
Robust Training of Temporal GNNs using Nearest Neighbours
based Hard Negatives

Shubham Gupta
Indian Institute of Technology, Delhi

New Delhi, India
shubham.gupta@cse.iitd.ac.in

Srikanta Bedathur
Indian Institute of Technology, Delhi

New Delhi, India
srikanta@cse.iitd.ac.in

ABSTRACT

Temporal graph neural networks Tgnn have exhibited state-of-
art performance in future-link prediction tasks. Training of these
TGNNs is enumerated by uniform random sampling based unsu-
pervised loss. During training, in the context of a positive example,
the loss is computed over uninformative negatives, which intro-
duces redundancy and sub-optimal performance. In this paper, we
propose modified unsupervised learning of Tgnn, by replacing
the uniform negative sampling with importance-based negative
sampling. We theoretically motivate and define the dynamically
computed distribution for a sampling of negative examples. Finally,
using empirical evaluations over three real-world datasets, we show
that Tgnn trained using loss based on proposed negative sampling
provides consistent superior performance.

CCS CONCEPTS

• Computing methodologies→ Unsupervised learning; • In-
formation systems→ Information retrieval.

KEYWORDS

Graph machine learning, Continuous-time temporal graphs, Tem-
poral graph neural networks, Link prediction, Unsupervised loss,
Importance sampling.
ACM Reference Format:

Shubham Gupta and Srikanta Bedathur. 2024. Robust Training of Tempo-
ral GNNs using Nearest Neighbours based Hard Negatives. In 7th Joint

International Conference on Data Science & Management of Data (11th ACM

IKDD CODS and 29th COMAD) (CODS-COMAD 2024), January 4–7, 2024,

Bangalore, India. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3632410.3632464

1 INTRODUCTION AND RELATEDWORKS

Interactions between entities are common in domains such as e-
commerce [28], finance [23], and online forums(communities) [22].
Precise modeling of the future preferences of entities in such graphs
has many applications e.g. recommendations, anomaly detection,
clustering, influence maximization, etc. These preferences are dy-
namic, i.e., influenced by the past interactions of the target entity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODS-COMAD 2024, January 4–7, 2024, Bangalore, India

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1634-8/24/01
https://doi.org/10.1145/3632410.3632464

and its neighborhood’s behavior. Thus, learning user biases re-
quires an efficient representation to encode structural and temporal
information provided in the interaction graph.

Temporal Graph Neural Networks (Tgnn) [7, 9–11, 26, 27, 29, 34–
37, 41, 44, 49, 50, 55] have been proven very successful to encode
the future biases of entities by effective sharing of trainable filters
across temporal neighborhoods of nodes in a temporal graph. This
encoded information, a low dimensional representation of each
node, jointly models the structural and temporal characteristics
and is effective in downstream tasks such as dynamic node classifi-
cation and future link prediction. Tgnn are trained using stochastic
gradient descent on unsupervised loss computed over past inter-
actions. The following negative sampling-based unsupervised loss
[12] is the common choice for training parameters of Graph Neural
Networks(GNNs).

L𝑣 = − log𝜎 (h𝑇𝑣 h𝑢) − QE𝑣𝑛∼𝑃𝑛 log𝜎 (−h𝑇𝑣𝑛h𝑣) (1)

where 𝑢 is a neighbor of node 𝑣 , Q is a hyper-parameter which
denotes the no. of negative nodes to be sampled, and 𝑃𝑛 is a noise
distribution over nodes assumed to be uniform1 and independent
of target node 𝑣 . h𝑣 is the learned representation of node 𝑣 . Eq. 1 is
modified for Tgnn as follows.

L(𝑢, 𝑣, 𝑡) = − log𝜎 (h𝑇𝑣 (𝑡−)h𝑢 (𝑡−))

− QE𝑣𝑛∼𝑃𝑛 log𝜎 (−h𝑇𝑣𝑛 (𝑡
−)h𝑣 (𝑡−)) (2)

where loss is computed for every interaction (𝑢,𝑣) at time 𝑡 .
h𝑣 (𝑡−) is a low dimensional representation estimated using node
𝑣 ’s interactions before time 𝑡 . This representation encodes the future
preferences of node 𝑣 at time 𝑡 and is utilized in downstream tasks
such as recommendations and classifications. In practice, Tgnn
assumes Q = 1 and approximates eq. 2 as follows.

L(𝑢, 𝑣, 𝑡) = L(𝑢, 𝑣, 𝑣−, 𝑡) = − log𝜎 (h𝑇𝑣 (𝑡)h𝑢 (𝑡))

− log𝜎 (−h𝑇𝑣− (𝑡)h𝑣 (𝑡)) (3)

where 𝑣− ∼ 𝑝− , 𝑝− is uniform distribution over nodes.
Tgnn trained using eq. 3 are sub-optimal for downstream tasks

due to the use of uniform random sampling distribution 𝑝− yielding
the following problems.

• Inadequate differentiation betweenpast and future neigh-

bour nodes: Nodes in static graphs have multiple neighbors. Thus,
embeddings learned using equation 1 are optimal since they assign
similar embeddings to nearby nodes. On the contrary, in a con-
tinuous time interaction graph, every node (source) can interact

1This assumption is specific to GNN and Tgnn methods.

ar
X

iv
:2

40
2.

09
23

9v
1

 [
cs

.L
G

]
 1

4
Fe

b
20

24

https://doi.org/10.1145/3632410.3632464
https://doi.org/10.1145/3632410.3632464
https://doi.org/10.1145/3632410.3632464

CODS-COMAD 2024, January 4–7, 2024, Bangalore, India Gupta, et al.

with only one other node (target) at any given time. This is a more
challenging task and is not incorporated into the loss. Thus, learned
embeddings don’t produce sufficiently different representations of
past neighbors and future neighbors of a given source node. We
also observe this in figure 1, where we plot the 2D T-SNE [38] rep-
resentations of all nodes at various timestamps after training the
Tgnn [34] on the Wikipedia dataset [24]. Each timestamp corre-
sponds to an interaction between a sampled source node and its
target node. We distinctly see that the learned embeddings reflect
past neighbors nearer to the source node instead of the target node,
highlighting the stated problem.
• Similar temporal neighbors Tgnn requires node features

as input. And as many nodes consist of similar features with simi-
lar temporal neighbors, learned embeddings may not differentiate
enough between such nodes. This can be visualized in figure 1
where many nodes are between source and target nodes. These
issues become severe in recommendation tasks where precision in
top-ranked results is desirable.

While we discuss these 2 as possible problems, we postulate there
can be more causes for the sub-optimal embedding distribution in
figure 1. Thus, the ideal solution lies in designing the negative
sampling distribution 𝑝− in a way making no assumption about
the biases in the data.

1.1 Existing Works

The selection of negatives during training has not drawn any at-
tention in Tgnn, though it has been extensively studied in vision

and natural language processing. Specifically, It has been observed
that uniformly sampled random negative examples (texts/images)
are too far from the source(query/anchor) and target(positive) rep-
resentations making their contribution negligible in loss computa-
tion during training. Therefore, modification of random negative
samples within unsupervised learning has been shown in infor-
mation retrieval [14, 19, 25, 31, 32, 43, 48] and image classification
[4, 13, 18, 33] methods. A whole other body of research is on con-
trastive learningmethods for unsupervised training. These methods
avoid the cost of labeling large-scale datasets and typically generate
pseudo-labels by augmenting/modifying the source and target ex-
amples. This is not the focus of our work, and we direct interested
readers to a literature survey [16].

1.1.1 NLP. The methods in this domain propose replacing random
negative examples with hard negatives. Commonly, the negative
data point is sampled from a distribution dependent on the query.
[19] uses negative from TF-IDF based BM25 text retriever to train
the query and passages dual encoders. In contrast, [43] computes
the closest example from the query using cosine similarity of rep-
resentations learned during training and uses it as a hard negative.
[31, 32] observes that hard negatives samples are often correct
paragraphs not labeled as positive by annotators. They propose to
de-noise the hard negatives using a strong cross-encoder teacher
model.

