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Under the assumption that a processor may have a multi- 
plicity of arithmetic units, a compiler for such a processor should 
produce object code to take advantage of possible parallelism 
of operation. Most of the presently known compilation tech- 
niques are inadequate for such a processor because they 
produce expression structures that must be evaluated serially. 
A technique is presented here for compiling arithmetic ex- 
pressions into structures that can be evaluated with a high 
degree of parallelism. The algorithm is a variant of the so- 
called "top-down" analysis technique, and requires only one 
pass of the input text. 

l .  I n t r o d u c t i o n  

The rapid advances in computer technology in recent 
years h~ve brought us into an era in which speed of compu- 
tat ion is limited by factors other than the operating 
speeds of its component devices. Two such factors, for 
example, are the input-output information bandwidths, 
arm the propagatiott delays between the component de- 
vices of the system. [n order to increase computation rate 
in view of these factors, the trend has been toward corn- 
purer systems capable of a high degree of parallelism. 

One approach to this end (by no means the only one) is 
exemplified by tile eentrM processor of the CDC 6600 
which has several independent arithmetic units that are 
capable of fully parallel operation. If this approach is 
carried further in the coming years, processors may con- 
tMn tens or hundreds of independent arithmetic units. 
The problem of etticient utilization of such a processor 
then becomes a major problem. 

Ultimately, the problem of efficiency will fall on the com- 
pilers and tile compiler writers. To this end we describe a 
one-pass Mgorithm for the compilation of expressions such 
t e a t  tile resulting expression structure is inherently 
parallel. (By this we mean that elenmnts of structure cat, 
be evMuated in parMlel.) 5lost of the commonly used con> 
pilation techniques result in structures that  must be 
evaluated serially. In Section 2 of this paper we describe 
the structures produced by several compilation techniques 
and relate these structures to the process of par'Mid com- 
putation.  Section 3 contains a description of the expression 
compiler, and the AI,GOi, text of the compiler appears in 
an Appendix. 

The  research reported in this p:q;er was sponsored by the Air 
Force Cambridge llesear(',h I,aboratories, ()lIiee of Aerospa.ce 
Research ,  Bedford, Mass., un(lev Contracts AF 19(628)-5920 and 
AF 19(628)-2902. 

2. Expression S t rue tm 'es  

The technique for translating convenbiot~al notation of 
arithmetic expressions into a "suffix Polish." string is well 
known (see, for example, [1D, but tile resulting instruction 
sequence is not welt suited to a parMlel processor. In par- 
ticular, the expression 

A + B + C + I ) + E + F + G + I I  

is translated into the structure shown in Figure l ( a ) ,  
which calls for seven additions to be performed sequen- 
tially. The translation algorithm essentially breaks the 
expression into partial sums as if the expression were 
parenthesized as 

((((((A + B) + C) + D) + J~') + F) + a) + ~.  

For a parallel processor' of the type described in the Intro- 
duction, the optimum sequence of partiM sums would 
correspond to a binary tree as indicated in Figure l ( b )  
and would be equivalent to 

((A + B) + (C + D)) + ((E + F) + (G + H)). 

Tile translation algorithm described in this paper gives 
the desired result. I t  always produces a full b inaw tree of 
n levels when there are 2" terms, and unbManced partial 
trees when the number of terlns is not a power of two. 
Although this seail technique is claimed to be novel there 
has been flowcharted ill the literature a one-pass scan thai. 
produces a Polish string in which terms are combined pair- 
wise, and the resulting partial sums added sequentially [2]. 
For the example above, this scan would yield the t | l ird 
tree shown ill Figure l (c) ,  which is equivalent to the  
expression 

((((A + B) + (C + D)) + (E + F)) + (a  + H)).  

Hellerman [3] and Squire [4] have both reported mult ipass  
algorithms for compiling arithmetic expressions. Al though 
these algorithms are set ill a slightly different context, b o t h  
produce results equivalent to the algorithm described here.  
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Fro. 1. Three different s;rueLures for the expression 

A + B + U + D + E + F + G + H  
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I~,o is worth.willie to no{o that no~)e of the proposed trans- 
latio> techniques for parallel evaluation of e:vpressions 
can comp]y with the rules for evalu~zting expressions in 
Al~Gor, [6] but all satisfy the ]ess restrictive rules of ASA 
FOiT,TeAN [7]. 

