Check for
Updates

One-Pass Compilation of
Arithmetic Expressions
for a Parallel Processor

Harowp 8. SroNs
Stanford Research Institute, Menlo Park, California

Under the assumption that a processor may have a multi-
plicity of arithmetic units, a compiler for such a processor should
produce object code to take advantage of possible parallelism
of operation, Most of the presently known compilation tech-
niques are inadequate for such a processor because they
produce expression structures that must be evaluated serially.
A technique is presented here for compiling arithmetic ex-
pressions info structures that can be evaluated with a high
degree of pardllelism. The algorithm is a variant of the so-
called “top-down’ analysis technique, and requires only one
pass of the input text.

1. Introduction

The rapid advances in computer technology in recent
years have brought us into an era in which speed of compu-
tation is limited by factors other than the operating
speeds of its component devices. Two such factors, for
example, are the input-output information bandwidths,
and the propagation delays between the component de-
vices of the system. In order to increase computation rate
in view of these factors, the trend has been toward com-
puter systems capable of a high degree of parallelism.

One approach to this end (by no means the only one) 1s
exemplified by the central processor of the CDC 6600
which has several independent arithmetic units that are
capable of fully parallel operation. If this approach is
carried further in the coming years, processors may con-
tain tens or hundreds of independent arithmetic units,
The problem of efficient utilization of such a processor
then becomes a major problem.

Ultimately, the problem of efliciency will fall on the com-
pilers and the compiler writers. To this end we describe a
one-pass algorithm for the compilation of expressions such
that the resulting expression structure is inherently
parallel. (By this we mcan that elements of structure can
be evaluated in parallel.) Most of the commonly used com-
pilation techniques result in structures that must be
evaluated serially. In Section 2 of this paper we describe
the structures produced by several compilation techniques
and relate these structures to the process of parallel com-
putation. Section 3 contains a description of the expression
compiler, and the ArLcoL text of the compiler appears in
an Appendix.

Torce Cambridge Research Laboratories, Office of Aerospace
Ttesearch, Bedford, Mass., under Contracts AF 19(628)~5920 and
AT 19(628)-2902.

Communications of the ACM

220

2, Expression Structures

The technique for translating conventional notation of
arithmetic expressions into a “suflix Polish’” string is well
known (see, for example, [1]), but the resulting instruction
sequence is not well suited to a parallel processor. In par-
ticular, the expression

A+B+CH+D+E+TF+ G+ 1

is translated into the structure shown in Figure 1(a),
which calls for seven additions to be performed sequen-
tially. The translation algorithm essentially breaks the
expression into partial sums as if the expression were
parenthesized as

(((A+B)y+C)+D)+E)+F)+G)+ H.

For a parallel processor of the type described in the Intro-
duction, the optimum sequence of partial sums would
correspond to a binary tree as indicated in Figure 1(b)
and would be equivalent to

(A+B)+ (C+D)+ (E+F)+(G+H)).

The translation algorithm described in this paper gives
the desired result. It always produces a full binary tree of
n levels when there are 2" terms, and unbalanced partial
trees when the number of terms is not a power of two.
Although this scan technique is claimed to be novel there
has been flowcharted in the literature a one-pass scan that
produces a Polish string in which terms are combined pair-
wise, and the resulting partial sums added sequentially [2].
Tor the example above, this scan would yield the third
tree shown in Figure 1(¢), which is equivalent to the
expression

((((A+B)+ (C+ D)+ (E+F))+ (G+ H).

Hellerman [3] and Squire [4] have both reported multipass
algorithms for compiling arithmetic expressions. Although
these algorithms are set in a slightly different context, both
produce results equivalent to the algorithm deseribed here.

Fig. 1. Three dilferent siructures for the expression

A+B+C+D+E+F+G+H

Volume 10 / Number 4 / April, 1967

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363242.363256&domain=pdf&date_stamp=1967-04-01

T+ is worthwhile to note that none of the proposed trans-
lation techmiques for parallel evaluation of expressions
can comply with the rules for evaluating expressions in
Arcor [6] but all satisly the less restrictive rules of ASA
Fortran [7].