1.1.2 Vision. [33] proposes using negative samples labeled differ-
ently from source images and closest to it in the embedding space.
[18] designs the negative examples by combining the embeddings
of hard negative examples. [4] proposed a de-biased method for

sampling hard-negatives by correcting for the possibility of sam-
pling from the same label as the source example in a set-up where
labels of examples are unknown. [13] instead replaces the hard
negatives with adversarial examples learned during the training.

1.1.3 Graphs. Hard random negatives are relatively unexplored in
graph neural networks, specifically in temporal graphs neural net-
works. For unsupervised static graph representation learning, [52]
has proposed personalized page-rank [17] based hard-negatives by
computing page rank scores of each node from the source node
and picking the top-k nodes with the highest scores. [47] devel-
ops a Graph Neural Network for a large-scale recommendation
system and remarks that during training model will easily distin-
guish negative nodes randomly sampled out of billion nodes from
few relevant nodes and uses hard negatives similar to [52]. [46]
proposes to sample negative node using a distribution sub-linearly
correlated with positive node distribution given query node. This is
not relevant to Tgnn as the source and query node are fixed. More
recent works [3, 40, 42, 45, 51, 53] have proposed contrasting learn-
ing methods for static graphs. These contrastive methods create
multiple-augmented views of nodes and minimize a contrastive
loss to train GNNs that utilize such views of positive and negative
samples. Recent papers [15, 30] further extends this to maximize
the mutual information (MI) between global and local graph infor-
mation. Our work doesn’t relate to these settings as we work with
a single view of each node and especially analyze the impact of
hard negatives in the original loss function of Tgnn.

While the use of hard negative in Tgnn is unexplored, applying
negative mining methods of existing works in temporal settings is
not straightforward, e.g., a node that is not a hard negative for a
source-target node pair at time 𝑡 may become one at 𝑡 ′ > 𝑡 . This
needs an assumptions-free design of negative node distribution to
train Tgnn.

1.2 Contribution

To the best of our knowledge, this is the first work to research hard
negative nodes for training Tgnn. We summarize our contribution
as follows:

• We theoretically analyze the connection between hard nega-
tive samples during training Tgnn with parameter conver-
gence and propose an assumption-free and domain-agnostic
novel negative node sampling distribution.
• We evaluate the proposed distribution on 3 real-world tem-
poral interaction datasets by integrating it with TGAT [44],
TGN [34] and establish significant improvement in recom-
mendation task setup.

2 BACKGROUND: TEMPORAL GRAPH

NEURAL NETWORKS

This section introduces the preliminary ideas behind Temporal
Graph Neural Networks (Tgnn). We first define a temporal inter-
action graph G, then explain the temporal neighborhoods integral
to feature propagation and aggregation in Tgnn. Finally, we de-
fine the message-passing equations to compute the temporal node
representations.

Robust Training of Temporal GNNs using Nearest Neighbours based Hard Negatives CODS-COMAD 2024, January 4–7, 2024, Bangalore, India

Source Target Past Neighbour Random

Figure 1: 2D T-SNE [38] representation of node embeddings for various interactions between source and target node pairs.

These representations are computed at time 𝑡 just before the interactions. It is clearly seen that learned temporal embeddings

for past nodes and target nodes are nearby, and often target node is farther than past nodes from the source nodes. Also, the

representation of a few random nodes is closer to the source node than the target node. This results in sub-optimal performance

of Tgnn in recommendation tasks.

Definition 1 (Continuous time temporal graph). A con-

tinuous time temporal graph is defined as a stream of interactions

G = {𝑒1, 𝑒2 . . .} where each interaction 𝑒𝑖 = (𝑢, 𝑣, 𝑡, x𝑢 , x𝑢𝑣, x𝑣) is a
tuple of source node 𝑢 ∈ V , target node 𝑣 ∈ V , time of interaction

𝑡 ∈ 𝑅+, node 𝑢’s feature vector x𝑢 ∈ R𝐷 , node 𝑣 ’s feature vector
x𝑣 ∈ R𝐷 and edge feature vector x𝑢𝑣 ∈ R𝐷 2

.V is a set of 𝑁 = | V |
nodes. For simplicity, we assume undirected interactions.

The objective of Tgnn is to effectively encode the past informa-
tion of each node to predict its future behavior. To this extent, we
define the temporal neighborhoods representing this past informa-
tion.

Definition 2 (TemporalNeighborhood). The temporal neigh-

borhood of node v at time t is a set of interactions by node 𝑣 before

time 𝑡 . Mathematically,

N𝑣 (𝑡) = {𝑒 = (𝑢, 𝑣, 𝑡 ′, x𝑢 , x𝑢𝑣, x𝑣) ∈ G | 𝑡 ′ < 𝑡} (4)

Temporal graph messaging passing and aggregation: Tgnn
compute the node representation of node 𝑣 at time 𝑡 by applying
consecutive 𝐿 layer of graph neural network on its 𝐿 hop temporal

neighborhood. Specifically, 0𝑡ℎ layer embeddings of node 𝑣 and its
𝐿 hop temporal neighbors are initialized using their node features.

h0𝑢 (𝑡) = x𝑢 (𝑡) + s𝑢 (𝑡−) ∀𝑢 ∈ 𝑣 ∪ N𝑣 (𝑡) (5)

where x𝑢 (𝑡) is latest features vector of node 𝑢 till time 𝑡 , s𝑢 (𝑡) is
an optional memory vector introduced by TGN [34], which stores
the compressed history of node 𝑢 before time 𝑡 . This vector is
computed using sequential neural nets such as LSTM[8], or GRU[2].
To compute the 𝑙𝑡ℎ layer representation of a given node 𝑣 , Tgnn
compute messages from its temporal neighbors and aggregate them
as follows:

𝜓 𝑙 (𝑒 =(𝑢, 𝑣, 𝑡 ′, x𝑢 , x𝑣, x𝑢𝑣), 𝑡)

= 𝜓 𝑙 (h𝑙−1𝑢 (𝑡), h𝑙−1𝑣 (𝑡), 𝜙 (𝑡 − 𝑡 ′), x𝑢 , x𝑣, x𝑢𝑣) (6)

h𝑙𝑣 (𝑡) = 𝜎𝑙 (𝛾𝑙
(
h𝑙−1𝑣 (𝑡), {𝜓 𝑙 (𝑒, 𝑡) | ∀𝑒 ∈ N𝑣 (𝑡)}

)
) (7)

2Feature dimension of nodes and edges is assumed to be same for simplicity. The
proposed method can easily be modified for different dimensions also

where 𝛾𝑙 is an aggregator of messages from temporal neighbors
at 𝑙𝑡ℎ layer, and 𝜓 𝑙 is a message computation function. Both 𝛾𝑙

and𝜓 𝑙 are deep neural network-based functions. 𝜎𝑙 is a non-linear
activation function. Specifically, TGAT [44] uses attention-based
message aggregation where the query is source node 𝑣 and key
and value are messages from temporal neighbors. TGN [34] uses
summation based aggregation. 𝜙 (𝑡) is time encoding, transforming
a real no. to a 𝑑 dimensional vector. TGAT [44] uses random fourier
projections-based time encoding and TGN uses Time2Vec [21]
based encoding.

These local temporal operations are applied 𝐿 times consecu-
tively on 𝐿 hop neighborhood of node 𝑣 to output the time-aware
representation at time 𝑡 , i.e., h𝑣 (𝑡) = h𝐿𝑣 (𝑡). This framework is
generic, incorporating dynamic node features and edge features.
Finally, model parameters 𝜽 are learned using the unsupervised
loss defined in eq. 3. Given a sequence of 𝑀 interactions G =

{𝑒1, 𝑒2, 𝑒3 . . . 𝑒𝑀 }, eq. 3 is computed, and gradients are back-propagated
over these interactions chronologically. For more details, we refer
to [44] and [34].

3 METHODOLOGY

This section describes the proposed modified training procedure
of Tgnn. Specifically, we aim to replace random negative samples
with more informative negative samples in eq. 3 leading to better
convergence of model training. To motivate this, we first examine
the impact of negative samples on parameter gradients during
training using loss defined in eq. 3. Following a similar analysis as
[20], we study the model convergence for Tgnn and establish their
relationship with gradients.

