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ABSTRACT

Contrastive learning (CL) has exploded in popularity due to its
ability to learn effective representations using vast quantities of
unlabelled data across multiple domains. CL underlies some of the
most impressive applications of generative Al for the general public.
We will review the fundamentals and applied work on contrastive
learning representations focusing on three main topics: 1) CL in su-
pervised, unsupervised and self-supervised setup and its revival in
Al research as an instance discriminator. In this part, we will focus
on learning about the nuts and bolts, such as different augmentation
techniques, loss functions, performance evaluation metrics, and
some theoretical understanding of contrastive loss. We will also
present the methods supporting DALL-E 2, a popular generative
Al 2) Learning contrastive representations across vision, text, time
series, tabular data and knowledge graph modalities. Specifically,
we will present the literature representative of solution approaches
regarding new augmentation techniques, modification in the loss
function, and additional information. The first two parts will also
have small hands-on session on the application shown and some
of the methods learned. 3) Discussing the various theoretical and
empirical claims for CL’s success, including the role of negative ex-
amples. We will also present some work that challenges the shared
information assumption of CL and propose alternative explana-
tions. Finally, we will conclude with some future directions and
applications for CL.
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1 BACKGROUND

Traditionally learning paradigms have been understood in the
context of supervised, semi-supervised and unsupervised learn-
ing where the presence of supervision refers to the availability of
annotations. However, annotation can be time-consuming, cost-
ineffective or erroneous. To circumvent this issue, self-supervised
learning provides a framework (of pretraining) where the goal is
to learn good feature representations without annotations. These
representations can then be used for various downstream tasks in
both discriminative and generative forms.

Recently, multi-view self-supervised learning (MVSSL) where
the goal is to learn similar representations for the different views
of the same data has gained a lot of attention due to its success
demonstrated in computer vision [1], speech recognition [2] and
other domains. Three main categories of MVSSL are: 1) contrastive
loss-based where a suitable similarity metric between the repre-
sentations of two views from the same example should be max-
imized and from different examples should be minimized [7], 2)
clustering-based where the clusters assignments for one view are
to be predicted from the representations of another view [6], 3)
distillation-based where a teacher-student model approach is taken
for while training [17]. In this tutorial, our focus is on contrastive
learning methods across a variety of modalities. In particular, we
focus on how different components of contrastive learning vary
across modalities in terms of their unique and shared properties.

2 GOALS AND RELEVANCE

Our goal is to review foundations and applied practices in multi-
modal contrastive learning for representation learning. We present
the major breakthroughs in the following modalities: 1) vision,
2) text, 3) time series, 4) tabular data, and 5) knowledge graphs.
To complement the theory, we also provide a code base for the
presented work!.

Self-supervised and semi-supervised learning have long been
important for learning representations from big data. While auto-
encoder models are successful in some domains, contrastive ap-
proaches learning to discriminate encoded representations have ex-
ploded in their applicability and power in many domains, especially
in those where generative models and loss functions on objects are
difficult. However, most available applications are in the image and
text domains; other modalities that stand to benefit from CL-based
encoders include tabular databases, clinical times series in Elec-
tronic Health Records (EHRs), and structured (graph-encoded) data.
This strategy is fundamental to several state-of-the-art generative
methods. Our tutorial will provide a summary of state-of-the-art
solutions and open problems.

!https://github.com/sandhyat/ContrastiveLearning_Tutorial
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3 GENERAL DESCRIPTION OF TUTORIAL
CONTENT

Contrastive learning (CL) is a self-supervised strategy to learn a
dense numeric representation of a given feature space, usually by
discriminating augmentations of a sample (positive pairs) versus
other samples (negative pairs). CL methods differ based on the
strategy for generating augmentations, strategy for selecting nega-
tive pairs, and loss function. By manipulating the contrastive task,
differentiating corrupted versions of the same object from other ob-
jects will train embedding functions to represent the major features
of the feature space. Because paired representations of the same
object in different domains (such as text description of an image)
can be used as the positive pair, multimodal representation learn-
ing in the same space is possible without significant modifications.
Although the concept of contrastive losses was introduced by [18],
it was not broadly used by ML community until the InfoNCE loss
was defined [34] and found to work well as an instance discrimina-
tor [50]. In the computer vision and natural language processing
domain, the CLIP model [35] shows the potential of contrastive
learning by pre-training representations of images and text that are
zero-shot transferred to generative methods. Due to CL’s real world
popularity in vision and language, the existing survey papers and
tutorials (Neurips’21, ECCV’22, NAACL’22) focus on these domains.
We will present a comprehensive overview of CL foundations and
applications outside of images and text.

