
One-Pass Compilation of
Arithmetic Expressions
for a Parallel Processor

HAROLD S. STONE
Stanford Research Institute, Menlo Park, Cal@rnia

Under the assumption that a processor may have a multi-
plicity of arithmetic units, a compiler for such a processor should
produce object code to take advantage of possible parallelism
of operation. Most of the presently known compilation tech-
niques are inadequate for such a processor because they
produce expression structures that must be evaluated serially.
A technique is presented here for compiling arithmetic ex-
pressions into structures that can be evaluated with a high
degree of parallelism. The algorithm is a variant of the so-
called "top-down" analysis technique, and requires only one
pass of the input text.

l . I n t r o d u c t i o n

The rapid advances in computer technology in recent
years h~ve brought us into an era in which speed of compu-
tat ion is limited by factors other than the operating
speeds of its component devices. Two such factors, for
example, are the input-output information bandwidths,
arm the propagatiott delays between the component de-
vices of the system. [n order to increase computation rate
in view of these factors, the trend has been toward corn-
purer systems capable of a high degree of parallelism.

One approach to this end (by no means the only one) is
exemplified by tile eentrM processor of the CDC 6600
which has several independent arithmetic units that are
capable of fully parallel operation. If this approach is
carried further in the coming years, processors may con-
tMn tens or hundreds of independent arithmetic units.
The problem of etticient utilization of such a processor
then becomes a major problem.

Ultimately, the problem of efficiency will fall on the com-
pilers and tile compiler writers. To this end we describe a
one-pass Mgorithm for the compilation of expressions such
t e a t tile resulting expression structure is inherently
parallel. (By this we mean that elenmnts of structure cat,
be evMuated in parMlel.) 5lost of the commonly used con>
pilation techniques result in structures that must be
evaluated serially. In Section 2 of this paper we describe
the structures produced by several compilation techniques
and relate these structures to the process of par'Mid com-
putation. Section 3 contains a description of the expression
compiler, and the AI,GOi, text of the compiler appears in
an Appendix.

The research reported in this p:q;er was sponsored by the Air
Force Cambridge llesear(',h I,aboratories, ()lIiee of Aerospa.ce
Research , Bedford, Mass., un(lev Contracts AF 19(628)-5920 and
AF 19(628)-2902.

2. Expression S t rue tm 'es

The technique for translating convenbiot~al notation of
arithmetic expressions into a "suffix Polish." string is well
known (see, for example, [1D, but tile resulting instruction
sequence is not welt suited to a parMlel processor. In par-
ticular, the expression

A + B + C + I) + E + F + G + I I

is translated into the structure shown in Figure l (a) ,
which calls for seven additions to be performed sequen-
tially. The translation algorithm essentially breaks the
expression into partial sums as if the expression were
parenthesized as

((((((A + B) + C) + D) + J~') + F) + a) + ~.

For a parallel processor' of the type described in the Intro-
duction, the optimum sequence of partiM sums would
correspond to a binary tree as indicated in Figure l (b)
and would be equivalent to

((A + B) + (C + D)) + ((E + F) + (G + H)).

Tile translation algorithm described in this paper gives
the desired result. I t always produces a full b inaw tree of
n levels when there are 2" terms, and unbManced partial
trees when the number of terlns is not a power of two.
Although this seail technique is claimed to be novel there
has been flowcharted ill the literature a one-pass scan thai.
produces a Polish string in which terms are combined pair-
wise, and the resulting partial sums added sequentially [2].
For the example above, this scan would yield the t | l ird
tree shown ill Figure l (c) , which is equivalent to the
expression

((((A + B) + (C + D)) + (E + F)) + (a + H)).

Hellerman [3] and Squire [4] have both reported mult ipass
algorithms for compiling arithmetic expressions. Al though
these algorithms are set ill a slightly different context, b o t h
produce results equivalent to the algorithm described here.

+

+ H

+ G
+ F

+ E

A B

(el

+

+ +

+ * * G H

A B C D E F O H A B C [3

(b) (c)

Fro. 1. Three different s;rueLures for the expression

A + B + U + D + E + F + G + H

220 Communica t ions of tile ACM Volume 10 / N u m b e r 4 / April , 190 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363242.363256&domain=pdf&date_stamp=1967-04-01

I~,o is worth.willie to no{o that no~)e of the proposed trans-
latio> techniques for parallel evaluation of e:vpressions
can comp]y with the rules for evalu~zting expressions in
Al~Gor, [6] but all satisfy the]ess restrictive rules of ASA
FOiT,TeAN [7].