3.1 Connection of Random Negative Samples

with Gradients

Denoting the Tgnn’ parameters as 𝜽 𝑖 after 𝑖𝑡ℎ gradient step, a plain
SGD step is written as follows:

𝜽 𝑖+1 = 𝜽 𝑖 − 𝜂∇𝜽 𝑖
L(𝑢, 𝑣, 𝑣−, 𝑡) (8)

CODS-COMAD 2024, January 4–7, 2024, Bangalore, India Gupta, et al.

where 𝜂 is learning coefficient for SGD and 𝜽 𝑖+1 are updated param-
eters after 𝑖 + 1𝑡ℎ gradient update over a given interaction (𝑢, 𝑣, 𝑡).
𝑣− is the negative node sampled from 𝑝− for the loss computa-
tion. These updates are done sequentially over interactions in the
training period in each epoch. Assuming 𝜽 ∗ as optimal parameters
of Tgnn, we define the expected parameter convergence rate at
(𝑖 + 1)𝑡ℎ gradient step given 𝜽 𝑖 and a training interaction (𝑣,𝑢, 𝑡)
as follows:

𝑆 = E𝑝−
[
∥𝜽 𝑖 − 𝜽 ∗∥22 − ∥𝜽 𝑖+1 − 𝜽

∗∥22
]

(9)

where 𝑝− is the probability distribution of sampling the negative
node for the interaction (𝑣,𝑢, 𝑡) to compute loss in 3. We denote
the gradient ∇𝜽 𝑖

L(𝑢, 𝑣, 𝑣−, 𝑡) as g(𝑣−). Please note that we assume
g as a function over 𝑣− only. We assume 𝑢, 𝑣, 𝑡 to be fixed for our
discussion. We expand 𝑆 as follows:

𝑆 = E𝑝−

[
(𝜽 𝑖 − 𝜽 ∗)𝑇 (𝜽 𝑖 − 𝜽 ∗) − (𝜽 𝑖+1 − 𝜽 ∗)𝑇 (𝜽 𝑖+1 − 𝜽 ∗)

]
= E𝑝−

[
𝜽𝑇𝑖 𝜽 𝑖 − 2𝜽

𝑇
𝑖 𝜽
∗ − 𝜽𝑇𝑖+1𝜽 𝑖+1 + 2𝜽

𝑇
𝑖+1𝜽

∗
] (10)

Substituting 𝜽 𝑖+1 using 8, we get

𝑆 = E𝑝−

[
2𝜂 (𝜽 𝑖 − 𝜽 ∗)𝑇 g(𝑣−) − 𝜂2g(𝑣−)𝑇 g(𝑣−)

]
= 2𝜂 (𝜽 𝑖 − 𝜽 ∗)𝑇E𝑝− [g(𝑣−)] − 𝜂2E𝑝− [g(𝑣−)𝑇 g(𝑣−)]

(11)

The first term is gradient descent speed corresponding to 𝜽 𝑖 . There-
fore, we focus on the second term, which is the variance of gra-
dients. Consequently, to achieve better convergence, we need to
select the distribution 𝑝− which minimizes the variance of g(𝑣−),
i.e., E𝑝− [∥g𝑣− ∥22] assuming fixed 𝜂. We now provide the intuition
for solving this optimization problem using importance sampling
theory. We can estimate the expectation of a function 𝑓 as follows-

E𝑝 (𝑥) [𝑓 (𝑥)] ≃
1
𝑆

𝑠=𝑆∑︁
𝑠=1

𝑓 (𝑥𝑠) 𝑥𝑠 ∼ 𝑝 (𝑥)

where 𝑝 (𝑥) is a probability distribution over 𝑥 . This expectation
can also be approximated using a different proposal sampling distri-
bution 𝑞(𝑥) over 𝑥 such that 𝑞(𝑥) > 0 where 𝑝 (𝑥) > 0 as follows:

E𝑝 (𝑥) [𝑓 (𝑥)] = E𝑞 (𝑥)
[
𝑝 (𝑥)
𝑞(𝑥) 𝑓 (𝑥)

]
≃ 1
𝑆

𝑠=𝑆∑︁
𝑠=1

𝑝 (𝑥𝑠)
𝑞(𝑥𝑠)

𝑓 (𝑥𝑠) 𝑥𝑠 ∼ 𝑞(𝑥)

where 𝑞(𝑥) is chosen to be proportional to 𝑝 (𝑥) 𝑓 (𝑥) to minimize
the variance of estimation. In Tgnn, 𝑓 (𝑣) = g(𝑣), 𝑆 = 1 and 𝑝 (𝑣) =
1
𝑁
∀𝑣 ∈ 𝑉 i.e. uniform distribution over nodes. Thus, 𝑝− should

be proportional to the gradient norm over all nodes if they are
used as a negative sample during loss computation over the target
interaction (𝑢, 𝑣, 𝑡) i.e.

𝑝− (𝑣−) ∝ ∥g(𝑣−)∥2 ∀𝑣− ∈ V . (12)

This is computationally prohibitive as it entails computing the
gradient norm for every 𝑣 ∈ V as a negative example in loss eq. 3
to estimate 𝑝− , followed by sampling the negative node from this
estimated distribution and finally computing the loss. Since this loss
is computed over all training interactions in chronological order,
the estimation of gradient norm-based negative node distribution
will have to be repeated for all𝑀 interactions during each epoch.

We now seek to estimate an approximation for this distribution.
If a loss is nearer to 0, then gradient norms are close to 0 [20] and
vice versa. This implies that if loss computed using a negative node
𝑣− is approximately 0, then gradient norm ∥g(𝑣−)∥2 calculated
using 𝑣− will also be 0 and drives uninformative gradient updates.
This indicates that loss is a good proxy for the per-negative node

gradient norm if the loss is close to 0.
That implies the negative sampling probability distribution 𝑝−

for 𝑣− should be close to 0 when the loss is approx 0. Using this
observation, we now quantify the 𝑝− and propose the novel training
procedure for Tgnn in the next subsection.

3.2 Modified Training Procedures for Tgnn

Theoretical analysis in the previous subsection shows that a neg-
ative example 𝑣− should be sampled in proportion to its gradient
norm for each interaction to optimize the model convergence. This
is a computationally expensive operation, and the limitation is
exacerbated since 𝑝− is dependent on model parameters which
themselves depend on time 𝑡 in interaction, rendering computation
of 𝑝− in an offline mode impossible. Following conditions hold
true for calculating the negative sampling distribution 𝑝− using the
gradient norm for a given interaction (𝑢, 𝑣, 𝑡).

𝑝− (𝑣−) ∝ ∥g(𝑣−)∥2 ⊥̸⊥ L(𝑢, 𝑣, 𝑣−, 𝑡) ⊥̸⊥ 𝑡 ⊥̸⊥ 𝜽 (13)

where⊥̸⊥ is symbol of non-independence (dependent). Hence, 𝑝−
can not be computed before the commencement of training or even
before each epoch of training. To avoid the computation of gradient
norm-based distribution, we seek to approximate it with L where
loss is approximately 0, and now simplify eq. 3 for L(𝑢, 𝑣, 𝑣−, 𝑡).
L(𝑢, 𝑣, 𝑣−, 𝑡) for a given negative sample 𝑣− in eq. 3 is computed

via the dot product between embeddings computed at time 𝑡 of
nodes 𝑢, 𝑣 and between nodes 𝑢 and 𝑣− . We can assume 𝑢, 𝑣 and 𝑡
as constant in order to learn 𝑝− for interaction (𝑢, 𝑣, 𝑡). Hence, eq.
3 can be re-written as follows:

