource sharing: users can, through applications, make

available the computational capacity of their devices by natively

implementing Volunteer Computing logic;

• elimination of logical separation between client and server: as

already pointed out, the design and implementation of an application

can be carried out considering a single environment.

The aim of this paper is therefore to describe the system architecture

and a piece of middleware allowing to achieve the objectives of Cloud-Edge-

Client Continuum. The new concept of Virtual Point of deployment
(VPod) is also introduced, through which transparent management of de-

ployment and communication for client-side microservices is made possible.

An application use case is also presented which is useful for analyzing the

results obtained and highlighting strengths. The remainder of this paper is

organized as follows: Section 2 describes the state of the art with reference

to the Cloud-Edge Continuum and the computational possibilities inherent

in the topic discussed. In Section 3, we present the main concepts behind the

Cloud-Edge-Client Continuum, while Section 4 describes the implemented

middleware architecture that enables the achievement of the set goals. In

Figure 2: High-level representation of the Cloud-Edge-Client
Continuum composed of multiple nodes distributed between
Cloud, Edge, and Clients (leveraging web browsers). Compar-
ing the representation with Figure 1, we observe the exten-
sion of the Edge with the addition of Clients as microservices
deployment nodes

Section 5, we present experiments validating our solution. Conclusions and

future research directions are discussed in Section 6.

2 BACKGROUND AND RELATEDWORKS
Cloud-Edge Continuum [22] refers to a computing environment that seam-

lessly integrates and spans a spectrum of computing resources and ca-

pabilities, from Edge devices and Fog Computing at the network’s edge

to centralized Cloud data centres. The compute Continuum has already

demonstrated its effectiveness as a solution across various domains. For

example, in [3], the impact of the Continuumwas studied on a specific urban

mobility use case. The study focused on using geotagged data to predict

taxi passenger destinations, comparing Edge-Cloud Continuum, Edge-only,

and Cloud-only architectures. Results from experiments showed that the

Edge-Cloud Continuum with defined policies was superior to traditional

architectures in terms of processing time and resource utilization. In the

healthcare sector [12], the application of Cloud-Edge solutions is also prov-

ing to be a logical consequence of the rise of wearable IoT devices and sensor

technologies. Furthermore, applications with strong security constraints

can take advantage of decoupling Cloud and Edge [2]. For example, Feder-

ated Learning (FL), in which Edge clients perform training locally without

exposing sensitive data to Cloud nodes, greatly benefits from running in

the Continuum environment [10]. In addition, Homomorphic Encryption

[6] finds a natural application in Continuum, as encryption operations can

be performed in the Edge layer and transferred to the Cloud for storage and

processing without decryption.

However, the compute Continuum presents a number of challenges that

still need to be solved. The problem of offloading has been investigated by

several proposals. For example, in [24], special attention is paid to deter-

mining when to perform offloading in Big Data analytic applications. The

authors demonstrated that significant reductions in total task completion

time can be realized through the strategic utilization of migration practices,

shifting computational workloads from edge nodes to Cloud-based com-

puting resources. Differently, the authors of [5], argue that a shift from

the Cloud-Edge Computing Continuum paradigm to the Edge-Edge one

would enhance the deployment of Artificial Intelligence (AI) at the edge

of the network, by exploiting energy consumption forecasting. Especially

in Mobile Edge Computing (MEC), the problem of offloading through the

Continuum presents several issues [11]. Indeed, when Edge servers have

limited resources, the problem of reducing the total task execution time is

non-trivial due to the time dependency among different tasks. Moreover,

in a heterogeneous computing environment, the selection of appropriate

Edge servers for task assignment can become a complex problem, especially

when dealing with tasks that have specific computational constraints, such

as those of Augmented Reality (AR) or AI applications.
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Another significant challenge is related to service portability, as the Con-