Before proceeding to a description of the algorithm,
some discussion about the form of the translator output is
pertinent to the material. I t is normal practice to write suf-
fix Polish]n the form AB + CD @ + EF + GII + + + for
the full binary tree, and AB + CD + + EF +q- GH q-+
for the suboptimal form of Figure l (e) . In this notation
the symbol " A " corresponds to the operation "Fetch A"
meaning that the vah te of A is to be placed at the top of a
pushdown stack. The symbol " + " is the binary lnachine
operator "ADD," which causes the contents of the top two
cells in the pushdown stack to be added and their sum
placed in a single cell that replaces the original pair. In
the latter ease the stack has been "popped up." In order
to allow the translator as much freedom as possible in
determining how to group expressions, expressions con-
taining subtraction operations will be compiled with the
unary operator MINUS. Thus, the expression A '4- B -
C + D, which cannot correctly be parenthesized as
(A + B) -- (C + D), will be translated as if it were the
expression (A + B) + ((--C) + D). The suffix Polish form
of the latter is AB + C - D + + . Similarly, the divide
operator "/" will be treated as a unary RECIPROCATE
operator to permit the expression A X B/C × D =
(A X B X D)/C to be translated to the equivalent of
(A × B × ((l / C) ×D)) , i . e . ,AB × C/D × × insuffix

Polish.
As given here, the translation algorithm will not recog-

nize expressions containing a true unaIy operator such as
the negation in " - A + B," even though unary MINUS
operations are produced as output by the algorithm. No
attempt has been made to include this capability in the
algorithm in order to leave it as uncluttered as possible.

3. Compiler Description

Since the translator processes are intimately connected
with the syntax underlying the language of the arithmetic
expressions, we summarize the language accepted by the
translator here. The language description is in modi-
fied Backus Normal Form [5] which uses the metasym-
bols "::=" to mean "is defined to be," "(" and ")" to
bracket syntactic units, "1" to mean "or," and the
metabraces and star such that "{X}*" means "empty
I X I X X] X X X I "'" ." The language of the expressions
can be described by the five syntactic units--variable,
primary, factor, term, and expression--as follows:

(expression) ::= <term) {(adding operator} (term)}*
(term) ::= (factor) {(multiplying operator) (factor)}*
(factor) ::= (primary) { I" (primary} }*
(primary) ::= (variable) I ((expression))
(variable) ::= A [B I C I "'" I Z

where the adding operators are the operators "+" and
"-", the multiplying operators are "×" and "/", and the

Volume 10 / Number 4 / April, 1967

" ~ " denotes exponentiation. The syntactic unit (variable>
denotes a simple variable.

From this point we shall describe the compilation tech-
nique in general and leave the details to a set of ALGOL
procedures that are found in the Appendix. The reader is
urged to use the syntactic description of the expression
language as a guide to understanding the At,GeL text.

Since the compiler must scan an input string, it is as-
sumed that there is a procedure called SCAN that keeps
track of the position of the scanner in the input string and
produces a new elementary syntactic unit while stepping
the input scanner each time it is called. The new syntactie
unit is assumed to be stored in the integer variable called
ITEM. tlere we make the assunlption that the character
is scanned and converted using the A format as described
in [8] so that we can make use of the built-in procedure
EQUIV for converting string characters to tl eir internal
integer representation. The procedure OUTPUT is
assumed to convert its argument from integer representa-
tion to a string character attd place it in the output string.

In order to generate a tree-like hierarehy of operations,
the scanning technique keeps traek of the tree level and
places tile operators in the output string accordingly. To
see how tile procedures automatically take care of the
necessary bookkeeping, consider how the expression
A + B + C + D + E + F + G + H i s c o m p i l e d . For the
moment, only the procedures EXPR£~SION and TERM
are pertinent, and we shall assume that TERM has been
modified to read:

if level = 0 then
begin output (ilem);

scan;
end

etc., in place of the calls on FACTOR, which are listed in
the ALGOL text.

We use an inductive argument to show that a binary
tree is produced for the example expression. Induction is
on the wflue of LEVEL that is set by EXPRESSION for
a call on TERM. The first call on TERM with LEVEL =
0, produces the output symbol "A" and leaves the next
operator "+" in ITEM. The output is a binary tree with
one node, height 0. EXPRESSION calls TERM at level 1
because ITEM contains a "+". At this level, TERM
moves the scanner forward to place "B" in ITEM, calls
itself at the 0th level, and places a "+" in the output
string before exiting back to EXPRESSION. Since the
call on TERM at level 0 will compile a binary tree with
one node, the output string has become " A B + " and the
scanner has moved forward to place the second "+"
operator in ITEM. Note that the iterative call on TERM
by EXPRESSION has resulted in the compilation of a
binary tree with two nodes, and of height 1.