Before proceeding o a description of the algorithmn,
some discussion about the form of the translator output is
pertinent to the material. It is normal practice to write suf-
fix Polish in the form AB + CD ++ EF + GH 44 for
the full binary tree, and AB -+ CD 4+ EF ++ GH 4
for the suboptimal form of Figure 1(c). In this notation
the symbol “A” corresponds to the operation “Fetch A”
meaning that the value of A is to be placed at the top of a
pushdown stack. The symbol “~+"" is the binary machine
operator “ADD,” which causes the contents of the top two
cells in the pushdown stack to be added and their sum
placed in a single cell that replaces the original pair. In
the latter case the stack has been “popped up.” In order
to allow the translator as much freedom as possible in
determining how to group expressions, expressions con-
taining subtraction operations will be compiled with the
unary operator MINUS. Thus, the expression 4 + B —
C -+ D, which cannot correctly be parenthesized as
(A + B) — (C + D), will be translated as if it were the
expression (4 + B) + ((—C) + D). The suffix Polish form
of the latter is AB + ¢ — D +-+. Similarly, the divide
operator “/” will be treated as a unary RECIPROCATE
operator to permit the expression 4 X B/C X D =
(A X B X D)/C to be translated to the equivalent of
(A X B X ((1/C) X D)),ie, AB X C/D XX in suffix
Polish.

As given here, the translation algorithm will not recog-
nize expressions containing a true unary operator such as
the negation in “—A + B,” even though unary MINUS
operations are produced as output by the algorithm. No
attempt has been made to include this capability in the
algorithm in order to leave it as uncluttered as possible.

3. Compiler Description

Since the translator processes are intimately connected
with the syntax underlying the language of the arithmetic
expressions, we summarize the language accepted by the
translator here. The language description is in modi-
fied Backus Normal Form [5] which uses the metasym-
bols “::="" to mean “is defined to be,” “(’ and “)” to
bracket syntactic units, “/” to mean “or,” and the
metabraces and star such that “{X}*”’ means “empty
| X| XX |XXX]|---.” The language of the expressions
can be described by the five syntactic units—variable,
primary, factor, term, and expression—as follows:

(expression) ::= (term) {{adding operator) {term)}™

{term) s:= (factor) {(multiplying operator) {factor)}*
{factor) ::= (primary) {1 (primary)}*

(primary) ::= (variable) | ((expression))

(variable) 1= A [B|C|---|Z

where the adding operators are the operators ,‘,‘—}—” and
“~» the multiplying operators are “X” and «/”, and the

Volume 10 / Number 4 / April, 1967

{4

T 7 denotes exponentiation. The syntactic unit {variable)
denotes a simple variable.

From this point we shall deseribe the compilation tech-
nique in general and leave the details to a set of ArLcorn
procedures that are found in the Appendix. The reader is
urged to use the syntactic description of the expression
language as a guide to understanding the ArgoL text.

Since the compiler must scan an input string, it is as-
sumed that there is a procedure called SCAN that keeps
track of the position of the scanner in the input string and
produces a new elementary syntactic unit while stepping
the input scanner each time it is called. The new syntactic
unit is assumed to be stored in the integer variable called
ITEM. Here we make the assumption that the character
is scanned and converted using the 4 format as described
in [8] so that we can make use of the built-in procedure
EQUIV for converting string characters to tl eir internal
integer representation. The procedure OUTPUT is
assumed to convert its argument from integer representa-
tion to a string character and place it in the output string.

In order to generate a tree-like hierarchy of operations,
the scanning technique keeps track of the tree level and
places the operators in the output string accordingly. To
see how the procedures automatically take care of the
necessary bookkeeping, consider how the expression
A+B+C+ D+ E+F+ G+ His compiled. For the
moment, only the procedures EX PRESSION and TERM
are pertinent, and we shall assume that TERM has been
modified to read:

if level = 0 then
begin oulpui (item);
scan,;
end
ete., in place of the calls on FACTOR, which are listed in
the ArLcoL text.

We use an inductive argument to show that a binary
trec is produced for the example expression. Induction is
on the value of LEVEL that is set by FX PRESSION for
a call on TERM. The first call on TERM with LEVEL =
0, produces the output symbol “A” and leaves the next
operator “+” in ITEM. The output is a binary tree with
one node, height 0. EX PRESSION calls TERM at level 1
because ITEM contains a “+7. At this level, TERM
moves the scanner forward to place “B” in ITEM, calls
itsclf at the Oth level, and places a “+” in the output
string before exiting back to EX PRESSION. Since the
call on TERM at level 0 will compile a binary tree with
one node, the output string has become “AB-4" and the
scanner has moved forward to place the second “+”
operator in [TEM. Note that the iterative cal% on TERM
by EXPRESSION has resulted in the compilation of a
binary tree with two nodes, and of height 1.