Before proceeding to a description of the algorithm, 
some discussion about the form of the translator output is 
pertinent to the material. I t  is normal practice to write suf- 
fix Polish ]n the form AB + CD @ + EF + GII + + + for 
the full binary tree, and AB + CD + +  EF +q- GH q-+ 
for the suboptimal form of Figure l (e) .  In this notation 
the symbol " A "  corresponds to the operation "Fetch A" 
meaning that  the vah te of A is to be placed at the top of a 
pushdown stack. The symbol " + "  is the binary lnachine 
operator "ADD," which causes the contents of the top two 
cells in the pushdown stack to be added and their sum 
placed in a single cell that  replaces the original pair. In 
the latter ease the stack has been "popped up." In order 
to allow the translator as much freedom as possible in 
determining how to group expressions, expressions con- 
taining subtraction operations will be compiled with the 
unary operator MINUS.  Thus, the expression A '4- B - 
C + D, which cannot correctly be parenthesized as 
(A + B) -- (C + D), will be translated as if it were the 
expression (A + B) + ((--C) + D). The suffix Polish form 
of the latter is AB + C - D + + .  Similarly, the divide 
operator "/"  will be treated as a unary RECIPROCATE 
operator to permit the expression A X B/C × D = 
(A X B X D)/C to be translated to the equivalent of 
(A × B × ( ( l / C )  ×D)) , i . e . ,AB  × C/D × ×  insuffix 

Polish. 
As given here, the translation algorithm will not recog- 

nize expressions containing a true unaIy operator such as 
the negation in " - A  + B," even though unary MINUS 
operations are produced as output by the algorithm. No 
attempt has been made to include this capability in the 
algorithm in order to leave it as uncluttered as possible. 

3. Compiler Description 

Since the translator processes are intimately connected 
with the syntax underlying the language of the arithmetic 
expressions, we summarize the language accepted by the 
translator here. The language description is in modi- 
fied Backus Normal Form [5] which uses the metasym- 
bols "::=" to mean "is defined to be," "(" and ")" to 
bracket syntactic units, "1" to mean "or," and the 
metabraces and star such that "{X}*" means "empty 
I X I X X ] X X X I  "'" ." The language of the expressions 
can be described by the five syntactic units--variable, 
primary, factor, term, and expression--as follows: 

(expression) ::= <term) {(adding operator} (term)}* 
(term) ::= (factor) {(multiplying operator) (factor)}* 
(factor) ::= (primary) { I" (primary} }* 
(primary) ::= (variable) I ((expression)) 
(variable) ::= A [ B I C I "'" I Z 

where the adding operators are the operators "+" and 
"-", the multiplying operators are "×" and "/", and the 
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" ~ " denotes exponentiation. The syntactic unit (variable> 
denotes a simple variable. 

From this point we shall describe the compilation tech- 
nique in general and leave the details to a set of ALGOL 
procedures that  are found in the Appendix. The reader is 
urged to use the syntactic description of the expression 
language as a guide to understanding the At,GeL text. 

Since the compiler must scan an input string, it is as- 
sumed that there is a procedure called SCAN that keeps 
track of the position of the scanner in the input string and 
produces a new elementary syntactic unit while stepping 
the input scanner each time it is called. The new syntactie 
unit is assumed to be stored in the integer variable called 
ITEM. tlere we make the assunlption that the character 
is scanned and converted using the A format as described 
in [8] so that we can make use of the built-in procedure 
EQUIV for converting string characters to tl  eir internal 
integer representation. The procedure OUTPUT is 
assumed to convert its argument from integer representa- 
tion to a string character attd place it in the output string. 

In order to generate a tree-like hierarehy of operations, 
the scanning technique keeps traek of the tree level and 
places tile operators in the output string accordingly. To 
see how tile procedures automatically take care of the 
necessary bookkeeping, consider how the expression 
A + B + C + D + E + F + G + H i s c o m p i l e d .  For the  
moment, only the procedures EXPR£~SION and TERM 
are pertinent, and we shall assume that TERM has been 
modified to read: 

if  level = 0 then 
begin output  (ilem); 

scan; 
end 

etc., in place of the calls on FACTOR, which are listed in 
the ALGOL text. 

We use an inductive argument to show that  a binary 
tree is produced for the example expression. Induction is 
on the wflue of LEVEL that is set by EXPRESSION for 
a call on TERM. The first call on TERM with LEVEL = 
0, produces the output symbol "A" and leaves the next 
operator "+"  in ITEM. The output is a binary tree with 
one node, height 0. EXPRESSION calls TERM at level 1 
because ITEM contains a "+".  At this level, TERM 
moves the scanner forward to place "B" in ITEM, calls 
itself at the 0th level, and places a "+"  in the output 
string before exiting back to EXPRESSION. Since the 
call on TERM at level 0 will compile a binary tree with 
one node, the output string has become " A B + "  and the 
scanner has moved forward to place the second "+"  
operator in ITEM. Note that the iterative call on TERM 
by EXPRESSION has resulted in the compilation of a 
binary tree with two nodes, and of height 1. 