L(𝑣− |𝑢, 𝑣, 𝑡) = C − log𝜎 (−h𝑇𝑣− (𝑡)h𝑢 (𝑡)) ∝ h𝑇𝑣− (𝑡)h𝑢 (𝑡) (14)

where C is a constant. If dot product between h𝑣− (𝑡) and h𝑢 (𝑡) is
high then log𝜎 (− h𝑇𝑣− (𝑡) h𝑢 (𝑡)) is low, making overall L(𝑣− |𝑢, 𝑣, 𝑡)
high as both log and sigmoid(𝜎) are monotonically strictly in-
creasing functions. Thus instead of recomputing eq. 3 for every
𝑣− ∈ V to sample a negative example 𝑣− for loss computation,
we can approximate using eq. 14 by calculating only dot prod-
ucts or cosine similarities between embeddings of node 𝑢 and all
nodes 𝑣− ∈ V . This approximation is applicable even if the loss
is computed using multi-layer-perceptron followed by a concate-
nation of node embeddings instead of dot products. In this case,
L(𝑣− |𝑢, 𝑣, 𝑡) ∝ MLP(h𝑣− | | h𝑢 (𝑡)). The approximation in eq.14
still requires re-computing the node embeddings for all 𝑣 ∈ V
for all interactions (gradient updates) during each training epoch.
Since node embeddings don’t change in a short span of time, thus
we can recompute embeddings for all nodes only at a pre-defined
frequency in each epoch. Next, we formally define the construction
of 𝑝− .
Probability distribution for sampling random negatives for

a given interaction (𝒖, 𝒗, 𝒕): Since L(𝑣− |𝑢, 𝑣, 𝑡) is a good proxy
for 𝑝− (𝑣−) when it reaches close 0, this implies that negatives
nodes which results in low loss values should not be sampled. This

Robust Training of Temporal GNNs using Nearest Neighbours based Hard Negatives CODS-COMAD 2024, January 4–7, 2024, Bangalore, India

directs to the following constraint over a negative node sampling
distribution for a given interaction (𝑢, 𝑣, 𝑡).

𝑝− (𝑣−) ≃ 0 ∀ 𝑣− ∈ 𝑉 ∧ L(𝑣− |𝑢, 𝑣, 𝑡) ≃ 0 (15)

Moreover, few negative nodes exist that will result in a positive
loss for a given interaction. This can be seen in Figure 1 too. So,
we now define a hyper-parameter top-𝐾 which describes the no. of
most hard negative samples as per equation 14. Considering that
there are no guarantees of negative examples with the highest loss
resulting in best parameter convergence, we propose to sample
uniformly from these top-𝐾 nodes.

To summarize, original Tgnn select negative samples uniformly
from node spaceV to evaluate eq. 3, while our proposed training
procedure samples negative node uniformly from top-𝐾 nearest
nodes of source node 𝑢.

Formally, we define probability distribution for sampling nega-
tive node 𝑣− for an interaction (𝑢, 𝑣, 𝑡) as follows:

𝑣− ∼ Uniform(NearestNbrstop-𝐾 (𝑢) − {𝑣}) (16)

i.e., we first compute the top-K nearest nodes with the highest
dot-product/cosine/MLP score with node 𝑢 from embeddings of
node-setV at time 𝑡 . We remove node 𝑣 from the top-K nodes as
the negative node can’t be the same as the target node and sample
uniformly from the remaining set. This is still a𝑂 (𝑁) operation but
permits parallel execution in GPUs. The overall time complexity of
the proposed modified training procedure is 𝑂 (𝐸𝑁𝑀𝐶) compared
to the original training procedure time complexity 𝑂 (𝐸𝑀𝐶) where
𝐸 is # of training epochs, 𝐶 includes all other parameters like em-
bedding size, # of layers, avg. neighborhood size. 𝐶 is consistent
across both traditional training and proposed training of Tgnn.
The additional 𝑁 in the proposed modified training is due to the
negative sampling distribution estimation.

We note that the major advantage of utilizing uniform sampling
from top-𝐾 (𝑢) nearest nodes of source node 𝑢 at time 𝑡 allows a
potential speed-up during training. Since top-𝐾 (𝑢) nodes mostly
remain consistent after a few warmup epochs, we can store these
top-𝐾 (𝑢) for every interaction (𝑢, 𝑣, 𝑡) and re-use them in consec-
utive epochs and recompute only at a fixed frequency 𝐹 . So, the
computation time complexity of the proposed training can be re-
duced to 𝑂 (𝐸𝑀𝐶𝑁 /𝐹) from 𝑂 (𝐸𝑁𝑀𝐶).

Most importantly, the increased time complexity is applicable only

during the training phase, and time complexity remains the same as

the original Tgnn during testing. We also summarize the modified
training procedure of Tgnn in algorithm 1.

4 EXPERIMENTS

In this section, we examine the proposed method’s effectiveness
and answer the following questions.
Robust training:We examine the effectiveness of the proposed
hard negatives based Tgnn training by comparing it against the
standard Tgnn training. We conduct the experiments over the
benchmark of the attributed temporal interaction graphs and em-
pirically show that the proposed training procedure clearly results
in better model parameters resulting in superior performance on
test data.
Evaluation against heuristics-based hard negative mining

techniques: We define two intuitive baselines for hard negative

Algorithm 1: Training Tgnn on stream of interactions
G = {𝑒1, 𝑒2 . . . 𝑒𝑀 }
Input :A continuous temporal interaction graph G having𝑀 interactions

{𝑒1, 𝑒2 . . . 𝑒𝑀 } for training, Node embeddings refresh period 𝑃 , Nearest
neighbors re-computation frequency 𝐹 , # of nearest nodes top-K

Output :Trained model parameters 𝜽∗ on G
𝜽 ← 𝜽 0 // Initializing the model parameters

𝑒𝑝𝑜𝑐ℎ ← 0
𝑛𝑛_𝑑𝑖𝑐𝑡 ← {};
repeat

𝑏𝑎𝑡𝑐ℎ_𝑖𝑑 ← 0
foreach batch(𝑢, 𝑣, 𝑡) ∈ G do

if 𝑏𝑎𝑡𝑐ℎ_𝑖𝑑 % 𝑃 = 0 & 𝑒𝑝𝑜𝑐ℎ % 𝐹 = 0 then
/* Re-compute node embeddings at time 𝑡 */

NodeEmbeddings← {TGN𝜽 (𝑣, 𝑡) | ∀𝑣 ∈ V}
𝑏𝑎𝑡𝑐ℎ_𝑖𝑑 ← 𝑏𝑎𝑡𝑐ℎ_𝑖𝑑 + 1
if 𝑒𝑝𝑜𝑐ℎ % 𝐹 = 0 then

/* Re-compute top-K nodes for interaction 𝑢, 𝑣, 𝑡 using

NodeEmbeddings */

𝑛𝑛_𝑑𝑖𝑐𝑡 [(𝑢, 𝑣, 𝑡)] ← NearestNodestop-K (𝑢) − {𝑢, 𝑣}
/* Sampling negative random node uniformly from top-K

most-similar nodes of node 𝑢 */

𝑣− ∼ 𝑛𝑛_𝑑𝑖𝑐𝑡 [(𝑢, 𝑣, 𝑡)]
h𝐿𝑢 (𝑡) , h𝐿𝑣 (𝑡) , h𝐿𝑣− (𝑡) ← TGN𝜽 (𝑢, 𝑡) ,TGN𝜽 (𝑣, 𝑡) ,TGN𝜽 (𝑣− , 𝑡)
L ← loss(h𝐿𝑢 (𝑡), h𝐿𝑣 (𝑡), h𝐿𝑣− (𝑡), 𝑡) // Compute loss using eq. 3

𝜽 ← 𝜽 − 𝛼∇𝜽 L // SGD step

𝑒𝑝𝑜𝑐ℎ ← 𝑒𝑝𝑜𝑐ℎ + 1
until stopping criteria

return 𝜽

mining. We train Tgnn using negatives selected from these base-
lines. We show that sampling nodes from such heuristics often
perform poorly against the proposed method and even against
uniformly random-sampling-based negative examples of standard
training.
Sampling uniformly from top-𝑘 hard negatives vs. always

choosing most hard negative example: We also answer the
question raised while defining the sampling distribution in eq.16
that is, can we pick the negative node with the highest loss instead.
We show that such a strategy results in sub-optimal performance
of trained Tgnn.

