
APAREL-A
Language

Parse-Request

R. ~ . BALZER AND D. J. FARBER*
The Rand Corporation, Santa Monica, California

APAREL is described: this language is an extension to an algo-
rithmic language (PL/I) that provides the pattern-matching
capabilities normally found only in special purpose languages
such as SNOBOL4 and TMG. This capability is provided through
parse-requests stated in a BNF-like format. These parse-
requests form their own programming language with special
sequencing rules. Upon successfully completing a parse-request,
an associated piece of PL/I code is executed. This code has
available for use, as normal PL/I strings, the various pieces
(at all levels) of the parse. It also has available, as normal
PL/I variables, the information concerning which of the various
alternatives were successful. Convenient facilities for multiple
input-output streams, the initiation of sequences of parse-
requests as a subroutine, and parse-time semantic checks are
also included.

APAREL has proven convenient in building a powerful
SYNTAX and FUNCTION macro system, an algebraic language
preprocessor debugging system, an on-line command parser, a
translator for Dataless Programming, and as a general string
manipulator.

KEY WORDS AND PHRASES: text processing, string processing, symbol
manipulation, PL/I, BNF, syntax, parser, translator, pattern matching
CR CATEGORIES: 4.12, 4.13, 4.20, 4.22, 4.29

1. I n t r o d u c t i o n

Higher-level descriptions of the problem of compiling
have attracted much interest in the past few years. Along
with the desire to develop higher level specialized languages
tailored to particular users, the need has arisen to develop
similar specialized languages for the writing of these com-
pilers. In general, these so-called compiler-compiler lan-
guages are characterized by their facility to define in a
BNF-like manner the syntax of the target language. In
addition, they possess a programming language designed
to operate on and to direct the results of the parsing.

With most compiler-compilers a problem arises both in
controlling the parse sequencing and in operating on the
results of the parsing. I n particular, flexibility is usually
lacking (1) in the specification of sequences of parse at-
tempts, (2) in the determination of the success or failure
of a parse attempt on other than purely syntactic grounds,

This :research is supported by the Advanced Research Projects
Agency under Contract No. DAHC15-67-C-0141. Views or con-
clusions contained in this study should not be interpreted as
representing the official opinion or policy of ARPA.
* Present address: Scientific Data Systems, E1 Segundo, Cali-
fornia

and (3) in the specification of when semantic routines
should be invoked. Furthermore, the semantic language is
usually a small special purpose language with facilities for
the production of machine code. These systems ignore
other noncompilat,on applications for parsers such as on-
line command parsers (which produce actions instead of
machine code), interpretive parsers (which produce pseu-
doeode), "natural language" parsers (which produce se-
mantic trees), macro parsers (which produce source code),
and reformatting programs (which produce formatted list-
ings). In short, the nonmachine-code generation applica-
tions of parsers have generally not been well handled by
the translator writing systems.

APAREL attempts to provide a single system for all
these applications by providing the user with a powerful
general purpose programming language (PL/I) for per-
forming the wide range of semantics required, and a flexible
high-level syntax language for specifying parse attempts,
together with facilities for controlling the sequencing of
these parse attempts, determining success and/or failure
on both syntactic and semantic grounds, invoking se-
mantics when desired, and manipulating the parts of a
successful parse. Also, the familiarity of programmers with
PL/ I and the simplicity of the APAREL extensions and
additions make it feasible for potential users to design,
implement, and modify special purpose languages without
extensive learning.

2. A P A R E L - - A P a r s e - R e q u e s t L a n g u a g e

Our view of translation is composed of three parts:
(1) a request to find sequences of syntactic constructs in
the source string to be parsed; (2) context-sensitive validity
checks to be made after successful syntactic parses (e.g.
has the label been defined before? is the type of a variable
arithmetic? etc.); (3) semantic routines to be executed only
if both the syntactic parse and the context-sensitive
validity checks are successful.

This view of translation, while very general, is easy for
nonprofessional translator writers (but experienced pro-
grammers) to use in constructing easily modifiable trans-
lators.

Requests for parses arc specified in a language very
similar to BNF (rather than FLOYD-EVANS Production
language), because nonprofessional translator writers tend
to conceptualize the syntax of their language top-down
(for which purposes BNF-type languages are well suited).
Professional translator writers, on the other hand, have
learned that the bottom-up approach (for which produc-
tion-type languages are appropriate) is usually more effi-
cient. Furthermore, the former tend to think of both the
syntax and semantics at the statement level.