tinuum, by definition, is composed of heterogeneous systems. The Web of

Things (WoT) [1] concept partially addresses this problem, as it aims to im-

prove interoperability among Internet of Things (IoT) devices by leveraging

Web protocols. However, it also introduces additional problems, particularly

in the areas of security and smart object discovery. The new solutions are

based on the use of WebAssembly (WASM) [15], an innovative technology

that has transformed the Web development landscape. WASM is a binary

instruction format tailored to facilitate high-speed execution of code within

web browsers. It provides a versatile, secure, and resource-efficient mecha-

nism for executing applications developed in languages such as C, C++, and

Rust directly within web browsers, along with JavaScript. This technology

serves as a unifying execution environment for Web applications, breaking

down traditional divisions between various programming languages. A

number of studies have scrutinized the performance disparities between

WASM and JavaScript, revealing that WASM excels over JavaScript in mul-

tiple aspects and across most tasks [7, 25]. This research has transcended

the realm of client-side applications, leading to innovative propositions of

WASM as standalone runtimes. For instance, WasmEdge
1
, a lightweight,

high-performance WASM runtime tailored for Cloud-native, Edge, and

decentralized applications, has fostered investigations into WASM’s appli-

cability as a containerization technology [13, 23]. This exploration even

extends to well-known platforms like Docker
2
, which introduced a techni-

cal preview founded on the WASM runtime
3
. The findings of these efforts

are promising and show a significant reduction in cold-start times and a

decrease in container image sizes.

Research on the compute Continuum is evolving rapidly, outlining pos-

sible strategies to solve current challenges. However, the most intricate

challenge concerns the expansion of the Continuum itself into a new con-

figuration that can effectively address the problems of heterogeneity and

resource allocation, particularly in the context of data-intensive tasks. For

example, in [18] various difficulties associated with the integration of non-

Von Neumann architectures (e.g., quantum or neuromorphic computers)

across the Continuum are outlined. The authors motivate this scenario by

emphasizing the large computational capacity of non-von Neuman archi-

tectures. However, they also note that the inherent diversity among these

systems could exacerbate the distribution of workloads throughout the

Continuum, especially if a solution for ensuring portability is not in place.

In the current context, several solutions identify ad hoc Kubernetes
4

extensions to facilitate orchestration across the Continuum. An example

of this is presented in [14], where FLEDGE is introduced as a low-level

container orchestrator designed to seamlessly connect with Kubernetes

clusters. This solution concerns the minimization of the overhead added by

Kubelet on low-resource Edge devices. Specifically, the authors exploit the

concept of Virtual Kubelet, a transparent implementation of Kubelet that

acts as a proxy between Kubernetes and the FLEDGE agent, which handles

typical operations of a container orchestrator, such as network management

and cgroups. Conversely, the authors of [16] argue that the evolution of

the Cloud-Edge Continuum is likely to be a paradigm shift toward Liquid
Computing, a new paradigm for a transparent Continuum of computational

resources over fragmented infrastructure, characterized by a decentralized,

dynamic and intent-driven approach. They also present liqo
5
, an open-

source project that realizes this vision by abstracting dynamic Kubernetes

multi-cluster topologies. Experimental results demonstrate the effectiveness

of liqo with minimal overhead compared to vanilla Kubernetes and better

performance than existing open-source solutions. Again, WASM represents

a transitional technology at this stage of the Continuum progression. In

1
https://wasmedge.org/

2
https://www.docker.com/

3
https://www.docker.com/blog/announcing-dockerwasm-technical-preview-2/

4
https://kubernetes.io/

5
https://liqo.io/

fact, the authors in [21], envision an interoperable, scalable, and distributed

Cloud-Edge Continuum that allows developers to focus on business value

rather than infrastructure complexities by leveraging WebAssembly. As a

practical demonstration, the authors demonstrate the feasibility of WASM

on Continuum by running tests on different architectures, i.e. X86 and

Arm, showing acceptable run-time overhead. WASM-based solutions, on

the other hand, favor the development of runtime implementations aimed

at strengthening the serverless paradigm, as seen in studies such as [17]

and [20]. These efforts are driven by the desire to improve portability and

performance in serverless computing environments.