Additionally, we analyze the impact of hyper-parameters, such
as top-K, periodicity (𝑃) of dynamic embedding refresh during each
epoch, frequency 𝐹 of computing top-K nearest nodes for every
training interaction and learning rate 𝜂 as it shows up in 11. Our
codebase is available at https://github.com/data-iitd/robust-tgnn

In the next subsections, we provide dataset details, baseline Tgnn,
and performance metrics for evaluation and discuss the results of
experiments.

4.1 Datasets

Wikipedia Edits: It is a bipartite interaction graph betweenWikipedia
editors and pages. Each interaction is a timestamped edge contain-
ing LIWC features of edited text [24].
Reddit Posts: Similar to wiki-edits, it is a interaction graph be-
tween users and subreddits. Each interaction corresponds to a post
written by a user in the corresponding subreddit. Each interaction
is attributed with LIWC features of post text [24].
Twitter Retweets:We use the dataset released as part of rec-sys
challenge [1]. We keep only interaction of retweet type and have
interaction timestamp available. We keep the top 2000 creators
with the most retweets and filter out those engagers with less than

https://github.com/data-iitd/robust-tgnn

CODS-COMAD 2024, January 4–7, 2024, Bangalore, India Gupta, et al.

Table 1: Dataset statistics

Dataset # Nodes # Interactions # Features # Period

Wikipedia 9227 157474 172 720 hrs.
Reddit 11000 672447 172 720 hrs.
Twitter 4148 36811 768 1 week

ten engagements. Interaction features are sentence embeddings of
tweets computed using Bert [6].
Table 1 summarizes the dataset statistics.

4.2 Baselines - Temporal Graph Neural

Networks

There are many existing methods [5, 24, 34, 35, 37, 44] for modeling
on dynamic graphs. We integrate the proposed training procedure
with Tgnn, TGN [34] and TGAT [44]. These Tgnn learn the time-
dependent representations for nodes that are utilized as an embed-
ding index in our method. A recently proposed method PINT [5]
uses positional features from the joint computational tree of source
and target node to calculate the link formation probability. This
requires calculating the features for every possible source-target
node pair, making PINT ineffective in recommendation tasks. More-
over, our proposed method is not integrable with PINT due to the
absence of target-independent node embeddings. For completeness,
we report the performance of PINT in our experiments.
Temporal Graph Attention Networks(TGAT) [44] computes
the embedding of node 𝑣 at time 𝑡 by aggregating the features of
temporal neighbourhood using attention. This denotes the one
layer of message passing. Successive application of such layers
constitutes multi-layer Tgnn. For more details, we refer to [44].
Temporal Graph Networks(TGN) [34] additionally stores the
memory of each node apart from input features. These states are
updated when the corresponding node is involved in an interaction
using a recurrent neural network, e.g., LSTM/GRU [2, 8].

For both Tgnn, we use the default parameters as provided in
TGN code-base 3. Moreover, we use the same chronological data
split for training as default in TGN codebase.

3https://github.com/twitter-research/tgn

0 20 40 60 80 100

Index refresh period(P)

0.5

0.6

0.7

0.8

M
et

ri
cs

MRR

Recall@1

Recall@5

Recall@10

Figure 2: Performance of proposed method when increasing

the index frequency refresh period(P)

0 25 50 75 100

Top-K

0.50

0.55

0.60

0.65

0.70

0.75

M
R

R

0 25 50 75 100

Top-K

0.50

0.55

0.60

0.65

0.70

0.75

R
ec

al
l@

1

Wikipedia Reddit

Figure 3: Performance of proposed method when increasing

the top-k in negative sampling

4.3 Baselines - Sampling negative examples for

Tgnn training

We also designed two heuristic-based methods to sample nega-
tive nodes during the model training. Specifically, these method
represents the two most known biases [54] regarding future link
prediction.
Bias 1:Two nodeswith common neighborhoods have higher chances
of connecting in the future.
Bias 2: Two nodes frequently interacting in the past have high
chances of interacting again.

Therefore, given an interaction (𝑢, 𝑣, 𝑡), potential candidates for
negative node 𝑣− conform to bias 1 or 2 from source node 𝑢. And
such a node should not be equal to node 𝑣 . We next define the
methods for computing negative nodes 𝑣− basis bias 1 and 2.
Static embedding based nearest samples:We first convert train-
ing temporal graphG into a static graphG𝑠𝑡𝑎𝑡𝑖𝑐 = (V𝑠𝑡𝑎𝑡𝑖𝑐 , E𝑠𝑡𝑎𝑡𝑖𝑐)

1 2 3 4

No. of hard negatives during training

0.60

0.65

0.70

0.75

0.80

0.85

M
et

ri
cs

MRR

Recall@1

Recall@5

Recall@10

Figure 4: Performance variation when varying the # of hard

negative samples during training tgn on Wikipedia dataset

Robust Training of Temporal GNNs using Nearest Neighbours based Hard Negatives CODS-COMAD 2024, January 4–7, 2024, Bangalore, India

Table 2: Performance comparison of various Tgnn based approaches. We report mean and std. dev. of 5 runs.

Dataset Method MRR Recall@1 Recall@5 Recall@10

Wikipedia

TGAT 0.569 ± 0.0097 0.5111 ± 0.0135 0.6337 ± 0.0056 0.6713 ± 0.0058
TGN 0.6154 ± 0.0857 0.4934 ± 0.1586 0.7512 ± 0.0079 0.7963 ± 0.007
PINT 0.7146 ± 0.0043 0.6521 ± 0.0061 0.7879 ± 0.0031 0.8189 ± 0.0032
TGN + Static HN 0.5932 ± 0.0596 0.5128 ± 0.0935 0.6844 ± 0.0193 0.7285 ± 0.009
TGN + IFQ HN 0.4809 ± 0.074 0.3646 ± 0.1356 0.6116 ± 0.0124 0.6576 ± 0.0129
TGAT + HN 0.6132 ± 0.0038 0.5844 ± 0.0051 0.6417 ± 0.0025 0.6623 ± 0.0021
TGN + Nearest HN 0.7032 ± 0.0086 0.656 ± 0.0116 0.7571 ± 0.007 0.786 ± 0.0071
TGN + HN 0.7249 ± 0.0038 0.6807 ± 0.0057 0.7752 ± 0.002 0.803 ± 0.0011
TGN + UN+HN 0.7339 ± 0.0138 0.6817 ± 0.0254 0.792 ± 0.003 0.8198 ± 0.003
TGN + UN+HN (F=10) 0.7218 ± 0.015 0.6709 ± 0.0252 0.7781 ± 0.0065 0.8075 ± 0.006

Twitter

TGAT 0.1802 ± 0.0051 0.1099 ± 0.0045 0.2306 ± 0.0078 0.3172 ± 0.0061
TGN 0.2928 ± 0.006 0.1885 ± 0.0053 0.3916 ± 0.0104 0.5063 ± 0.0086
PINT 0.4148 ± 0.0041 0.297 ± 0.0041 0.5519 ± 0.0052 0.6497 ± 0.0056
TGN + Static HN 0.1355 ± 0.0138 0.0837 ± 0.0121 0.1784 ± 0.0172 0.2325 ± 0.0153
TGN + IFQ HN 0.0754 ± 0.0034 0.0506 ± 0.0026 0.0958 ± 0.0047 0.1162 ± 0.0045
TGAT + HN 0.2061 ± 0.0041 0.1346 ± 0.0046 0.2686 ± 0.0039 0.3515 ± 0.0049
TGN + Nearest HN 0.0976 ± 0.0158 0.0486 ± 0.0186 0.1152 ± 0.0192 0.1681 ± 0.0277
TGN + HN 0.3192 ± 0.0073 0.2229 ± 0.0075 0.4163 ± 0.0098 0.511 ± 0.0092
TGN +UN+HN 0.3422 ± 0.0081 0.2431 ± 0.0092 0.4424 ± 0.0084 0.543 ± 0.007
TGN +UN+HN (F=10) 0.3453 ± 0.0068 0.2401 ± 0.0068 0.4538 ± 0.0077 0.5582 ± 0.009