Proceeding inductively, assume that a binary tree of
height n - 1 has been generated by n-iterated calls on
TERM, each at a successively higher level. At the nth exit
of TERM back to EXPRESSION, ITEM will contain the
operator "+" if there is one left uncompiled in the input

Communications of the ACM 221

~ring. The caI1 on TEICM at level n will result in a scan to
place a new operand in I T E M , sn iterated sequence of n
eMls on TEICM at successively higher levels beginning at
level O, and the insertion of a " + " in the output string.
Since the internally generated sequence of calls on T k % M
are identical to the calls generated by E X P R E S S I O N ,
they will result in the compilation of another binary tree
ot height n - 1 . Since the operator " + " is suffixed to two
binary trees of height n - i, the result is a full binary ~ree
of height n. Furthermore, I T E M will contain the next
uneompiled operator in the input string.

A few words of explanation are necessary to fill in the
program details. The action of T E R M artd F A C T D R with
respect to the compilation of terms is analogous to the
action of E X P R E S S I O N and T E R M . Hence, the pro-
eedm'e F A C T O R is Mlnost identical to T E R M . The opera-
tor " I" " cannot be treated as the multiplying and adding
operators have been treated because it is not associative.
Hence, FACTO[i produces the string A B T C r D ~ from
the expression A T B ~" C T D without reordering the
operators in a treelike structure.

Expressions within parentheses are compiled as entities
within an output string by the recursive eall on E X P R E S -

S I O N contMned within procedure P R I M A R Y . Notice in
particular how the action of the variables M I N U S attd

D I V I D E con_trol the code emitted for the unary operators
while a recursive call on E X P R E S S I O N is in effect. Nor-
mally when a unary operator is scanned, the corresponding
Boolean variable D I V I D E or M I N U S is set t rue . At
Levd O, T E R M and FACT~)R eheck these variables to
determine if a unary operator ought to be emitted. In
case P R I M A R Y scans an expression between the setting
of a Boolea*l variable and the testing of the variable, the
values of the variables are "pushed-down" while the recur-
sive call of E X P R E S S I O N is in effect. The reeursive call
of E X P R E S S I O N is begun with f a l s e vaIues of D I -

V I D E and M I N U S , and at the termination of the call
when the closing pt~renthesis is scanned, the old values of
M I N U S and D I V I D E are restored.

Inspection of the following examples should clarify the
description of the compiler.

Expression

A+B+C+D+E+F+G+H
A+B+C+DXEXF+G+H
A + B - C - D X E X F + G + H

A +B-C-.DX (EXF+G+ II)

A + B - C - D / (E X I F + G ? H)

A + B - C - D + (E + F T GXH/
I X J X K) / L + M + N

Compiled Expression

A B + C D + + E F + G H + + +
A B + C D E X F X + + G H + +
A B + C - D E X F X -- + +

GH++
A B + C - D E F X G +
H+×-++

A B + C - D E F X G H t +,
X - + +

A B + C - D - ++EFG T H X [/
J X X KX +L/X M + N + +

Acknowledgment. The author is indebted to M. W.
Green and C. L. Jackson of Stanford Research Inst i tute
and to the referees tbr severM comments and suggestions
tha t haa~e been incorporated in this paper.

RECEIVED SEPTEMBER, 1966; aEVlSEb DECEMBER, 1966

222 Comnmnieations of the ACM

A P P E N D I X . C o m p d e r ~}roeedures (,.I~ ALGOL)
procedure expre.saions;
begb~
integer item.;
]{oolean 'rr~if~t~8, divide;
i n t ege r ~evel;
procedure term(level); value level; i n t ege r level;
begin i n t e g e r treelevel;

i f level = 00~en
begin)actor (0);

treelevel := 1;
for treelevel + 1 while item = equiv('X') V item = equiv(' fl,)

do faetor@reelevel) ;
if minus then outstring(1, ~-') ;
mitzus := ihlse:

en d
else
begin

minus := item = equiv('- ');
scan;
term (0) ;
treelevel := O;
for treeleveI := treelevel + 1 while (item = equiv('+') V i$c~>~

= equiv('- ')) A h'eeIevel < level do term(treeleveI) ;
output('+')

end
end term;
procedure factor(level); value level; integer level;
begin integer treelevel;

if level = 0 then
begin primary;

treelevel := 0;
for h'eelevel := treelevel + 1 while item = equiv(~ 1" ') do

begin aean;
primary;
outstrieg(1, ' ~ ')

e nd
if divide then outstring(1, ' / ')
divide := false;

end
else
begin divide := item = equiv('/');

s ea'~;
factor (0) ;
treeleveI := 0;
for treelevel := treelevel + 1 while (item = equiv('X') V i t e m

= equiv('/')) A treelevel < level do faetor(treelevel);
outstring(1, 'X')

end
end factor;
procedure primary;
begin

if item = eqwiv('(') then
begin expression;

i f ite~n # equiv(')') then error else scan
end
else
begin ou tpu t (i t em) ;

scan
end
end primary;

comment the body of expression begins here;
divide := minus := false;
term (O) ;
level := O;
for level := level + 1 while item = equiv('+') V item =

equiv('- ') do
term(level)

end expression

Volume 10 / Number 4 / April, 1967

:?