Although the future directions of the Continuum are promising and in-

clude several aspects of future scenarios, only a few proposals have focused

on the inclusion of the web browser via WASM within the Continuum as an

additional computational resource. In [19], the Continuum is represented

as the ideal environment for Browser-Based Volunteer Computing (BBVC),

using WASM to solve the portability problem and MapReduce [8] for task

distribution. The results show how the use of different browsers in dis-

tributed computing can greatly contribute to reducing the computation

time of computationally intensive tasks.

3 CLOUD-EDGE-CLIENT CONTINUUM
In the modern concept of Edge Computing, it is common to include also

devices directly used by the user, such as laptops and smartphones. How-

ever, with the term Cloud-Edge-Client, we want to emphasize that the

device added to the classical Cloud-Edge computation environment is a

mere web client, which becomes part of the Continuum and erases the

logical separation of client-server applications, partly losing some of its

characteristic of client and creating a unique distributed computational

environment. To facilitate the description, therefore, with Cloud-Edge we

will refer to the server side, while the client will also be referred to as a

synonym of the web browser.

Adding a client device to the Continuum means, first of all, offering the

possibility of enlarging the management of heterogeneity and the dynamism

of computational resources on such devices, making sure that the developer

of a distributed application does not have to be concerned about how and

where the application components will be executed, neither from the point

of view of their deployment nor of their communication. The execution

location of a process within the Continuum must therefore be totally trans-

parent to the application logic and managed in an infrastructure-aware and

autonomous manner.

To achieve these goals, without installing architectural components

within clients so that we can span a huge amount of ready-to-use devices,
we argue that choosing to use a web browser as the execution environment

is the optimal solution, ideally supplying an impressive additional computa-

tional capacity. Furthermore, since to date most of the applications deployed

on the Continuum are managed through Kubernetes orchestration, our
vision is to make use of its features and policies and also to enable the

expansion of architectures that already use it.

3.1 Microservices Deployment Within Web
Browsers

A microservice can be defined as a software component of a modular ar-

chitecture that specializes in a domain-specific function of an application.

Its main characteristics, in this context, include autonomy from other mi-

croservices, isolation from the surrounding environment, communication

interface via API (e.g., RESTful), and scalability. To have these features, it is

common to implement and deploy a microservice within a container, which

is managed through orchestration tools such as Kubernetes.

To deploy a microservice inside a web browser, it therefore becomes

essential to comply with these characteristics. This can be achieved simply

by combining the features and standards that modern browsers provide.

https://wasmedge.org/
https://www.docker.com/
https://www.docker.com/blog/announcing-dockerwasm-technical-preview-2/
https://kubernetes.io/
https://liqo.io/
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3.1.1 Web Workers.
Isolation, autonomy, and a container-like environment within the web

browser can be obtained with theWebWorker technology. A Web Worker,

indeed, executes its code in a separate thread, thus performing tasks in

parallel and in the background without affecting the responsiveness of the

Web application user interface. They are also natively isolated, as they have

their own separate execution context and do not share memory with the

main thread or other Web Workers. This is a significant strength both in

terms of performance since multiple instances of the same Web Worker can

be launched, and in terms of security.

The execution code, requested as input when creating theWebWorker, is

a simple Javascript code. Depending on the microservice we want to execute,

we can use the appropriate launcher, which has several possibilities based

on the language in which our microservice is implemented:

• Javascript, dynamically importing the code as a module;

• WebAssembly, natively supported by modern web browsers and

obtainable by compiling different programming languages, such as

C, C++, Rust, Golang, AssemblyScript, and others;

• Python, taking advantage of libraries such as Pyodide
6
.

In particular, the use ofWASM proves to be especially suitable in our case,

not only because of its performance but also for the possibility of running

the same code as the microservices executing on the server side, which, with

proper care, can often be entirely or almost entirely reused. Of course, it is

necessary to keep in mind what the restrictions of the browser environment

are, for example in relation to direct system calls and filesystem access, as

well as memory limitations. On these aspects, it is the responsibility of the

application developer to find the most appropriate solution.