Reddit

TGAT 0.4251 ± 0.0012 0.335 ± 0.0015 0.5212 ± 0.001 0.6034 ± 0.0009
TGN 0.6003 ± 0.018 0.5204 ± 0.0217 0.6889 ± 0.0148 0.7463 ± 0.0137
PINT 0.5993 ± 0.0027 0.5089 ± 0.0032 0.7023 ± 0.0022 0.7675 ± 0.0014
TGN + Static HN 0.3561 ± 0.0488 0.2448 ± 0.0622 0.4813 ± 0.0443 0.5578 ± 0.0341
TGN + IFQ HN 0.4632 ± 0.0245 0.4205 ± 0.021 0.5052 ± 0.0296 0.5365 ± 0.0356
TGAT + HN 0.4631 ± 0.0008 0.38 ± 0.0014 0.5542 ± 0.0009 0.6258 ± 0.0013
TGN + Nearest HN 0.552 ± 0.0121 0.5178 ± 0.0127 0.5837 ± 0.013 0.6117 ± 0.0131
TGN + HN 0.6382 ± 0.0124 0.5749 ± 0.0134 0.7074 ± 0.0126 0.7519 ± 0.0125
TGN + UN+HN 0.6379 ± 0.0135 0.5751 ± 0.0133 0.7059 ± 0.0152 0.7518 ± 0.0137
TGN + UN+HN (F=10) 0.6296 ± 0.0182 0.5688 ± 0.0178 0.6936 ± 0.0195 0.7405 ± 0.0194

as follows.

E𝑠𝑡𝑎𝑡𝑖𝑐 = {(𝑢, 𝑣) | ∃ (𝑢, 𝑣, 𝑡) ∈ G𝑡𝑟𝑎𝑖𝑛}
V𝑠𝑡𝑎𝑡𝑖𝑐 = {𝑢 | ∃ (𝑢, 𝑣) ∈ E𝑠𝑡𝑎𝑡𝑖𝑐 } (17)

We apply 2-layer Graph Attention Network(GAT) [39] over G𝑠𝑡𝑎𝑡𝑖𝑐
to compute node embeddings h𝑣 of all nodes 𝑣 ∈ V𝑠𝑡𝑎𝑡𝑖𝑐 using
unsupervised link-prediction loss. The optimized embeddings us-
ing link prediction loss lead to community-based characteristics
in node embeddings, i.e., nodes in the same community will be
near in embedding space[12]. This captures the intuition of bias 1.
Subsequently, we define the following probability distribution for
sampling negative distribution for all source nodes:

𝑝𝑠𝑡𝑎𝑡𝑖𝑐− (𝑣) =
{

exp(cos(h𝑣, h𝑢))∑
𝑖∈𝑉 𝑠𝑡𝑎𝑡𝑖𝑐 exp(cos(h𝑣, h𝑖))

}
∀𝑢 ∈ 𝑉 𝑠𝑡𝑎𝑡𝑖𝑐 (18)

where h𝑢 ∀𝑢 ∈ 𝑉 𝑠𝑡𝑎𝑡𝑖𝑐 are learnt using 2-layer GAT. During train-
ing Tgnn and given an interaction (𝑢, 𝑣, 𝑡), we sample the negative
node 𝑣− from 𝑝𝑠𝑡𝑎𝑡𝑖𝑐− (𝑣). In our experiments, we term this negative
node sampling baseline as Static HN.
Recent interactions based hard negatives: Given the temporal
graph G, we compute the frequency of nodes interacted before time
𝑡 by all source nodes 𝑢 in every interaction (𝑢, 𝑣, 𝑡) ∈ G, similarly
to eq. 18, we define the distribution over this frequency count and

sample from this. We term this baseline method as Interaction
Frequencies based Hard Negatives (IFQ HN).

4.4 Results & Discussions

We use recommendation metricsMRR, Recall@1, Recall@5, and
Recall10 to evaluate Tgnn. Table 2 presents the performance of
all methods across metrics in the link prediction task. To compute
these metrics for every test interaction (𝑢, 𝑣, 𝑡), we rank all the
graph nodes for the source node 𝑢 at time 𝑡 and compute the rank
of the actual target node 𝑣 in the ranked result. This is repeated
for all the test interactions, and metrics MRR, Recall@1, Recall@5,
and Recall@10 are aggregated. In table 2, methods TGAT and TGN
are Tgnn trained using the standard training procedure, which
utilizes the negative examples sampled from the uniform sampling
distribution. TGN + Static HN and TGN + IFQ HN methods are
TGN trained using heuristic-based hard negatives as described in
section 4.3. TGAT + HN and TGN + HN are Tgnn trained using
the proposed negative sampling distribution. TGN + Nearest HN
method is trained by assigning the nearest node (apart from target
node 𝑣) to source node 𝑢 as the hard negative example during
training. We use this method to show the importance of computing
hard negatives from top-𝐾 nearest nodes. Finally, we introduce a
hybrid training procedure that utilizes 2 negative examples, one

CODS-COMAD 2024, January 4–7, 2024, Bangalore, India Gupta, et al.

−6 −5 −4 −3 −2 −1

Learning rate η (log10)

0.0

0.2

0.4

0.6

0.8
M

et
ri

cs
MRR

Recall@1

Recall@5

Recall@10

Figure 5: Influence of varying learning rate on TGN perfor-

mance on Wikipedia dataset

−6 −5 −4 −3 −2 −1

Learning rate η (log10)

0.0

0.2

0.4

0.6

0.8

M
et

ri
cs

MRR

Recall@1

Recall@5

Recall@10

Figure 6: Influence of varying learning rate on proposed

model training procedure (TGN +UN+HN) on Wikipedia

dataset

from Uniform distribution, which is standard practice, and one from
the proposed distribution. We term this as TGN +UN+HN.

Table 2 clearly shows that the proposed training procedure pro-
duces consistent gains over the standard Tgnn training methods
across all datasets and metrics. TGN +HN and TGAT + HN provides
better performance than TGN and TGAT respectively. Moreover,
TGN + Nearest HN performs worse than TGN + HN showcasing the
importance of sampling from top-𝑘 nearest nodes from the source
node while sampling the hard negatives instead of using the nearest
one. We also see that heuristic-based negative examples mining
baselines TGN + Static HN and TGN + IFQ HN performmuch worse
than even TGN trained using sampling from the uniform distribu-
tion. This shows that heuristic-based methods are sub-optimal in
training the Tgnn. Finally, the hybrid training procedure TGN +
UN + HN, which utilizes negative samples from both the uniform
distribution and the proposed distribution, performs marginally
better than TGN + HN, especially in the Twitter dataset, indicating
the importance of such hybrid methods.

Additionally, we vary the index refresh period 𝑃 , which recom-
putes the node embedding after every 𝑏𝑎𝑡𝑐ℎ_𝑖𝑑 % 𝑃 during training.
As seen in figure 2, performance remains marginally stable at the
low refresh period till 20 in the Wikipedia dataset. If 𝑃 increases
to 50 or 100, performance is decreased drastically. We also vary
the top-𝑘 in figure 3 and find that while in Wikipedia data, top-
k=5 provides the best results, it revises to 20 in the Reddit dataset.
Finally, we found that sampling more than one hard negative exam-
ple for each interaction during training doesn’t benefit the model

Table 3: Training time analysis(hours)

Method Wikipedia Reddit Twitter

TGN 0.36 1.74 0.29
PINT 10.62 103.67 0.82
TGN +UN+HN 2.17 11 1.20
TGN +UN+HN (F=5) 0.85 4.58 0.62
TGN +UN+HN (F=10) 0.66 4.23 0.55
TGN +UN+HN (F=20) 0.59 3.00 0.51

0 20 40 60 80

Nearest nodes recompute frequency (F)

0.65

0.70

0.75

0.80

M
et

ri
cs

MRR

Recall@1

Recall@5

Recall@10

Figure 7: Impact on model performance on varying 𝐹 on

Wikipedia dataset

performance. Figure 4 clearly shows that varying the # of hard
negatives doesn’t significantly impact the metrics on test data. 𝜂
is an important hyper-parameter, as seen in eq. 11. Thus, we vary
𝜂 in TGN and TGN +UN+HN to analyze its impact on model per-
formance. In figures 5 and 6, we observe that very high and very
low 𝜂 results in worse performance in both standard model train-
ing and proposed model training. In table 3, we furthermore show
the training time of TGN, PINT, proposed method TGN +UN+HN,
and its variants where we only re-calculate top-K nearest nodes at
epoch frequency 𝐹 = 5,10 and 20. Though the proposed method
significantly increases training time, its proposed variants are com-
paratively faster with a lower accuracy drop, as seen in figure 7 on
the wiki dataset.