Proceeding inductively, assume that  a binary tree of 
height n - 1  has been generated by n-iterated calls on 
TERM, each at a successively higher level. At the nth exit 
of TERM back to EXPRESSION, ITEM will contain the 
operator "+"  if there is one left uncompiled in the input 
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~ring. The caI1 on TEICM at level n will result in a scan to 
place a new operand in I T E M ,  sn iterated sequence of n 
eMls on TEICM at successively higher levels beginning at 
level O, and the insertion of a " + "  in the output  string. 
Since the internally generated sequence of calls on T k % M  
are identical to the calls generated by E X P R E S S I O N ,  
they will result in the compilation of another binary tree 
ot height n - 1 .  Since the operator " + "  is suffixed to two 
binary trees of height n -  i, the result is a full binary ~ree 
of height n. Furthermore, I T E M  will contain the next 
uneompiled operator in the input string. 

A few words of explanation are necessary to fill in the 
program details. The action of T E R M  artd F A C T D R  with 
respect to the compilation of terms is analogous to the 
action of E X P R E S S I O N  and T E R M .  Hence, the pro- 
eedm'e F A C T O R  is Mlnost identical to T E R M .  The opera- 
tor " I" " cannot be treated as the multiplying and adding 
operators have been treated because it is not associative. 
Hence, FACTO[i  produces the string A B T  C r D ~ from 
the expression A T B ~" C T D without reordering the 
operators in a treelike structure. 

Expressions within parentheses are compiled as entities 
within an output string by the recursive eall on E X P R E S -  

S I O N  contMned within procedure P R I M A R Y .  Notice in 
particular how the action of the variables M I N U S  attd 

D I V I D E  con_trol the code emitted for the unary operators 
while a recursive call on E X P R E S S I O N  is in effect. Nor- 
mally when a unary operator is scanned, the corresponding 
Boolean variable D I V I D E  or M I N U S  is set t rue .  At 
Levd  O, T E R M  and FACT~)R eheck these variables to 
determine if a unary operator ought to be emitted. In  
case P R I M A R Y  scans an expression between the setting 
of a Boolea*l variable and the testing of the variable, the 
values of the variables are "pushed-down" while the recur- 
sive call of E X P R E S S I O N  is in effect. The  reeursive call 
of E X P R E S S I O N  is begun with f a l s e  vaIues of D I -  

V I D E  and M I N U S ,  and at the termination of the call 
when the closing pt~renthesis is scanned, the old values of 
M I N U S  and D I V I D E  are restored. 

Inspection of the following examples should clarify the 
description of the compiler. 

Expression 

A+B+C+D+E+F+G+H 
A+B+C+DXEXF+G+H 
A + B - C - D X E X F + G + H  

A +B-C-.DX (EXF+G+ II) 

A + B - C - D / ( E X I F + G  ? H) 

A + B - C - D + ( E + F  T GXH/ 
I X J X K ) / L + M + N  

Compiled Expression 

A B + C D + + E F + G H + + +  
A B + C D E X F X  + + G H + +  
A B + C - D E X F X  -- + +  

GH++ 
A B + C - D E F X G +  
H+×-++ 

A B + C - D E F X G H  t +, 
X - + +  

A B + C - D -  ++EFG T H X [ /  
J X  X KX +L/X  M + N +  + 
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A P P E N D I X .  C o m p d e r  ~}roeedures (,.I~ ALGOL) 
procedure  expre.saions; 
begb~ 
integer item.; 
]{oolean 'rr~if~t~8, divide; 
i n t ege r  ~evel; 
procedure  term(level); value level; i n t ege r  level; 
begin  i n t e g e r  treelevel; 

i f  level = 00~en 
begin )actor (0); 

treelevel := 1; 
for treelevel + 1 while item = equiv('X') V item = equiv(' fl, ) 

do faetor@reelevel) ; 
if minus then outstring(1, ~-')  ; 
mitzus := ihlse: 

en d 
else 
begin 

minus := item = equiv( '- ' );  
scan; 
term (0) ; 
treelevel := O; 
for treeleveI := treelevel + 1 while (item = equiv('+') V i$c~>~ 