3.1.2 Communication Via API.
As pointed out in Section 3.1, one of the main aspects of microservices is

their ability to communicate by exposing the Application Program Interfaces

(APIs). WebWorkers are an isolated execution environment that allows only

asynchronous communication based on message exchange. At the same

time, technologies such as WASM that run in sandboxes, add an additional

layer of isolation that must be managed:

• for the outgoing communication, the Web Worker is free to use

the APIs made available by other microservices, for example by

making HTTP calls;

• for the incoming communication, on the other hand, the solution

is to define a standard of communication, in which the running

process of the microservice exposes methods to the Web Worker

that are mapped based on the structure of the received message.

Considering the structure of a RESTful call, by convention, we use

the first segment of the HTTP request path as the name of the

exposed function to be called; any other segments, query parameters,

body and headers instead become input parameters of the function

itself.

3.2 Virtual Pod
Having defined the methodology for deploying a microservice within the

web browser, one of the main aspects, in order to comply with compute

Continuum principles, is to allow the other microservices in the cluster

to interact with it transparently, without any difference from the same

microservice deployed server-side across the Cloud-Edge environment. In a

Kubernetes cluster, for example, setting up a service allows pods to commu-

nicate with each other using just the service name, leaving Kubernetes to

handle the microservice address resolution and abstracting its deployment

location. To this end, we introduce one of the main components of our

architecture, the Virtual Pod (VPod).

6
https://pyodide.org

From the point of view of Kubernetes and the microservices that make

up the cluster of a distributed application, a VPod is a common fully-fledged

Pod, which can be contacted through the definition of a service exploit-

ing the Kubernetes DNS and whose lifecycle can be managed entirely by

Kubernetes.

A VPod is thus an object deployed on the server in the Cloud-Edge,

whose role, within the cluster, is to represent the microservice deployed

on the client, in our case inside the browser in the form of a Web Worker.

Therefore, we can affirm that each microservice on the client uniquely

corresponds to a VPod. It is important to underline that the same concept of

VPod is not limited to just the browser, but can be extended to other types

of clients or nodes that cannot be managed directly through Kubernetes.

With the definition of VPod, we used the verb to represent because, in
reality, the VPod does not execute the code of the microservice with which

it is associated, but rather it trivially acts as a reverse proxy, handling

communications in both directions, from the cluster to the microservice

in the client and vice versa. All the computation takes place within the

client and the VPod only handles the communication, acting as a bridge.

Consequently, as shown in Figure 3, this allows the following two flows to

be handled appropriately:

• a microservice in the cluster that wants to interact with the mi-

croservice deployed on the client can simply interface with the

VPod, from which it will also receive the response. In fact, it will be

the latter, acting as a reverse proxy, that will turn the request to the

microservice on the client, wait for the response, and deliver it to

the requestor, thus making the integration flow totally transparent

for the microservice in the cluster;

• the microservice on the client that wants to contact a microservice

on the cluster, on the other hand, interfaces with its VPod, which

again takes over the request, interacts with the microservice, and

returns the response to the requester. Again, for the microservice in

the cluster, the client layer is transparent, as its view is simply that

of a request coming from a pod in the cluster, i.e., the representative

VPod.

Figure 3: Example of a cluster composed of Pods and Virtual
Pods, which represent the computational entities located in
the clients and act as a bridge in managing communication.

Since from the cluster point of view, VPod and its corresponding mi-

croservice run within the client are the same entity, from now on, by the

term VPod we will refer not only to the component inside the cluster but

also to the associated microservice initiated in the web browser. When it

is necessary to distinguish, we will instead use the terminology VPod(C)

to refer to the microservice on the client, and VPod(S) for its server-side

counterpart.

3.3 Client and Cluster Space Sessions
Considering the web browser used as a deployment location, one of the key

aspects to consider is the need for the user to have the web page from which

https://pyodide.org
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they access the application open so that they can make resources available

and become part of the Continuum. This means that both the underlying

architecture and the overlying application must be able to dynamically

handle the presence and absence of a client node.