Proceeding inductively, assume that a binary tree of
height n—1 has been generated by n-iterated calls on
TERM, each at a successively higher level. At the nth exit
of TERM back to EX PRESSION, ITEM will contaip the
operator “+” if there is one left uncompiled in the input

Communications of the ACM 221

string. The call on TERM atlevel n’will result ina scanlto
place a new operand in ITEM, an iterated sequence of n
calls on TERM at successively higher levels beginning at
level 0, and the insertion of a “+7 in the output string.
Since the internally generated sequence of calls on TERM
are identical to the calls generated by EXPRIESSION,
they will result in the compilation of another binary tree
of height n—1. Since the operator “+” is suflixed to two
binary trees of height n— 1, the result is a full binary tree
of height n. Turthermore, ITEM will contain the next
uncompiled operator in the input string.

A few words of explanation are necessary to fill in the
program details. The action of TERM and FACTOR with
respect to the compilation of terms is analogous to the
action of EXPRESSION and TERM. Hence, the pro-
cedure FACTOR is almost identical to TERM . The opera-
tor “ 17 cannot be treated as the multiplying and adding
operators have been treated because it is not associative.
Hence, FACTOR produces the string ABTC TD T from
the expression ATB7TC{1D without reordering the
operators in a treelike structure.

Hxpressions within parentheses are compiled as entities
within an output string by the recursive call on EX PRES-
SION contained within procedure PRIM ARY. Notice in
particular how the action of the variables MINUS and
DIVIDE control the code emitted for the unary operators
while a recursive call on EXPRESSION is in effect. Nor-
mally when a unary operator is scanned, the corresponding
Boolean variable DIVIDE or MINUS is set true. At
Level 0, TERM and FACTOR check these variables to
determine if a unary operator ought to be cmitted. In
case PRIMARY scans an expression between the setting
of & Boolean variable and the testing of the variable, the
values of the variables are “pushed-down’ while the recur-
sive call of EXPRESSION is in effect. The recursive call
of EXPRESSION is begun with false values of DI-
VIDE and MINUS, and at the termination of the call
when the closing parenthesis is scanned, the old values of
MINUS and DIVIDE are restored.

Inspection of the following examples should clarify the
description of the compiler.

Expression Compiled Expression
A+B+C+D+E+F+G+H AB+CD++EF+GH+++
A+B+C+DXEXF+G+H AB+CDEXFX++GHA++
A+B—C—DXEXF+G+H AB+C—DEXFX~++

GHA++
A4+B~C—DX (EXF+G+H) AB+(—DEFXG+
HA-X =4+
A4-B—(C—D/(EXF+GTH) AB+C—DEFXGH T+,
X =+
A+B—C~D+(E+F 1 GXH/ AB+C—D—++EFG T HXI/
IXIXE)/L+MAN IXXEX AL/ XM AN A+

Acknowledgment. The author is indebted to M. W.
Green and C. L. Jackson of Stanford Research Institute
and to the referees for several comments and suggestions
that have been incorporated in this paper.

Recmivep SEPTEMBER, 1966; REVISED DECEMBER, 1966

222

Communications of the ACM

APPENDIX. Compiler Procedures (In ALGOL)
procedure expressions;
begin
integer tiem;

Boolean menus, divide;
integer level;
procedure term(level};
begin integer ireclevel;
if level = 0 then
begin factor (0);

treelevel = 1,

for (reclovel + 1 while ilem = equiv(‘X’) \/ ilem = equiv(* /7y

do factor (treelevel);

if menys then outstring (L, *—");

MINUS
end
else
begin

minus 1=

sean;

term (0);

treelevel 1= 0;

for treelevel 1= (reelevel + 1 while (ilem = equiv(‘+4>) \/ item

= equiv(‘—")) /\ treelevel < level do term(treelevel);

oubput (‘+")
end

end flerm;

procedure fuctor (level);

begin integer {reelevel;
if level = 0 then
begin primary;

treelevel = 0,

for lreelevel :=

begin scon;
primary;
outstring(1, ‘17)

end

if divide then outstring(l, ¢/7)

divide := false;
end
else
begin divide :=

scan;

Jactor (0);

treelevel 1= 0;

for ireelevel := ireelevel + 1 while (item = equiv(‘X’) \/ ¢tert

= equiv(*/’)) N treelevel < level do factor(treelevel);

oultstring (1, “X’)
end

end faclor;

procedure primary;

begin
if item = equiv(‘(’) then
begin expression;

if dtem #= equiv(‘)’) then error else scan
end
else
begin outpul(ilem);

scan
end
end primary;

comment the body of expression begins here;
divide 1= minus := false;
term(0);
level 1= 0;
for level = level 4 1 while ttem = equuv(*+’) \/ item =
equiv(‘—’) do
term (level)
end expression

value level; integer level;

