
REFERENCES

1. H~>~B*,~N, C. L, TranslM;ion to and from Po]ish notation.
Comp'ut. J. 5 (Oct. 1962), 210--213.

2. ALI, ARD, 1C W., WO~,F, t(. A., ~ND Z~:~ILLX, R.A. Some effects
of the 6600 computer o~ language structures. Comm. ACM 7,
2 (Feb. 1964), 112-119.

3. Hn~m~m~A~,]1. Parallel processing of algebraic expresskms.
IEEE Trans. ECJ5,1 (Fel). 1966), 82-90.

4. SQumn, J. S. A translalkm algorithm fos a multiple processor
computer. Proe. 18th ACM Nat. Conf., Denver, Colorado, 1963.

5. CARR, III, J. W., AND ~VEILAND, J. A nom'ecursive method
of syntax specification. Comm. AC3I 9, 4 (April 1966), 267-
269.

6. Revised report on tile algorithmic language Ar~aoi, 60. Comm.
ACM 6,1 (Jan. 1963), 1-17; see See. 3.3.5, pp. 7-8.

7. FORTRAN vs. BASIC FORTRAN. Comm. ACM 7, 10 (Oct.
1964), 590-625; see See. 6.4, pp. 598-599.

8. A proposal for input-output conventions in Ar, c~o~ 60. Comm.
ACM 7, 5 (May 1965), 273-283; see Sec. A.2.3.2, p. 275.

A NOTE

Top-to-Bottom Parsing
Rehabilitated?
R. A. BROOKnR
Manchester University,* Man&ester, England

This note is concerned with the efficiency of the Top-to-
Bottom parsing algorithm as used in connection with program-
ming language grammars. It is shown, for instance, that
retracing of unprofitable paths can often be eliminated by
a suitable rearrangement of the productions defining the
grammar. The essential weakness of the method is in dealing
with complicated syntactic structures which are in practice
only sparsely occupied, e.g., arithmetic expressions.

The question is sometimes raised as to the relative
merits of syntax analysis " top down" and "bot tom up"
(see, e.g., the Discussion following Leavenworth [1]).
There seems to be little published evidence.

Griffiths and Petr iek [2] remark (in a paper on the rela-
tire efficieneies of context-free g rammar recognizers), " In
this comparison we found our SBT proeedm'e to be
enormously more efficient than our STB procedure for the
Lisp and ALGOL programming language grammars con-
sidered, and generally superior for all other grammars
considered except those for which the recognizers were
deterministic."

While not doubting their conclusions for the particular
grammars they considered (although even the authors them-
selves admit to some discrepancy between some of their
conclusions and experience obtained in the field), it is the
purpose of this note to draw attention to the remarks found
in Cheatham [3]: "For programming lai~guages of the
current sort, there is no clear advantage in favor of either
the top-down or bot tom-up analysis techniques, insofar as
efficiency of the analyzer is concerned. For either tech-
nique, it is possible to design a language and syntax
specification on which the technique will perform very

* Department of Computer Science

poorly, while tile other one will not be nearly so bad. The
choice between the techniques is generally made on tile
basis of considerations other than raw speed of the analy-
sis, ...".

Now in [2] only one gl'anuntu" is presented in detail
which supports the authors' conclusions. I t is

F -+ C L -~ L'

F - -~S L - ~ p

F --~ P L -+ q

F --~ U L --~ r

C -+ U ~ U S - - , U V S

u - , (F) S -~ u V u

U--~ -n U P - ~ U A P

U--~ L P ~ U /k U

The following sentence is one which they parse w.r.t.
this grammar -1 (-~ (p ' / k (q V r) / k p ')). If we write the
grammar in the more concise fonn

F - - ~ C [S I P I U

C ~ U D U

U ~ (F) I -~U I L

L ~ L '

L - - ~ p [q l r

S ~ U V S I U V U

P - - ~ U / \ P [U A U

it will be clear why recognizing the above sentence could
involve a vast amount of retracing. Thus top-to-bot tom
starts by looking for a "C", which means looking for a
"U", then a "(" , which it does not find, then " -nU" ,
which after a fantastic search it eventually finds; then it
returns to the C-production and looks for a " ~ " , which
it does not find, and so returns to the F-production and
starts looking for an " S " instead, and so on.