Furthermore, as the web browser is closely tied to the user, we can con-

sequently introduce the concept of session, which also becomes important

with regard to the intentions of the client user who makes his or her re-

sources available and the possible contribution s/he wants to make within

the cluster. We then define two types of client nodes, supported by the

proposed architecture, that can be managed throughout the application:

• user session space node: the browser hosts only VPods that are

related and useful to its session in relation to the application pur-

poses;

• cluster space node: the browser becomes effectively a cluster node

and hosts VPods also related to other users’ sessions, based on

policies defined at the application level, thus creating a form of

Volunteer Computing.

3.4 Enabling Virtual Pods
As mentioned in Section 3.1.1, Web Workers are the solution for the deploy-

ment of microservices within the browser, and having overcome the obstacle

of infrastructural transparency in communication through the introduction

of VPods, it is now necessary to manage and make these components inter-

operable by introducing new architectural elements, which are also capable

of automatically handling the session concept.

VPods(S), in fact, need to interact with their counterpart VPod(C) and

must be started or removed automatically based on both the needs of the

running application and the user’s connection and disconnection from the

session. In addition, it is desired to avoid publicly exposing their interface on

the Internet, making it preferable to create a single communication channel

between the client and the server.

For this reason, two connectors are introduced at the architectural level,

representing the entry points to the bridge that connects the two faces of

VPods, thus having the task of unifying the client-server environment and

managing the different user sessions based on their own responsibilities.

Similarly, VPods’ lifecycle management needs to be automated, and in

this case, we leverage Kubernetes capabilities, with the aim of complying

with application policies and keeping the state of the two VPod faces aligned.

All these aspects will be described in detail in the next section.

4 MIDDLEWARE ARCHITECTURE
This Section describes the system architecture of the middleware imple-

mented to enable the management of the Cloud-Edge-Client Continuum

environment. The components that make up the basic architecture, through

which generic distributed applications can be managed, are first shown and

analyzed individually below, and then as a whole.

4.1 Server-side components
The Cloud-Edge environment consists of a cluster orchestrated by Ku-

bernetes, composed of the middleware and the software application. The

middleware components mainly have two tasks: to handle the user session

and to manage the lifecycle and communication of VPods.

4.1.1 Kubelet.
Kubelet is described as the “node agent” in a Kubernetes cluster. Its role is to
act as the bridge between the control plane, which includes the Kubernetes

API server, and the worker nodes. For this reason, each worker node in the

cluster runs a Kubelet instance.

At its core, Kubelet is responsible for ensuring that containers and pods

are running correctly on its assigned node. It receives pod definitions from

the Kubernetes API server, often referred to as PodSpecs. These manifest

files define the desired state of pods, including which container images

should run, their resource specifications, and other configurations. How-

ever, Kubelet does not handle containers not instantiated by Kubernetes,

including our client-side pod representation as VPod(C). To tackle this

problem, we designed and developed the ad hoc components described

below.

4.1.2 HVPA.
The Horizontal Virtual Pod Autoscaler (HVPA) is a component, devel-

oped in Golang, that carries an associated Service Account which includes

the Kubernetes role that authorizes it to use the Kubelet API, in order to

create or delete VPods. The list of available VPods can be defined using a

YAML configuration file, which contains each VPod manifest related to

the application. To be more specific, the following aspects are required:

• information needed by Kubelet for the deployment of VPods;

• deployment policies: a VPod can be deployed at user session initial-

ization or based on application logic or events;

• the reference to the microservice code for browser execution with

the information about the respective technology (e.g. WASM-GO,

WASM-Rust, Python, Javascript, etc.).

To distinguish VPods of different user sessions, a prefix containing the

ID associated with the session itself is used. Moreover, in creating VPods,

appropriate namespaces are defined to implement the user session space and
cluster space logics.

4.1.3 S-Connector.
The Server-Connector (S-Connector) is one of the two components that

connects the Client with the Cloud-Edge environment. The communication

channel is instantiated using WebSockets, so that there is always an active

two-way communication channel.

The first role of the S-Connector is to remain listening to establish connec-

tions with clients, thereby instantiating and maintaining the user sessions.