We also emphasize that the increased training time is irrelevant
during inference as our proposed training approach doesn’t modify
the inference process and thus, inference time.

5 CONCLUSION

In this work, we highlighted that the current training technique
of Tgnn is sub-optimal, resulting in unsatisfactory performance
on end tasks, especially in recommendations-based applications
where the precise ranking of target nodes is critical. To remedy this,
we analyzed the effect of negative nodes required in the loss cal-
culation with parameter convergence. Subsequently, we proposed
a dynamic probability distribution to sample the negative nodes
for learning optimal parameters. Through extensive evaluation of
3 real-world datasets, we established that our proposed training
procedure results in better performance across relevant metrics
over the test temporal graphs.

Robust Training of Temporal GNNs using Nearest Neighbours based Hard Negatives CODS-COMAD 2024, January 4–7, 2024, Bangalore, India

REFERENCES

[1] Luca Belli, Sofia Ira Ktena, Alykhan Tejani, Jessie Smith, and Wenzhe Shi. 2020.
Privacy-Aware Recommender Systems Challenge on Twitter’s Home Timeline.
https://doi.org/10.48550/ARXIV.2004.13715

[2] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. 2014. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259 (2014).

[3] Guanyi Chu, Xiao Wang, Chuan Shi, and Xunqiang Jiang. 2021. CuCo: Graph
Representation with Curriculum Contrastive Learning. In International Joint

Conference on Artificial Intelligence.
[4] Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Ste-

fanie Jegelka. 2020. Debiased contrastive learning. Advances in Neural Information

Processing Systems 33 (2020).
[5] Amauri H. de Souza, Diego Mesquita, Samuel Kaski, and Vikas K. Garg. 2022.

Provably expressive temporal graph networks. ArXiv abs/2209.15059 (2022).
[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). arXiv:1810.04805 http://arxiv.org/abs/1810.04805

[7] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. DynGEM: Deep
Embedding Method for Dynamic Graphs. ArXiv abs/1805.11273 (2018).

[8] Alex Graves. 2012. Long short-term memory. Supervised sequence labelling with
recurrent neural networks (2012), 37–45.

[9] Shubham Gupta and Srikanta Bedathur. 2022. A Survey on Temporal Graph
Representation Learning and Generative Modeling. arXiv:2208.12126 [cs.LG]

[10] Shubham Gupta, Sahil Manchanda, Srikanta Bedathur, and Sayan Ranu. 2022.
TIGGER: Scalable Generative Modelling for Temporal Interaction Graphs. https:
//doi.org/10.48550/ARXIV.2203.03564

[11] Shubham Gupta, Sahil Manchanda, Sayan Ranu, and Srikanta J. Bedathur. 2023.
GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature
Sets. In Proceedings of the 40th International Conference on Machine Learning

(Proceedings of Machine Learning Research, Vol. 202), Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (Eds.). PMLR, 12165–12181. https://proceedings.mlr.press/v202/gupta23b.
html

[12] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proceedings of the 31st International Conference on

Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
Curran Associates Inc., Red Hook, NY, USA, 1025–1035.

[13] Chih-Hui Ho andNunoNvasconcelos. 2020. Contrastive learningwith adversarial
examples. Advances in Neural Information Processing Systems 33 (2020), 17081–
17093.

[14] Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan
Hanbury. 2021. Efficiently Teaching an Effective Dense Retriever with Balanced
Topic Aware Sampling. https://doi.org/10.48550/ARXIV.2104.06967

[15] Yifei Hu and Ya Zhang. 2021. Graph Contrastive Learning with Local and Global
Mutual Information Maximization. In Proceedings of the 2020 8th International

Conference on Information Technology: IoT and Smart City (Xi’an, China) (ICIT
’20). Association for Computing Machinery, New York, NY, USA, 74–78. https:
//doi.org/10.1145/3446999.3447013

[16] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Baner-
jee, and Fillia Makedon. 2020. A survey on contrastive self-supervised learning.
Technologies 9, 1 (2020), 2.

[17] Glen Jeh and Jennifer Widom. 2003. Scaling Personalized Web Search. In Proceed-

ings of the 12th International Conference on World Wide Web (Budapest, Hungary)
(WWW ’03). Association for Computing Machinery, New York, NY, USA, 271–279.
https://doi.org/10.1145/775152.775191

[18] Yannis Kalantidis, Mert Bulent Sariyildiz, No’e Pion, Philippe Weinzaepfel, and
Diane Larlus. 2020. Hard Negative Mixing for Contrastive Learning. ArXiv

abs/2010.01028 (2020).
[19] Vladimir Karpukhin, Barlas Oguz, Sewon Min, and Wen-tau Yih. 2020. Dense

Passage Retrieval for Open-Domain Question Answering. In Proceedings of the

2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, Online, 6769–6781. https://doi.org/
10.18653/v1/2020.emnlp-main.550

[20] Angelos Katharopoulos and François Fleuret. 2018. Not All Samples Are Created
Equal: Deep Learning with Importance Sampling. In ICML.

[21] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet
Sahota, Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus
Brubaker. 2019. Time2Vec: Learning a Vector Representation of Time. https:
//doi.org/10.48550/ARXIV.1907.05321

[22] Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. 2018. Com-
munity interaction and conflict on the web. In Proceedings of the 2018 World Wide

Web Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 933–943.

[23] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos.
2016. Edge weight prediction in weighted signed networks. In Data Mining

(ICDM), 2016 IEEE 16th International Conference on. IEEE, 221–230.

[24] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-
bedding trajectory in temporal interaction networks. In Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
ACM, 1269–1278.

[25] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2021. In-Batch Negatives
for Knowledge Distillation with Tightly-Coupled Teachers for Dense Retrieval.
In Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-

2021). Association for Computational Linguistics, Online, 163–173. https://doi.
org/10.18653/v1/2021.repl4nlp-1.17

[26] Zhining Liu, Dawei Zhou, Yada Zhu, Jinjie Gu, and Jingrui He. 2020. Towards
Fine-Grained Temporal Network Representation via Time-Reinforced Random
Walk. In AAAI.

[27] Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S. Yu, and Yanfang Ye. 2019. Temporal
Network Embedding with Micro- and Macro-Dynamics. In Proceedings of the

28th ACM International Conference on Information and Knowledge Management

(Beijing, China) (CIKM ’19). Association for Computing Machinery, New York,
NY, USA, 469–478. https://doi.org/10.1145/3357384.3357943

[28] Julian McAuley, Qinfeng Shi, and Anton van den Hengel. 2015. Image-Based Rec-
ommendations on Styles and Substitutes. In Proceedings of the 38th International

ACM SIGIR Conference on Research and Development in Information Retrieval

(Santiago, Chile) (SIGIR ’15). Association for Computing Machinery, New York,
NY, USA, 43–52. https://doi.org/10.1145/2766462.2767755

[29] Aldo Pareja, Giacomo Domeniconi, and Charles E. Leiserson. 2020. EvolveGCN:
Evolving Graph Convolutional Networks for Dynamic Graphs. In Proceedings of

the Thirty-Fourth AAAI Conference on Artificial Intelligence.
[30] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang

Xu, and Junzhou Huang. 2020. Graph Representation Learning via Graphical
Mutual Information Maximization. In Proceedings of The Web Conference 2020

(Taipei, Taiwan) (WWW ’20). Association for Computing Machinery, New York,
NY, USA, 259–270. https://doi.org/10.1145/3366423.3380112

[31] Yingqi Qu, Yuchen Ding, and Haifeng Wang. 2021. RocketQA: An Optimized
Training Approach to Dense Passage Retrieval for Open-Domain Question An-
swering. In Proceedings of the 2021 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technolo-

gies. Association for Computational Linguistics, Online, 5835–5847. https:
//doi.org/10.18653/v1/2021.naacl-main.466

[32] Ruiyang Ren, Yingqi Qu, and Ji-Rong Wen. 2021. RocketQAv2: A Joint Training
Method for Dense Passage Retrieval and Passage Re-ranking. In Proceedings

of the 2021 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Online and Punta Cana, Dominican
Republic, 2825–2835. https://doi.org/10.18653/v1/2021.emnlp-main.224

[33] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. 2020.
Contrastive learning with hard negative samples. arXiv preprint arXiv:2010.04592
(2020).

