One-Pass Compilation of Arithmetic Expressions for a Parallel Processor

Harold S. Stone
Stanford Research Instilute, Menlo Park, California

Abstract

Under the assumption that a processor may have a multiplicity of arithmetic units, a compiler for such a processor should produce object code to take advantage of possible parallelism of operation. Most of the presently known compilation techniques are inadequate for such a processor because they produce expression structures that must be evaluated serially. A technique is presented here for compiling arithmetic expressions into structures that can be evaluated with a high degree of parallelism. The algorithm is a variant of the socalled "top-down" analysis technique, and requires only one pass of the input text.

1. Introduction

The rapid advances in computer technology in recent years have brought us into an era in which speed of computation is limited by factors other than the operating speeds of its component devices. Two such factors, for example, are the input-output information bandwidths, and the propagation delays between the component devices of the system. In order to increase computation rate in view of these factors, the trend has been toward computer systems capable of a high degree of parallelism.

One approach to this end (by no means the only one) is exemplified by the central processor of the CDC 6600 which has soveral independent arithmetic units that are capable of fully parallel operation. If this approach is carried further in the coming years, processors may contain tens or hundreds of independent arithmetic units. The problem of efficient utilization of such a processor then becomes a major problem.

Ultimately, the problem of efficiency will fall on the compilers and the compiler writers. To this end we describe a one-pass algorithm for the compilation of expressions such that the resulting expression structure is inherently parallel. (By this we mean that elements of structure can be evaluated in parallel.) Most of the commonly used compilation techniques result in structures that must be evaluated serially. In Section 2 of this paper we describe the structures produced by several compilation techniques and relate these structures to the process of parallel computation. Section 3 contains a description of the expression compiler, and the Algol text of the compiler appears in an Appendix.

[^0]
2. Expression Structures

The technique for translating conventional notation of arithmetic expressions into a "suffix Polish" string is well known (see, for example, [1]), but the resulting instruction sequence is not well suited to a parallel processor. In particular, the expression

$$
A+B+C+D+E+F+G+H
$$

is translated into the structure shown in Figure 1(a), which calls for seven additions to be performed sequentially. The translation algorithm essentially breaks the expression into partial sums as if the expression were parenthesized as

$$
((((((A+B)+C)+D)+E)+F)+G)+H
$$

For a parallel processor of the type described in the Introduction, the optimum sequence of partial sums would correspond to a binary tree as indicated in Figure 1(b) and would be equivalent to

$$
((A+B)+(C+D))+((E+F)+(G+H))
$$

The translation algorithm described in this paper gives the desired result. It always produces a full binary tree of n levels when there are 2^{n} terms, and unbalanced partial trees when the number of terms is not a power of two. Although this scan technique is claimed to be novel there has been flowcharted in the literature a one-pass scan that produces a Polish string in which terms are combined pairwise, and the resulting partial sums added sequentially [2]. For the example above, this scan would yield the third tree shown in Figure 1 (c), which is equivalent to the expression

$$
((((A+B)+(C+D))+(E+F))+(G+H))
$$

Hellerman [3] and Squire [4] have both reported multipass algorithms for compiling arithmetic expressions. Although these algorithms are set in a slightly different context, both produce results equivalent to the algorithm described here.

(a)

(b)

(c)

Fig. 1. Three different structures for the expression

$$
A+B+C+D+E+F+G+H
$$

It is worthwhile to note that none of the proposed trans－ lation techniques for parallel evaluation of expressions can comply with the rules for evaluating expressions in Algol［6］but all satisfy the less restrictive rules of ASA Fortran［7］．

Before proceeding to a description of the algorithm， some discussion about the form of the translator output is pertinent to the material．It is normal practice to write suf－ fix Polish in the form $A B+C D++E F+G H+++$ for the full binary tree，and $A B+C D++E F++G H++$ for the suboptimal form of Figure 1（c）．In this notation the symbol＂A＂corresponds to the operation＂Fetch A＂ meaning that the value of A is to be placed at the top of a pushdown stack．The symbol＂+ ＂is the binary machine operator＂ADD，＂which causes the contents of the top two cells in the pushdown stack to be added and their sum placed in a single cell that replaces the original pair．In the latter case the stack has been＂popped up．＂In order to allow the translator as much freedom as possible in determining how to group expressions，expressions con－ taining subtraction operations will be compiled with the unary operator MINUS．Thus，the expression $A+B-$ $C+D$ ，which cannot correctly be parenthesized as $(A+B)-(C+D)$ ，will be translated as if it were the expression $(A+B)+((-C)+D)$ ．The suffix Polish form of the latter is $\mathrm{AB}+C-D++$ ．Similarly，the divide operator＂／＂will be treated as a unary RECIPROCATE operator to permit the expression $A \times B / C \times D=$ $(A \times B \times D) / C$ to be translated to the equivalent of $(A \times B \times((1 / C) \times D))$ ，i．e．，$A B \times C / D \times \times$ in suffix Polish．