A secondary WebSocket channel, on the other hand, is kept active with the

HVPA, which is notified of the creation or termination of sessions and any

application demand for VPod deployment. When HVPA deploys or removes

a VPod(S), the S-Connector sends a message to the client containing all the

information useful for starting the VPod(C) process within the browser.

Last but not least, the S-Connector is responsible for acting as a bridge

to enable VPods’ communications:

• an outgoing communication request from the VPod(C) is received

as a message from the WebSocket channel, converted into an HTTP

request and sent toward the cluster through VPod(S);

• for in-cluster Pod requests to a VPod(S) on the browser, S-Connector

receives the request, converts it into a message, and forwards it into

the WebSocket channel.

The S-Connector component is also developed in Golang and scales

horizontally based on the number of sessions to be handled.

4.2 Browser components
On the browser, the middleware is activated simply by importing the C-

Connector library, creating its class instance, and calling its init method,

which takes as input the WebSocket address on which S-Connector is lis-

tening, as shown in Listing 1.

1 const c_Connector = new C_Connector ();

2 c_Connector.init(serverURL);

Listing 1: Initialization of C-Connector component

4.2.1 C-Connector.
The Client-Connector (C-Connector) is the other side of the bridge con-

necting the Client with the Cloud-Edge environment. The component is

developed in Typescript and has the following tasks:

• to start the session with the S-Connector, which returns to it a Ses-

sionID to be used for requests;
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Figure 4: Overall middleware architecture with an example of a generic application consisting of two Pods and two VPods.

• to manage the lifecycle of VPods(C) based on the deployment

messages sent by S-Connector. The VPod(C) is launched based on

the technology used, using the correct WebWorker launcher;

• to manage communications in and out of VPods(C). In particular,

a standard structure is used to encode requests, which is represented

by a Javascript object having the structure shows shown below in

Listing 2:

1 type DataMessage = {

2 reqType: "httpIn" | "httpInResponse" | "httpOut"

| "httpOutResponse";

3 message: {

4 sender: string;
5 destination: string;
6 path: string;
7 sessionId: string;
8 requestId: string;
9 data: any;
10 headers: any;
11 params: any;
12 };

13 };

Listing 2: Communication message structure

An additional consideration is needed for communication management.

In fact, as pointed out in Section 3.1.2, while for incoming communication

any functions exposed by the VPod(C) can be invoked by the C-Connector

based on messages received, for outgoing communication, on the other

hand, the VPod(C) is free to make requests to the Internet. It is easy to

see, however, that the services associated with VPod(S) and Pod are not

reachable outside the network managed by Kubernetes. To overcome this

boundary, C-Connector takes care of automatically intercepting all fetches

directed toward one of the Pods or VPods in the cluster, keeps the request on

standby using a promise, and asynchronously forwards a message toward

C-Connector to reach the destination Pod or VPod. A RequestID is also

assigned to each request, so when the C-Connector receives the response, it

resolves the promise by providing the response to the requesting VPod(C),

closing the loop. In this way, the VPod(C) can make classic HTTP requests

even internal to the cluster, since the subsequent handling of the request

is totally up to the middleware. It is also noted that, in case the request is

directed to another VPod started in the same session, a shortcut is used that

does not involve server-side interactions.

4.3 Overall Architecture
Figure 4 shows the complete composition of the middleware providing an

example of a generic application deployed, and highlights the interaction

between the components.

4.3.1 VPod Deployment.
The deployment flow of a VPod, which is shown in Figure 5, can be summa-

rized in the following steps:

(1) when the user accesses the Web page, S-Connector takes care of

initializing a new user session;

(2) HPVA gets notified by S-Connector about the existence of the just

newly created user session;

(3) HPVA reads the configuration of VPods and contacts Kubelet to

deploy VPods(S);

(4) HPVA sends a notification to S-Connector for each VPod started;

(5) S-Connector forwards the message to C-Connector;

(6) C-Connector starts a new Web Worker for VPod(S).