To keep the syntax language simple, while still allowing
generality in describing conditions falling in the hazy area
between syntax and semantics (which one would like to
verify before accepting a parse made on syntactic grounds
alone), we allow the specification of "parse-time" routines
that return truth values. If they return a value of TRUE,
the parse will continue. However, if a value of FALSE is

624 Communications of the ACM Volume 12 / Number 11 / November, 1969

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363269.363606&domain=pdf&date_stamp=1969-11-01

returned, the parse will be unsuccessful, just as if the syn-
tactic parse failed. (The total parse may still be successful
if alternatives are available to the unsuccessful subparse.)
In addition to returning t ru th values, these "parse- t ime"
routines may do any semantic processing desired. They
are wri t ten in the semantic language described below.

The semantic routine associated with a parse is acti-
vated upon successful completion of tha t parse and suc-
cessful returns from all the relevant parse-time validity
checks, if any, specified within the parse. The code for the
semantic routine immediately follows the request for the
parse in the syntax language. The semantic language,
ra ther than being a restricted special purpose language, is
full P L / I . The wide range of desirable "semant ic" actions
resulting from various syntactic parses necessitates a
general purpose programming language; and a major
shortcoming of most compiler-compilers has been their
restrictions on the semantic language.

To facilitate the semantics, the various pieces of the
successful parse are put into normal PL/I strings as
specified in the syntax language; and the options chosen,
where alternatives were specified in the syntax language,
are made available in normal P L / I variables.

Description of Parse-Requests. The syntax of the parse-
request language, specified in BNF, appears in the Appen-
dix. However, the following examples are used to describe
the language informally.

All parse-requests begin and end with a parse-delimita-
tor (a double colon). After the beginning delimitator, the
name of the request (the parse-request-name) is set off by
a colon. The remainder of the parse-request is a list of
the alternative parses (parse-alternative-list) desired, sep-
arated by OR (I) symbols. The parse-request is successful
if any one of the alternatives is successfully parsed. These
alternatives may be either parse-elements or lists of parse-
elements. Lett ing PEi represent a set of parse-elements,
we can describe the following parse requests:

:: A: PE~PE~ :: (the parse-request named A will
succeed if and only if the parse-
string contains PEi followed by
PE2)

:: B: PEilPE2 :: (the parse-request named B will
succeed if and only if the parse-
string contains either PEt or PE2)

:: C:PE~ I PE2PEaPE4 :: (the parse-request named C will
succeed if and only if the parse-
string contains either PE~ or the
sequence PE2PE3PE4)

The parse-elements can either be a parse-group or a
parse-atom. A parse-group is simply a named or unnamed
parse-alternative list enclosed in angle brackets, () ,

allowing naming of parts of a parse and alternatives within
a sequence of parse-elements. The parse -a toms- - the basic,
indivisible components of a parse-request--consist of
literal strings, parse-request names, parse-request-sequence
names (described below), and primitive parse-request
functions; e.g. ARBNO (arbitrary but nonzero number of
the fix~t argument separated by the second argument (if

there is more than once occurrence of the first argument)),
and BAL (balanced strings). These atoms are the compo-
nents tha t determine whether a parse is successful or not.
The literal strings require tha t an exact match be found
between the hteral and the corresponding piece of the
parse-string; the parse-request names and parse-request-
sequence names require tha t the named parse-request or
parse-request-sequence be successful on the corresponding
piece of the parse-string; and primitive parse-request
functions require tha t the corresponding piece of the
parse-string satisfy the conditions of tha t particular
function. There is no syntactic distinction made between
these atoms. The category determination is made in the
following way. First, the list of primitive parse-request
functions is checked. I f the a tom is not a primitive parse-
request function, then the list of parse-names (both parse-
request and parse-request-sequence names) is checked.
Finally, if it is not one of these, it is considered to be a
literal. This mechanism alleviates the need to quote most
literals within the parse-request language.

Consider the following set of parse-requests to parse
PL/I DO statements:

: : do_statement: do iterative_specification while_clause ' ;' : :
:: iterative_specification: variable = expression

(to_clause by_clause [by_clause to_clause)l: :
: : to_clause: to expression]: :
:: by_clause: by expressionl: :
: : while_clause: while '('expression')ll: :

The do_statement request requires the sequence of
atoms

do iterative_specification while_clause ;

in the parse-string to be successful. Of these, the middle
two are parse-names and invoke parse-requests as they
are encountered in a left-to-right scan. The first and last
atoms are literals (because they are not defined as parse-
names or primitive functions) and require exact matches
with a piece of the parse-string. The final a tom is quoted
because semicolons are par t of the parse-request language
(explained below), and the semicolon here is used as a
literal.