The goal of data augmentation is to increase the variability of
the data and expose the model to different perspectives for learning
similar or dissimilar representations. Data augmentation techniques
in CL are modality-specific, and hence each data type has its own
particular strategies which may not apply elsewhere. For example,
there is obviously workable analogy of “color distortion” from
images into text. Common data augmentation techniques include
cropping, flipping, rotation, adding noise, and random trimming in
sequences. In addition to pre-determined augmentations, one can
also create augmentations adaptively [31]. Specific augmentation
techniques are also available in time series [11, 23, 57] and tabular
data [3, 44, 54]. Learning contrastive representation over graphs
has focused on downstream task performance [19] and the need
for better augmentations [55, 56].

In new data modalities, the optimal augmentation is difficult to
identify; in those cases, the loss function selected becomes more
important [33]. Some loss functions are optimized for a particu-
lar modality, such as in images [58] and time series [33, 49, 52].
Generally, there are a variety of loss functions that are available
for CL, the main ones being 1) contrastive loss that maximizes the
similarity between positive pairs, 2) InfoNCE loss that treats CL
as a binary classification problem between positive and negative
pairs, 3) triplet loss which relies on the relative distance between
the examples.

Unlike most supervised learning methods, forming batches in
an appropriate way is a key step in the contrastive learning frame-
work. Because the examples selected into a particular step of the
loss function can make the underlying discriminative task easier
or harder, “hard negative mining” of example pairs which force
the embedding to represent more subtle features is a long-standing
approach [21, 22, 37, 45]. However, some variations are successful
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with no negative examples at all [8, 58, 59]. Alternatively, large
batch sizes can make likely that at least some negative pairs are
“hard” and improve performance [50]. To circumvent the computa-
tional complexity and optimization instability of these algorithms,
approaches which cluster examples based on an intermediate rep-
resentation or an auxillary network can accomplish much the same
goal [6, 17]. Batch selection is therefore intimately tied to the opti-
mization strategy, which can have a large impact on the quality of
representations. For example, large memory banks [50], momentum
encoders as in MoCo [20], and simple agreement maximization on
large batch sizes for a longer time as in SimCLR [7] were found
to work well in images, but may not be as important in tabular
data. Most CL methods assume that positive pairs (from augmen-
tations or views) share underlying information and maximize the
agreement between the latent representation as training progresses.
FactorCL [29] challenges this assumption and demonstrates that
there exist cases where task-relevant information can be factorized
into shared and unique representation.

The two views in contrastive learning can be augmented views
(noisy images) of the same data point [7, 20], two different views
(images from different angles) of a source of information[38, 42], or
two different sources of information about the same object (image
and its text description) [14, 62]. In addition to contrasting in the
native input space, similar to VAEs, one can implement contrastive
loss on the perturbations of embeddings [26, 56].

Understanding why CL is so successful in some cases is still an
active area of research. Some work has elucidated the relationship
between mutual information and CL via InfoNCE [43]. Another
line of work explores the geometry of embeddings being on a hy-
persphere [45] and of the modality gap between views [30]. The
network architecture and training algorithm are also important
variables in the success of CL; this is especially important in less
investigated modalities [39]. A popular use case of contrastive learn-
ing, DALL-E 2, which generates images from a text prompt, is a
prominent example which illustrates the working of the above com-
ponents together to form a highly performant representation used
in a complex downstream task [35, 36].

4 OUTLINE

(1) Part 1: Overview of contrastive learning foundations and
applications
o Contrastive learning in different paradigms, history and
popularity [18, 34, 50]
o Different data augmentation techniques: cutout, adding
noise, trimming, etc.
e Different loss functions: InfoNCE, Triplet loss, NT-Xent
loss, etc.
e Performance evaluation methods: linear methods, transfer
learning abilities
o Theoretical understanding of contrastive learning in terms
of inductive biases [39], geometry of embedding [46], mu-
tual information and entropy [16]
e Understanding CLIP [35] and UnCLIP [36] that led to
DALL-E 2 (AI artist)
(2) Part 2: How contrastive learning differs in different data
modalities?
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o Need of modality-specific augmentations and loss func-
tions.
e Contrastive learning methods for visual representations
that rely on
— optimization parameters (large batch size, more training
steps etc[7] , adding a momentum encoder [20]) or using
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CL-based methods to experiments and applications. Audience back-
ground can be intermediate with knowledge of neural network
training (loss functions, gradient descent) and widely used architec-
tures (CNN, RNN, transformers). Some topics will be more valuable
to those with prior exposure (graph neural networks).
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