[34] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, andMichael Bronstein. 2020. Temporal GraphNetworks for Deep Learning
on Dynamic Graphs. In ICML 2020 Workshop on Graph Representation Learning.

[35] Aravind Sankar and Hao Yang. 2020. DySAT: Deep Neural Representation
Learning on Dynamic Graphs via Self-Attention Networks. In Proceedings of

the 13th International Conference on Web Search and Data Mining (Houston, TX,
USA) (WSDM ’20). Association for Computing Machinery, New York, NY, USA,
519–527. https://doi.org/10.1145/3336191.3371845

[36] Uriel Singer, Ido Guy, and Kira Radinsky. 2019. Node Embedding over Temporal
Graphs. In IJCAI.

[37] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019.
DyRep: Learning Representations over Dynamic Graphs. In 7th International

Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May

6-9, 2019. OpenReview.net. https://openreview.net/forum?id=HyePrhR5KX
[38] Laurens van der Maaten and Geoffrey E. Hinton. 2008. Visualizing Data using

t-SNE. In Journal of Machine Learning Research, Vol. 9. 2579–2605.
[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. International Con-
ference on Learning Representations (2018). https://openreview.net/forum?id=
rJXMpikCZ

[40] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep Graph Infomax. In International Conference on

Learning Representations. https://openreview.net/forum?id=rklz9iAcKQ
[41] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.

Inductive Representation Learning in Temporal Networks via Causal Anonymous
Walks. CoRR abs/2101.05974 (2021). arXiv:2101.05974 https://arxiv.org/abs/2101.
05974

[42] Jun Xia, Lirong Wu, Ge Wang, and Stan Z. Li. 2022. ProGCL: Rethinking Hard
Negative Mining in Graph Contrastive Learning. In International conference on

machine learning. PMLR.
[43] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett,

Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. In 9th International

Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May

https://doi.org/10.48550/ARXIV.2004.13715
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2208.12126
https://doi.org/10.48550/ARXIV.2203.03564
https://doi.org/10.48550/ARXIV.2203.03564
https://proceedings.mlr.press/v202/gupta23b.html
https://proceedings.mlr.press/v202/gupta23b.html
https://doi.org/10.48550/ARXIV.2104.06967
https://doi.org/10.1145/3446999.3447013
https://doi.org/10.1145/3446999.3447013
https://doi.org/10.1145/775152.775191
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.48550/ARXIV.1907.05321
https://doi.org/10.48550/ARXIV.1907.05321
https://doi.org/10.18653/v1/2021.repl4nlp-1.17
https://doi.org/10.18653/v1/2021.repl4nlp-1.17
https://doi.org/10.1145/3357384.3357943
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.1145/3366423.3380112
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.emnlp-main.224
https://doi.org/10.1145/3336191.3371845
https://openreview.net/forum?id=HyePrhR5KX
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rklz9iAcKQ
https://arxiv.org/abs/2101.05974
https://arxiv.org/abs/2101.05974
https://arxiv.org/abs/2101.05974

CODS-COMAD 2024, January 4–7, 2024, Bangalore, India Gupta, et al.

3-7, 2021. OpenReview.net. https://openreview.net/forum?id=zeFrfgyZln
[44] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.

2020. Inductive representation learning on temporal graphs. arXiv preprint

arXiv:2002.07962 (2020).
[45] Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. 2021. Self-

supervised Graph-level Representation Learning with Local and Global Structure.
In International Conference on Machine Learning.

[46] Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang.
2020. Understanding Negative Sampling in Graph Representation Learning. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (Virtual Event, CA, USA) (KDD ’20). Association for
Computing Machinery, New York, NY, USA, 1666–1676. https://doi.org/10.1145/
3394486.3403218

[47] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining (London, United Kingdom)
(KDD ’18). Association for Computing Machinery, New York, NY, USA, 974–983.
https://doi.org/10.1145/3219819.3219890

[48] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping
Ma. 2021. Optimizing Dense Retrieval Model Training with Hard Negatives.
https://doi.org/10.48550/ARXIV.2104.08051

[49] Yao Zhang, Yun Xiong, Xiangnan Kong, and Yangyong Zhu. 2017. Learning
Node Embeddings in Interaction Graphs. In Proceedings of the 2017 ACM on

Conference on Information and Knowledge Management (Singapore, Singapore)
(CIKM ’17). Association for Computing Machinery, New York, NY, USA, 397–406.
https://doi.org/10.1145/3132847.3132918

[50] Zhen Zhang and Can Wang. 2020. Learning Temporal Interaction Graph Embed-
ding via Coupled Memory Networks. In Proceedings of The Web Conference 2020

(Taipei, Taiwan) (WWW ’20). Association for Computing Machinery, New York,
NY, USA, 3049–3055. https://doi.org/10.1145/3366423.3380076

[51] Han Zhao, Xu Yang, Zhenru Wang, Erkun Yang, and Cheng Deng. 2021. Graph
Debiased Contrastive Learning with Joint Representation Clustering. In Interna-

tional Joint Conference on Artificial Intelligence.
[52] Yanqiao Zhu, Yichen Xu, Hejie Cui, Carl Yang, Qiang Liu, and Shu Wu. 2021.

Structure-Aware Hard Negative Mining for Heterogeneous Graph Contrastive
Learning. ArXiv abs/2108.13886 (2021).

[53] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep Graph Contrastive Representation Learning. In ICML Workshop on Graph

Representation Learning and Beyond. http://arxiv.org/abs/2006.04131
[54] Matteo Zignani, Haitao Zheng, and Ben Zhao. 2014. Link and Triadic Closure

Delay: Temporal Metrics for Social Network Dynamics. Proceedings of the In-
ternational AAAI Conference on Web and Social Media 8, 1 (May 2014), 564–573.
https://ojs.aaai.org/index.php/ICWSM/article/view/14507

[55] Yuan Zuo and Junjie Wu. 2018. Embedding Temporal Network via Neighborhood
Formation. In Proceedings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery; Data Mining (London, United Kingdom) (KDD ’18).
Association for Computing Machinery, New York, NY, USA, 2857–2866. https:
//doi.org/10.1145/3219819.3220054

https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.1145/3394486.3403218
https://doi.org/10.1145/3394486.3403218
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.48550/ARXIV.2104.08051
https://doi.org/10.1145/3132847.3132918
https://doi.org/10.1145/3366423.3380076
http://arxiv.org/abs/2006.04131
https://ojs.aaai.org/index.php/ICWSM/article/view/14507
https://doi.org/10.1145/3219819.3220054
https://doi.org/10.1145/3219819.3220054

	Abstract
	1 Introduction and Related Works
	1.1 Existing Works
	1.2 Contribution

	2 Background: Temporal graph neural networks
	3 Methodology
	3.1 Connection of Random Negative Samples with Gradients
	3.2 Modified Training Procedures for Tgnn

	4 Experiments
	4.1 Datasets
	4.2 Baselines - Temporal Graph Neural Networks
	4.3 Baselines - Sampling negative examples for Tgnn training
	4.4 Results & Discussions

	5 Conclusion
	References