As given here，the translation algorithm will not recog－ nize expressions containing a true unary operator such as the negation in＂$-A+B$ ，＂even though unary MINUS operations are produced as output by the algorithm．No attempt has been made to include this capability in the algorithm in order to leave it as uncluttered as possible．

3．Compiler Description

Since the translator processes are intimately connected with the syntax underlying the language of the arithmetic expressions，we summarize the language accepted by the translator here．The language description is in modi－ fied Backus Normal Form［5］which uses the metasym－ bols＂：：＝＂to mean＂is defined to be，＂＂\langle＂and＂\rangle＂to bracket syntactic units，＂｜＂to mean＂or，＂and the metabraces and star such that＂$\{X\}^{*}$＂means＂empty $|X| X X|X X X| \cdots . "$ The language of the expressions can be described by the five syntactic units－variable， primary，factor，term，and expression－as follows：

```
(expression \(\rangle::=\langle\) term \(\rangle\{\) adding operator \(\rangle\langle\) term \(\rangle\}^{*}\)
\(\langle\) term \(\rangle \quad::=\langle\) factor \(\rangle\{\) multiplying operator \(\rangle\langle\) factor \(\rangle\}^{*}\)
\(\langle\) factor \(\rangle \quad::=\langle\) primary \(\rangle\{\uparrow\langle\text { primary }\rangle\rangle^{*}\)
〈primary〉 \(::=\langle\) variable \(\rangle \mid(\langle\) expression \(\rangle)\)
〈variable〉 \(::=A|B| C|\cdots| Z\)
```

where the adding operators are the operators＂+ ＂and ＂－＂，the multiplying operators are＂X＂and＂／＂，and the
＂\uparrow＂denotes exponentiation．The syntactic unit 〈variable〉 denotes a simple variable．

From this point we shall describe the compilation tech－ nique in general and leave the details to a set of Algol procedures that are found in the Appendix．The reader is urged to use the syntactic description of the expression language as a guide to understanding the Algol text．

Since the compiler must scan an input string，it is as－ sumed that there is a procedure called $S C A N$ that keeps track of the position of the scanner in the input string and produces a new elementary syntactic unit while stepping the input scanner each time it is called．The new syntactic unit is assumed to be stored in the integer variable called ITEM．Here we make the assumption that the character is scanned and converted using the A format as described in［8］so that we can make use of the built－in procedure EQUIV for converting string characters to th eir internal integer representation．The procedure OUTPUT is assumed to convert its argument from integer representa－ tion to a string character and place it in the output string．

In order to generate a tree－like hicrarchy of operations， the scanning technique keeps track of the tree level and places the operators in the output string accordingly．To see how the procedures automatically take care of the necessary bookkeeping，consider how the expression $A+B+C+D+E+F+G+H$ is compiled．For the moment，only the procedures EXPRESSION and TERM are pertinent，and we shall assume that $T E R M$ has been modified to read：

```
if level \(=0\) then
    begin output (item);
        scan;
    end
```

etc．，in place of the calls on FACTOR，which are listed in the Algol text．

We use an inductive argument to show that a binary tree is produced for the example expression．Induction is on the value of LEVEL that is set by EXPRESSION for a call on TERM．The first call on TERM with $L E V E L=$ 0 ，produces the output symbol＂A＂and leaves the next operator＂+ ＂in ITEM．The output is a binary tree with one node，height 0．EXPRESSION calls TERM at level 1 because ITEM contains a＂+ ＂．At this level，TERM moves the scanner forward to place＂B＂in ITEM，calls itself at the 0th level，and places a＂+ ＂in the output string before exiting back to EXPRESSION．Since the call on TERM at level 0 will compile a binary tree with one node，the output string has become＂$A B+$＂and the scanner has moved forward to place the second＂＋＂ operator in ITEM．Note that the iterative call on TERM by EXPRESSTON has resulted in the compilation of a binary tree with two nodes，and of height 1.
Proceeding inductively，assume that a binary tree of height $n-1$ has been generated by n－iterated calls on $T E R M$ ，each at a successively higher level．At the nth exit of TERM back to EXPRESSION，ITEM will contain the operator＂+ ＂if there is one left uncompiled in the input