Figure 5: VPod deployment steps

4.3.2 Communications handling.
One of the key aspects of the proposed middleware is communication. The

two flows related to incoming and outgoing requests with respect to VPod

are described below:

• VPod to Pod (outgoing request, Figure 6):

(1) VPod(C)-i makes an HTTP request to Pod-j;

(2) C-Connector intercepts the request, creates a pending promise

and associates it with a RequestID, encodes the request into a

message, and forwards it to S-Connector through the WebSocket

channel;

(3) S-Connector receives the message and makes an HTTP call to

VPod(S)-i;
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(4) VPod(S)-i acts as a reverse proxy and turns the request back to

the recipient, Pod-j;

(5) Pod-j processes the request, which from its perspective comes

from VPod(S)-i, and replies;

(6) VPod(S)-i receives the response and forwards it to S-Connector;

(7) S-Connector encodes the response into a message and forwards

it to C-Connector;

(8) C-Connector receives the message and resolves the promise asso-

ciated with RequestID;

(9) VPod(C) receives the response to its HTTP call.

Figure 6: Outgoing request diagram: from VPod to Pod

• Pod to VPod (incoming request, see Figure 7):

(1) Pod-j makes an HTTP request toward VPod(S)-i;

(2) VPod(S)-i acts as a reverse proxy and turns the request toward S-

Connector, inserting the X-Sender and the X-Destination headers;

(3) S-Connector receives the request, assigns it a RequestID, converts

it into a message addressed to X-Destination (VPod(C)-i), and

sends it into theWebSocket channel associatedwith the SessionID,

leaving the HTTP request momentarily unresolved;

(4) C-Connector reads the message and encodes it into a call to a

function exposed by VPod(C)-i;

(5) VPod(C)-i processes the request and provides the response;

(6) C-Connector creates the response message and forwards it to

S-Connector;

(7) S-Connector receives the response and resolves the request asso-

ciated with the RequestID;

(8) VPod(S)-i gets the response and forwards it to Pod-j;

(9) Pod-j receives the response.

5 EXPERIMENTS AND RESULTS
In this Section, we validate the functionality and effectiveness of the imple-

mented solution by conducting specific analyses and providing an example

use case. We conducted several tests using the following hardware, over a

LAN network:

• a virtual machine for server-side middleware deployment:

– OS: Debian 12;

– CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz x4;
– RAM: 16GB.

• a laptop as a client for browser usage:

Figure 7: Incoming request diagram: from Pod to VPod

– OS: Ubuntu 22.04.2 LTS or Windows 11 (dual boot);

– CPU: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz x4;
– RAM: 16GB.

• a smartphone as a client for browser usage:

– Model: Realme GT Master Edition (RMX3363);
– Android version: 12;
– CPU: Qualcomm Snapdragon 778G Octa-core 2.40GHz;
– RAM: 6GB.

5.1 VPod deployment analysis
The first metric we analyze concerns the deployment time of a VPod. In this

case, the test microservice was a classic HelloWorld, developed in Golang

and compiled inWASM. The time measured is from the S-Connector request

to deploy the VPod until the process starts.

As shown in Figure 8, the tests were carried out comparing the perfor-

mance of different browsers in two different operating systems, Linux and

Windows. In Figure 9, we can observe that most of the time is spent starting

VPod(S), which we recall is a real Pod run by Kubernetes. In contrast, the

overhead introduced by the Virtual Pod concept is around 25%, netting out

any network latency which in this case, being in a local environment, is

minimized. We also note that Firefox excels at handling WebWorkers and

starting the WASM process.

5.2 Illustrative use case
The distributed application implemented as a use case is intended to high-

light mainly two aspects:

• the possibility of offloading resources by exploiting the browser;

• the ability to process sensitive data directly client-side, without

affecting the logic of the frontend interface.

The application consists of static analysis on a synthetic dataset rep-

resenting people’s income and consisting of 500,000 records. Specifically,

the dataset is composed of the following fields: first name, last name, age,

region, credit card, and income.

The computational task is based on an asynchronous workflow that

follows a master-slave approach. The operation is managed through the

following microservices:

• anonymizer: deployed on the client, it takes care of anonymizing

sensitive data;

• master: gets the anonymized data as input and divides it among

4 workers. As the workers perform the analysis, it aggregates the

results;



BDCAT ’23, December 4–7, 2023, Taormina (Messina), Italy Colosi et al.