= equiv( '- ' ))  A h'eeIevel < level do term(treeleveI) ; 
output('+') 

end 
end term; 
procedure factor(level); value level; integer level; 
begin integer treelevel; 

if level = 0 then 
begin primary; 

treelevel := 0; 
for h'eelevel := treelevel + 1 while item = equiv( ~ 1" ') do 

begin aean; 
primary; 
outstrieg(1, ' ~ ') 

e nd  
if divide then outstring(1, ' / ' )  
divide := false; 

end 
else 
begin divide := item = equiv('/'); 

s ea'~; 
factor (0) ; 
treeleveI := 0; 
for treelevel := treelevel + 1 while (item = equiv('X') V i t e m  

= equiv('/')) A treelevel < level do faetor(treelevel); 
outstring(1, 'X')  

end 
end factor; 
procedure primary; 
begin 

if  item = eqwiv('(') then 
begin expression; 

i f  ite~n # equiv(')') then error else scan 
end 
else 
begin ou tpu t ( i t em)  ; 

scan 
end 
end primary; 

comment the body of expression begins here; 
divide := minus := false; 
term (O) ; 
level := O; 
for level := level + 1 while item = equiv('+') V item = 

equiv( '- ')  do 
term(level) 

end expression 
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A NOTE 

Top-to-Bottom Parsing 
Rehabilitated? 
R. A. BROOKnR 
Manchester University,* Man&ester, England 

This note is concerned with the efficiency of the Top-to- 
Bottom parsing algorithm as used in connection with program- 
ming language grammars. It is shown, for instance, that 
retracing of unprofitable paths can often be eliminated by 
a suitable rearrangement of the productions defining the 
grammar. The essential weakness of the method is in dealing 
with complicated syntactic structures which are in practice 
only sparsely occupied, e.g., arithmetic expressions. 

The question is sometimes raised as to the relative 
merits of syntax analysis " top down" and "bot tom up"  
(see, e.g., the Discussion following Leavenworth [1]). 
There seems to be little published evidence. 

Griffiths and Petr iek [2] remark (in a paper on the rela- 
tire efficieneies of context-free g rammar  recognizers), " In  
this comparison we found our SBT proeedm'e to be 
enormously more efficient than our STB procedure for the 
Lisp and ALGOL programming language grammars con- 
sidered, and generally superior for all other grammars 
considered except those for which the recognizers were 
deterministic." 

While not doubting their conclusions for the particular 
grammars they considered (although even the authors them- 
selves admit  to some discrepancy between some of their 
conclusions and experience obtained in the field), it is the 
purpose of this note to draw attention to the remarks found 
in Cheatham [3]: "For  programming lai~guages of the 
current sort, there is no clear advantage in favor of either 
the top-down or bot tom-up analysis techniques, insofar as 
efficiency of the analyzer is concerned. For either tech- 
nique, it is possible to design a language and syntax 
specification on which the technique will perform very 
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poorly, while tile other one will not be nearly so bad. The 
choice between the techniques is generally made on tile 
basis of considerations other than raw speed of the analy- 
sis, ...". 

Now in [2] only one gl'anuntu" is presented in detail 
which supports the authors'  conclusions. I t  is 

F -+ C L -~ L' 

F - -~S L - ~ p  

F --~ P L -+ q 

F --~ U L --~ r 

C -+ U ~ U S - - ,  U V S 

u - ,  (F) S -~ u V u 

U--~ -n U P - ~  U A P 

U--~ L P ~ U /k U 

The following sentence is one which they parse w.r.t. 
this grammar -1 ( -~ ( p ' / k  (q V r ) / k  p ' )  ). If  we write the 
grammar in the more concise fonn 

F - - ~ C [ S I P I U  

C ~ U D U  

U ~ (F) I -~U I L 

L ~ L '  

L - - ~ p [ q l r  

S ~ U V S I U V U  

P - - ~ U  / \  P [ U A U 

it will be clear why recognizing the above sentence could 
involve a vast amount of retracing. Thus top-to-bot tom 
starts by looking for a "C", which means looking for a 
"U",  then a "(" ,  which it does not find, then " -nU" ,  
which after a fantastic search it eventually finds; then it 
returns to the C-production and looks for a " ~ " ,  which 
it does not find, and so returns to the F-production and 
starts looking for an " S "  instead, and so on. 

The authors of [2] remark, "In  order to determine the 
extent to which the disparity in efficiency between the 