The authors of [2] remark, "In order to determine the
extent to which the disparity in efficiency between the

Volume 10 / 4 / April, 1967 Communications of the ACM 223

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363242.363258&domain=pdf&date_stamp=1967-04-01

STB and the SBT procedures were due to the inclusion
of the left-branching rule L --> i f , this rule was removed
and a set of sentences not containing primes was recog-
nised." They found this made little difference, which is not
surprising in view of the activity going on at levels above.
(Fiddling while]Rome burns!)

In top-to-bottom practice, one would recast the gram-
mar by replacing the F, C, S, P productions by:

F - ~ u A P ' u V S ' [u ~ u l u

P'--~ U /k P' U

S ' - + U V S' U

in which form, merging can be usefully applied thus:

I A P '
glVS' s,+g/vs'

F --~] D U NIL [N I L
NIL

With the grammar in this form, every U is recognized
and the trial and error element is confined to testing
whether the symbol following a U is /~, V, D, or NIL.
This amounts to a ntethodical examination of alterna-
tives. An extreme example is the verification of a particu-
lar letter in the production:

L E T T E R - + a [b l c l d [. . . l z

Since little retracing is involved the selectivity device
described in [2] and [4] is only of marginal utility and was
in fact dropped from the TB algorithm used in the Com-
piler Compiler.

Another feature of that algorithm is that exploration at
each level terminates with the first successful alternative
(these being ordered from left to right) so that it may be
necessary to arrange the alternatives in order of prefer-
ence. In the above grammar for instmlce the L produc-
tions would have to be replaced by:

L ~ X Y l x

inferior to any method (e.g,, precedence analysis) which
deals only with the complexity actually present.

iR.EC~IVED Octt'orsLt~, 1966

REFERENCES
1. LlCbtVENWOt~Tt~,]3. "h<[. FORTRAN iV as a syntax bmguage.

Comm. ACM 7, 2 (Feb. 196-l), 72.
2. Ga*FFvr*Is, T. V., ~ND P~'mlCK, S. R. On the relative ef-

fieiencies of context-free grammar recogniscrs, Comm. ACM 8,
5 (May, 19(;5), 289.

3. C~-~E~VrH,~M, T. E., AND SAT'fLEX, K. Syntax-directed compil-
ing. Proc. AFIPS 1964 Spring Joint Comput. Conf., Vol. 25,
April, 1964.

4. B~mOKER, R. A., AND Mo~mlS, D. Some proposals for the
realization of a certain assembly program. Cornput. J. 3
(1961), 220.

CORRIGENDA

NUMERICAL ANALYSIS

L. W. Ehrlich, "A Modified Newton Method for Poly-
nomials," Comm. ACM 10, 2 (Feb. 67), 107-108.

In formulas (4), (6), (10), (11), (28), and (29), r e a d j # i
in place of j # I.

]Read formula (21) as

= ,,o, < 2 = 7 5 + i=.+2 (X.+t -- r~) "

COMPUTER SYSTEMS

Peter Calingaert, "System Performance Evaluation: Sur-
vey and Appraisal," Co'rnm. ACM 10, 1 (Jan. 1967), 12-18.

Figure 1 should have appeared as follows:

OVERLAP RELATIONS

X ~ p l q l r

' I' Y - + Y

Thus the TB algorithm on sympathetic grammars is no
worse (and conceptually a good deal simpler) than the
SBT. We have no experience of Llse, but the ALGOL
grammar can certainly be arranged to suit TB. The main
difficulty with programming grammars lies in dealing with
arithmetical expressions. Whatever definition we choose
an (EXP]R} can generate a fairly complicated tree struc-
ture. Very often however, the actual instance of an
(EXPR) is something trivial, e.g., a or 1, and in analyzing
w.r.t, an {EXPR} we generate a tree with many empty
branches. I t is the time spent in this activity, and on the
subsequent inspection of these empty branches in the
processing routines, that makes umnodified TB approach

A Channel A

B ,,, Channel B

JC , Joint Channel

NC , , Net Channel

P ,, , , , m Processor

JR Joint Run

NR Net Run

GC = A + B =JC + NC Gross Channel

GR =P + NC = J R + N R Gross Run

FIG. I (corrected)

Note that the elements for Channel B and the Processor
are corrected.

CAC2~[apologizes for the error, which was introduced in
the printing process.

224 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 10 / N u m b e r 4 / Apri l , 1967