= false:

ibem = equiv(*~—");

value level; integer level;

treelevel 4+ 1 while item = equiv(‘T’) do

item = equiv(‘/)’);

Volume 10 / Number 4 / April, 196*

REFERENCES

1. Hamsray, C. L. Translation to and from Polish notation.
Comput. J. & (Oct. 1962), 210-213.

2. Arvarp, R.W., Wour, K. A., axp Zevuin, R, A, Some effects
of the 6600 computer on language structures. Comm. ACM 7,
2 (Peb. 1964), 112-119.

3. Heriermaxn, . Parallel processing of algebraic expressions.
IEEE Trons. KC-15,1 (Feb. 1966), 82-90.

4. Squire, J. 8. A translation algorithm fos a multiple processor
computer. Proc. 18th ACM Nat. Conf., Denver, Colorado, 1963.

A NOTE

Top-to-Bottom Parsing
Rehabilitated?

R. A. BrooxEr
Monchester University,* Manchester, England

This note is concerned with the efficiency of the Top-to-
Bottom parsing algorithm as used in connection with program-
ming language grammars. It is shown, for instance, that
retracing of unprofitable paths can often be eliminated by
a svitable rearrangement of the productions defining the
grammar. The essential weakness of the method is in dealing
with complicated syntactic structures which are in practice
only sparsely occupied, e.g., arithmetic expressions.

The question is sometimes raised as to the relative
merits of syntax analysis “top down” and “bottom up”
(see, e.g., the Discussion following Leavenworth [1]).
There seems to be little published evidence.

Griffiths and Petrick [2] remark (in a paper on the rela-
tive efficiencies of context-free grammar recognizers), “In
this comparison we found our SBT procedure to be
enormously more ecfficient than our STB procedure for the
Lisp and Arcor programming language grammars con-
sidered, and generally superior for all other grammars
considered except those for which the recognizers were
deterministic.”

While not doubting their conclusions for the particular
grammars they considered (although even the authors them-
selves admit to some discrepancy between some of their
conclusions and expetience obtained in the field), it is the
purpose of this note to draw attention to the remarks found
in Cheatham [3]: “For programming languages of the
current sort, there is no clear advantage in favor of either
the top-down or bottom-up analysis techniques, insofar as
efficiency of the analyzer is concerned. For either tech-
nique, it is possible to design a language and syntax
specification on which the technique will perform very

* Department of Computer Science

5. Carg, I, J. W., anp Weinaxo, J. A nonrecursive method
of syntax specification. Comm. ACH 9, 4 (April 1966), 267-
269,

6. Revised report on the algorithmic language Avgor 60. Comm.
ACM 6,1 (Jan. 1963), 1-17 ; see Sec. 3.3.5, pp. 7-8.

7. FORTRAN vs. BASIC FORTRAN. Conm. ACHM 7, 10 (Oct.
1964), 590-625; see Sec. 6.4, pp. 598-599.

8. A proposal for input-output conventions in Angown 60. Comm.
ACH 7, 5 (May 1965), 273-283: see Sec. A.2.3.2, p. 275.

poorly, while the other one will not be nearly so bad. The
choice between the techniques is generally made on the
basis of considerations other than raw speed of the analy-
sis, .70

Now in [2] only one grammar is presented in detail
which supports the authors’ conclusions. It is

F—cC L—1
F -8 L—p
F—-7r L~ q
P —U L—y
C—-UDU S—-UWVS8
U-— (F) S—=UVU
U— U P—>UANP
U—L P—-UANU

The following sentence is one which they parse w.r.t.
this grammar ~‘1(——|(p' ANlgVr) AN p')). If we write the
grammar in the more concise form

F—-C|S|P|U
C—-UDU

U— (F)|=U|L
L —1L
L—plglr
S—>UVS|IUVU
P-UAP|UAU

it will be clear why recognizing the above sentence could
involve a vast amount of retracing. Thus top-to-bottom
starts by looking for a “C”’, which means looking for a
“U”, then a “(”, which it does not find, then “—U?”,
which after a fantastic search it eventually finds; then it
returns to the C-production and looks for a “2”, which
it does not find, and so returns to the F-production and
starts looking for an “S” instead, and so on.

The authors of [2] remark, “In order to determine the
extent to which the disparity in efficiency between the