Figure 8: Analysis of deployment time of a VPod in different
browsers considering heterogeneous devices

Figure 9: Detailed analysis of the individual steps of the de-
ployment time of a VPod considering different browsers on
a Windows laptop

• worker: four replicas, each of which receives a portion of data to

process, splits it into chunks that it processes and sends individually

to the master.

5.2.1 Application behaviour.
Considering the dataset data, we performed tests using the laptop computer

with the Linux operating system as the client with different configurations

and increased the portion of the dataset provided. Specifically, we kept the

anonymizer and master microservices on the browser, while we evaluated

the offloading possibilities of the workers in the following cases:

• 4 VPods: all the workers’ computation is on the client side.

• 1 Pods and 3 VPod: 25% of workers computation is on the client side;

• 2 Pods and 2 VPods: computation is equally distributed between the

client side and the server side;

• 3 Pods and 1 VPod: 25% of workers computation is on the server

side;

• 4 Pods: all the workers’ computation is on the server side.

It should be noted that the anonymizer and master microservices could

also be moved to the server side, but were kept on the client by choice,

thus highlighting the possibility of exclusively giving the user control over

potentially sensitive data. We recall that on the client we are using resources

that for the application infrastructure are nearly zero cost, especially when

automating the required computational capacity. We also emphasize that

leaving the computation on the client, avoiding data transmission over the

network, avoids any network latency overhead that is minimized in this

case.

As the results in Figure 10 show, although it appears that Pods perform

slightly better than VPods, the final results are highly comparable in all

Figure 10: Analysis of the execution time of the use case
on different workers’ configurations varying the size of the
given dataset.

configurations and the best results are obtained when the computation is

equally distributed between Pods and VPods. From Figure 11 on the other

hand, considering the processing of the larger dataset size, we can see that

most of the time is spent on average in the anonymization phase. This can

be justified by the fact that this operation was not parallelized and therefore

the only VPod on the browser has to preprocess the entire dataset.

Figure 11: Analysis in percentages of the average division
of labour in terms of time spent with a dataset of 500,000
records. The computation of the four workers is considered
as a whole

In fact, analyzing the workflow performance in more detail in Figure 12,

we note that in addition to the preprocessing phase spent by the anonymizer,

much of the time is spent on the data transfer phase from the Web Worker

anonymizer to the Web Worker master. This in fact involves the encoding

and decoding of the entire provided dataset that has to be transferred

between Web Workers up to the WASM process.

6 CONCLUSIONS AND FUTUREWORKS
The designed architecture and implemented middleware allow deploying a

distributed application via Kubernetes on client nodes within the Contin-

uum, leveraging the web browser, without adding any complexity to the

release process and without affecting the application logic.

Implementation and testing highlighted the effectiveness of the solution,

with prospects for promising future developments. The elimination of the

logical separation between client and server represents a focal point for the

possible design of future distributed applications, as it allows the developer

not to have to worry about the diversity of the two entities. The introduced

concept of Virtual Pods, moreover, can also be applied in other contexts in

which a device is to be integrated within the Continuum.
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Figure 12: Detailed analysis on workflow’s steps of execution
time considering the dataset of 500,000 records.

There are plenty of future scenarios that we can analyze and that it will

be our interest to investigate:

• the possibility of including mobile applications, in addition to web

browsers, to integrate smartphones into pervasive experiences;

• enhancing security, a topic that was deliberately kept out of the

scope of the paper, but which is vital for a real application of the

solution;

• analyze system performance in more detail, comparing different

devices and different programming languages for microservices

deployed on the browser;

• apply the concept in real applications that effectively exploit the

possibility of having microservices deployed on the client;

• exploit the scenarios opened up by the logical elimination between

client and server.

In essence, the new Cloud-Edge-Client Continuum concept we proposed

paves the way for future Pervasive Computing scenarios, giving users full

control over the management of their data and resources.
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