Communications of the ACM
string. The call on TERM at level n will result in a scan to place a new operand in ITEM, an iterated sequence of n calls on TERM at successively higher levels begirning at level 0 , and the insertion of a " f " in the output string. Since the internally generated sequence of calls on TERM are identical to the calls generated by EXPRESSION, they will result in the compilation of another binary tree of height $n-1$. Since the operator " + " is suffixed to two binary trees of height $n-1$, the result is a full binary tree of height n. Furthermore, ITEM will contain the next uncompiled operator in the input string.
A few words of explanation are necessary to fill in the program details. The action of TERM and FACTOR with respect to the compilation of terms is analogous to the action of EXPRESSION and TERM. Hence, the procedure $F A C T O R$ is almost identical to TERM. The operator " \uparrow " cannot be treated as the multiplying and adding operators have been treated because it is not associative. Hence, $F A C T O R$ produces the string $A B \uparrow C \uparrow D \uparrow$ from the expression $A \uparrow B \uparrow C \uparrow D$ without reordering the operators in a treelike structure.
Expressions within parentheses are compiled as entities within an output string by the recursive call on EXPRESSION contained within procedure PRIMARY. Notice in particular how the action of the variables MINUS and DIVIDE control the code emitted for the unary operators while a recursive call on EXPRESSION is in effect. Normally when a unary operator is scanned, the corresponding Boolean variable DIVIDE or MINUS is set true. At Level 0, TERM and FACTOR check these variables to determine if a unary operator ought to be cmitted. In case PRIMARY scans an expression between the setting of a Boolean variable and the testing of the variable, the values of the variables are "pushed-down" while the recursive call of EXPRESSION is in effect. The recursive call of EXPRESSION is begun with false values of DIVIDE and MINUS, and at the termination of the call when the closing parenthesis is scanned, the old values of MINUS and DIVIDE are restored.
Inspection of the following examples should clarify the description of the compiler.

Expression	Compiled Expression
$A+B+C+D+E+F+G+H$	$A B+C D++E F+G B+++$
$A+B+C+D \times E \times F+G+H$	$A B+C D E \times F \times++G H++$
$A+B-C-D \times E \times F+G+H$	$A B+C-D E \times F \times-+$
	$G H++$
$A+B-C-D \times(E \times F+G+H)$	$A B+C-D E F \times G+$
	$H+\times-++$
$A+B-C-D /(E \times F+G \uparrow H)$	$A B+C-D E F \times G H \uparrow+$,
	$\times++$
$A+B-C-D+(E+F \uparrow G \times H /$	$A B+C-D-++E F G \uparrow H \times I /$
$I \times J \times K) / L+M+N$	$J \times K \times+L / \times M+N++$

Acknowledgment. The author is indebted to M. W. Green and C. L. Jackson of Stanford Research Institute and to the referees for several comments and suggestions that have been incorporated in this paper.
Received September, 1966; Revised D ${ }^{\text {ecember, }} 1966$

APPENDIX. Compiler Procedures (In ALGOL)
procedure expressions;
begin
integer ilem;
Boolean minus, divide;
integer level;
procedure lerm(level); yalue level; integer level;
begin integer treelevel;
if level $=0$ then
begin factor (0);
treelevel : = 1 ;
for treelevel +1 while item $=$ equiv (' X ') V item $=$ equiv(' $/$ ') do factor (treelevel);
if minus then outstring $\left(1,{ }^{\prime}-{ }^{\prime}\right)$;
minus := false:
end
else
begin
minus $:=$ ilem $=$ equiv $\left({ }^{\prime}-\right.$ ');

