
Technical Perspective
Hiding Secrets in Programs
By Daniel Wichs

tographic applications, which then
opened the floodgates for more appli-
cations in subsequent works. Suddenly
iO emerged as the most powerful tool
in cryptography. But questions still lin-
gered whether iO is possible.

Cryptography generally relies on
unproven assumptions that certain
problems (for example, factoring large
integers) cannot be solved efficiently.
But the candidate iO construction of
Garg et al., as well as later candidates,
all relied on new assumptions in which
there was much less confidence. In
fact, many of these ended up being bro-
ken, sowing serious doubts on whether
the entire endeavor is doomed.

The following paper largely dispels
these doubts and finally places iO on
firm foundations. It gives a new con-
struction of iO that is provably secure
under assumptions that have been
extensively studied and withstood
the test of time. While we cannot rule
out the possibility that these assump-
tions could be broken in the future,
such a break would constitute a major
surprising development in the field.
The paper builds on prior work show-
ing how to construct iO from simpler
components, but these still appeared
out of reach. The authors find the right
component to target (a special type of
pseudorandom generator) and provide
a novel approach to realizing it. By giv-
ing the first strong evidence that iO is
achievable, this work paves the way for
future research toward efficient and
practical constructions.

References
1. Barak, B. et al. On the (im)possibility of obfuscating

programs. CRYPTO 2001, 2139. LNCS, Springer,
Heidelberg, 1–18.

2. Garg, S. et al. Candidate indistinguishability
obfuscation and functional encryption for all circuits.
In Proceedings of the 54th FOCS. IEEE Computer
Society Press, Oct. 2013, 40–49.

3. Sahai, A. and Waters, B. How to use indistinguishability
obfuscation: Deniable encryption, and more. In
Proceedings of the 46th STOC. ACM Press, May/June
2014, 475–484.

Daniel Wichs is an associate professor in the Khoury
College of Computer Sciences at Northeastern University,
Boston, MA, USA.

© 2024 Copyright held by the owner/author(s).

C A N W E C R E AT E computer programs
that do not reveal anything about their
inner workings? This is the goal of pro-
gram obfuscation. An obfuscator is a
compiler that transforms a program
into an obfuscated version that, when
executed, has the same functionality
as the original but is completely inscru-
table otherwise, hiding all internal as-
pects of the original implementation.

Program obfuscation holds im-
mense promise. It can protect intel-
lectual property by preventing others
from reverse engineering software and
stealing or modifying the underlying
ideas. It also allows us to securely hide
secrets inside programs. To see how
this could work, consider a program
that contains a treasure map, but only
outputs it when given a formal proof
of the Riemann hypothesis as an in-
put. The treasure map is hard-coded
inside the program and may be easy
to extract from the original code, but
by releasing an obfuscated version of
this program, we would ensure nobody
can recover the treasure map unless
they have a proof of the Riemann hy-
pothesis. It turns out a variant of this
idea yields public-key encryption: Alice
can encrypt a secret message to Bob
by obfuscating the program that only
outputs the message when given Bob’s
correct secret key as an input.

In fact, program obfuscation has the
potential to revolutionize cryptography.
Not only would it give us a unified way to
realize essentially all the cryptographic
tools, such as public-key encryption,
which were painstakingly developed
over the last 50 years, but it would en-
able many amazing new applications
as well. For example, we could give an
email server the ability to recognize
whether encrypted messages are spam
without giving it the ability to read
them, by giving it an obfuscated pro-
gram that decrypts the email, checks if
it is spam and only outputs the result,
but does not reveal anything else.

Considering that program obfus-
cation is so powerful, can we achieve
it? There is a long history of ad-hoc at-

tempts to make reverse engineering
more difficult, but most can be broken
by a sufficiently clever attacker. The
first rigorous treatment of program ob-
fuscation was given by Barak et al. in
2001.1 They proposed a security notion
called virtual black box (VBB), which
ensures an obfuscated program does
not reveal anything more than black-
box executions of the program. Unfor-
tunately, they showed that VBB secu-
rity is unachievable in general for all
programs. The result led to widespread
pessimism and research on obfusca-
tion largely stalled for the next decade.

In the same paper, Barak et al. also
discussed an alternate security notion
called indistinguishability obfuscation
(iO). It guarantees that the obfusca-
tions of any two programs with the
same functionality are indistinguish-
able from each other, meaning that
the original implementation is hidden
from among all possible implementa-
tions of the same functionality. Their
impossibility result does not extend
to iO and they left it as an open prob-
lem whether iO is achievable. It also
remained unclear whether iO is mean-
ingful and sufficient for interesting
applications. Without any evidence of
either feasibility or usefulness, iO did
not initially receive much attention.

This changed over a decade later
with the work of Garg et al.,2 who gave
the first candidate construction of iO.
Together with the work of Sahai and
Waters,3 they also showed how to use
iO to realize several advanced cryp-

To view the accompanying paper,
visit doi.acm.org/10.1145/3611095 rh

The following
paper finally places
indistinguishability
obfuscation on
firm foundations.

96 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

research highlights

DOI:10.1145/3632568

https://doi.acm.org/10.1145/3611019
https://dx.doi.org/10.1145/3632568
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632568&domain=pdf&date_stamp=2024-02-22