REFERENCES

1. H~>~B*,~N, C. L, TranslM;ion to and from Po]ish notation.
Comp'ut. J. 5 (Oct. 1962), 210--213.

2. ALI, ARD, 1C W., WO~,F, t(. A., ~ND Z~:~ILLX, R.A. Some effects
of the 6600 computer o~ language structures. Comm. ACM 7,
2 (Feb. 1964), 112-119.

3. Hn~m~m~A~,]1. Parallel processing of algebraic expresskms.
IEEE Trans. ECJ5,1 (Fel). 1966), 82-90.

4. SQumn, J. S. A translalkm algorithm fos a multiple processor
computer. Proe. 18th ACM Nat. Conf., Denver, Colorado, 1963.

5. CARR, III, J. W., AND ~VEILAND, J. A nom'ecursive method
of syntax specification. Comm. AC3I 9, 4 (April 1966), 267-
269.

6. Revised report on tile algorithmic language Ar~aoi, 60. Comm.
ACM 6,1 (Jan. 1963), 1-17; see See. 3.3.5, pp. 7-8.

7. FORTRAN vs. BASIC FORTRAN. Comm. ACM 7, 10 (Oct.
1964), 590-625; see See. 6.4, pp. 598-599.

8. A proposal for input-output conventions in Ar, c~o~ 60. Comm.
ACM 7, 5 (May 1965), 273-283; see Sec. A.2.3.2, p. 275.

A NOTE

Top-to-Bottom Parsing
Rehabilitated?
R. A. BROOKnR
Manchester University,* Man&ester, England

This note is concerned with the efficiency of the Top-to-
Bottom parsing algorithm as used in connection with program-
ming language grammars. It is shown, for instance, that
retracing of unprofitable paths can often be eliminated by
a suitable rearrangement of the productions defining the
grammar. The essential weakness of the method is in dealing
with complicated syntactic structures which are in practice
only sparsely occupied, e.g., arithmetic expressions.

The question is sometimes raised as to the relative
merits of syntax analysis " top down" and "bot tom up"
(see, e.g., the Discussion following Leavenworth [1]).
There seems to be little published evidence.

Griffiths and Petr iek [2] remark (in a paper on the rela-
tire efficieneies of context-free g rammar recognizers), " In
this comparison we found our SBT proeedm'e to be
enormously more efficient than our STB procedure for the
Lisp and ALGOL programming language grammars con-
sidered, and generally superior for all other grammars
considered except those for which the recognizers were
deterministic."

While not doubting their conclusions for the particular
grammars they considered (although even the authors them-
selves admit to some discrepancy between some of their
conclusions and experience obtained in the field), it is the
purpose of this note to draw attention to the remarks found
in Cheatham [3]: "For programming lai~guages of the
current sort, there is no clear advantage in favor of either
the top-down or bot tom-up analysis techniques, insofar as
efficiency of the analyzer is concerned. For either tech-
nique, it is possible to design a language and syntax
specification on which the technique will perform very

* Department of Computer Science

poorly, while tile other one will not be nearly so bad. The
choice between the techniques is generally made on tile
basis of considerations other than raw speed of the analy-
sis, ...".

Now in [2] only one gl'anuntu" is presented in detail
which supports the authors' conclusions. I t is

F -+ C L -~ L'

F - -~S L - ~ p

F --~ P L -+ q

F --~ U L --~ r

C -+ U ~ U S - - , U V S

u - , (F) S -~ u V u

U--~ -n U P - ~ U A P

U--~ L P ~ U /k U

The following sentence is one which they parse w.r.t.
this grammar -1 (-~ (p ' / k (q V r) / k p ')). If we write the
grammar in the more concise fonn

F - - ~ C [S I P I U

C ~ U D U

U ~ (F) I -~U I L

L ~ L '

L - - ~ p [q l r

S ~ U V S I U V U

P - - ~ U / \ P [U A U

it will be clear why recognizing the above sentence could
involve a vast amount of retracing. Thus top-to-bot tom
starts by looking for a "C", which means looking for a
"U", then a "(" , which it does not find, then " -nU" ,
which after a fantastic search it eventually finds; then it
returns to the C-production and looks for a " ~ " , which
it does not find, and so returns to the F-production and
starts looking for an " S " instead, and so on.

The authors of [2] remark, "In order to determine the
extent to which the disparity in efficiency between the