$$
\operatorname{scan}
$$

term (0) ;
treelevel $:=0$;
for treelevel $:=$ treelevel +1 while (ilem $=$ equiv ('+') \vee item
$=$ equiv('-')) \triangle treelevel $<$ level do term(treelevel); output('+')
end
end term;
procedure factor (level); value level; integer level;
begin integer treelevel;
if level $=0$ then
begin primary;
treelevel $:=0 ;$
for treelevel $:=$ treelevel +1 while $i t e m=\operatorname{equiv}(' \uparrow$ ') do
begin scan;
primary;
outstring (1, '个')
end
if divide then outstring(1, '/')
divide $:=$ false;
end
else
begin divide $:=$ item $=\operatorname{equiv}\left(/^{\prime}\right)$;
scan;
factor (0);
treelevel $:=0$;
for treelevel $:=$ treelevel +1 while ($i t e m=\operatorname{equiv}(' \times$ ') $\vee i t e r$.
$\left.=\operatorname{equiv}\left({ }^{\prime} /{ }^{\prime}\right)\right) \wedge$ treelevel $<$ level do factor (treelevel) $;$ outstring (1, ' \times ')
end
end factor;
procedure primary;
begin
if item $=$ equiv('(') then
begin expression; if item \neq equiv(')') then error else scan
end
else
begin output(item);
scan
end
end primary;
comment the body of expression begins here;
divide $:=$ minus $:=$ false;
term (0);
level $:=0$;
for level $:=$ level +1 while item $=$ equiv(${ }^{\prime}+$ ') \vee item $=$ equiv('一') do
term (level)
end expression

1. Hambence, C. Li. Translation to and from Polish notation. Comput. J. 5 (Oct. 1962), 210-213.
2. Allard, R. W., Wolf, K. A., And Zemlin, R. A. Some effects of the 6600 computer on language structures. Comm. ACM 7 , 2 (Feb. 1964), 112-119.
3. Helterman, H. Parallel processing of algebraic expressions. IEEE Trans. EC-15,1 (Feb. 1966), 82-90.
4. Seurne, J. S. A translation algorithm fos a multiple processor computer. Proc. 18th ACM Nat. Conf., Denver, Colorado, 1963.
5. Carr, III, J. W., and Werland, J. A nonrecursive method of syntax specification. Comm. ACM 9, \& (April 1966), 267269.
6. Revised report on the algorithmic language Algol 60. Comm. ACM 6,1 (Jan. 1963), 1-17; see Sec. 3.3.5, pp. 7-8.
7. FORTRAN vs. BASIC FORTRAN. Comm. ACM 7, 10 (Oct. 1964), 590-625; see See. 6.4, pp. 598-599.
8. A proposal for input-output conventions in Algol 60. Comm. ACM 7, 5 (May 1965), 273-283; see Sec. A.2.3.2, p. 275.
poorly, while the other one will not be nearly so bad. The choice between the techniques is generally made on the basis of considerations other than raw speed of the analysis, ...".

Now in [2] only one grammar is presented in detail which supports the authors' conclusions. It is

$$
\begin{array}{ll}
F \rightarrow C & L \rightarrow L^{\prime} \\
F \rightarrow S & L \rightarrow p \\
F \rightarrow P & L \rightarrow q \\
F \rightarrow U & L \rightarrow r \\
C \rightarrow U \supset U & S \rightarrow U \vee S \\
U \rightarrow(F) & S \rightarrow U \vee U \\
U \rightarrow \neg U & P \rightarrow U \wedge P \\
U \rightarrow L & P \rightarrow U \wedge U
\end{array}
$$

The following sentence is one which they parse w.r.t. this grammar $\neg\left(\neg\left(p^{\prime} \wedge(q \vee r) \wedge p^{\prime}\right)\right)$. If we write the grammar in the more concise form

$$
\begin{aligned}
& F \rightarrow C|S| P \mid U \\
& C \rightarrow U \supset U \\
& U \rightarrow(F)|\neg U| L \\
& L \rightarrow L^{\prime} \\
& L \rightarrow p|q| r \\
& S \rightarrow U \vee S \mid U \vee U \\
& P \rightarrow U \wedge P \mid U \wedge U
\end{aligned}
$$

it will be clear why recognizing the above sentence could involve a vast amount of retracing. Thus top-to-bottom starts by looking for a " C ", which means looking for a " U ", then a "(", which it does not find, then " $\neg U$ ", which after a fantastic search it eventually finds; then it returns to the C-production and looks for a " \supset ", which it does not find, and so returns to the F-production and starts looking for an " S " instead, and so on.

The authors of [2] remark, "In order to determine the extent to which the disparity in efficiency between the

[^0]: The research reported in this paper was sponsored by the Air Force Cambridge Recearch Laboratories, Office of Aerospace Research, Bedford, Mass., under Contracts AF $19(628)-5920$ and AF 19 (628)-2902.