The iterative_specification request requires either the
sequence:

(1)
(2)

or NULL.

variable = expression
either 2a. to_clause

2b. by_clause
or 2a. by_clause

2b. to_clause

Variable and expression are primitives and are defined
as specified in the P L / I language specification [1]. Simi-
larly, a to_clause is the literal "to" followed by an expres-
sion, or is null; and a while_clause is the literal "while"
followed by an expression enclosed in parentheses (quoted
because they are par t of the syntax language and are used
here as literals), or is null.

Thus the do_statement parse-request invokes parse-

Volume 12 / Number 11 / November, 1969 Communications of the ACM 625

requests for iterative_specification and while_clause, and
iterative_specification invokes parse_requests for to_clause
and by_clause and functions calls for variable and expres-
sion.

Uifiess otherwise specified, the parses allow an arbitrary
number of blanks (including none) between pieces of the
parse-string and require that the parse start at the begin-
ning of the parse-string although it may be satisfied before
the end of the parse-string. Thus, with the above set of
parse-requests, successful parses will occur on the follow-
ing parse-strings:

d o I = 1;
do I = 1 by 5 to (n-3/2);
do;
do while (A<B);

and will fail on the following parse-strings:

I = 1 to 10: (no initial do)
now do I = 1; (no initial do)
do I = 1 to 5 (no semicolon)
do I := 1 to 5 to 6; (to_clause followed by to_clause)

The portion of the parse-request language described so
far allows fairly sophisticated parse-requests to be speci-
fied easily and naturally in a language similar to the nor-
really used syntax description languages (BNF or IBM's
syntax notation). However, this is not yet a useful facility,
because neither the sequencing rules for initiating parse-
requests and for making sequencing decisions based upon
the success or failure of a parse-request, nor the method
of accessing the various parts of a successful parse have
been defined.

Parse-Request Sequencing Rules. A parse-request-se-
quence is composed of all parse-requests occurring in a
common do-group or block. This does not include any
parse-requests contained in blocks or do-groups within
the common do-group or block forming parse-request-
sequences of their own. The order of parse-requests
within a parse-request-sequence is the same as their lexi-
cographical ordering in the block or do-group. The seman-
tic portion of a parse-request is the code between the end
of the syntax portion of the parse-request and the begin-
ning of the next parse-request in the parse-request-se-
quence, or the end of the do-group or block if there are
no more parse-requests in the sequence.

A parse-request sequence begins with the first parse-
request. I f the initial parse-request fails, its semantic code
portion is skipped, and the next parse-request in that
sequence is tried, and so on, until either a successful
parse.-request is found or all parse-requests fail. If a suc-
cessful parse-request is found, the associated semantic
code portion is executed; then, normally, the parse-
request-sequence is terminated with a successful indica-
tion (see Section 5, Additional Features). Otherwise, the
parse-request-sequence is terminated with an unsuccess-
ful indication.

There are three ways in which a parse-request-sequence
can be initiated. The first is as a parse-atom in a parse-

request. Upon termination, its success-failure indicator is
used in determining which alternatives, if any, are suc-
cessfully parsed. The second is through use of an explicit
command, I N I T I A T E PARSE, which specifies which
parse-request-sequence to initiate and can be issued in any
code portion. Upon termination of the parse-request-
sequence, its success or failure is available (see Section 3,
Parse Results), and control continues with the s ta tement
following the I N I T I A T E PARSE command. The third
method is by program control flowing into the first parse-
request in a parse-request-sequence. Upon completion of
the parse-request-sequence, its success or failure is avail-
able, and control passes to the end statement at the end
of the do-group or block in which the parse-request-
sequence occurs. Thus, if it is contained in an iterative
do-group, control will continue around in the loop until
iteration is complete. Otherwise, in blocks or noniterative
do-groups, control will flow out the bot tom of the block
or do-group upon termination of the parse-request-se-
quence.

In the first two cases, where a parse-request-sequence is
explicitly named, it is specified by referring to the label
(which must be in the same block as the invoking state-
ment) of the do-group or block in which the parse-request-
sequence occurs. If the name of a parse-request is specified
instead, only that parse-request will be initiated and no
others in its parse-request-sequence.

These sequencing rules allow the creation of sequences
of parse-requests to be at tempted and the control of the
execution order of these requests based on the results of
the parses and/or explicit program control.

As stated previously, the semantic routine associated
with a parse-request is activated upon successful comple-
tion of that parse-request and successful return from all
the relevant parse-time validity checks, if any, specified
within the parse-request. This is true whichever way the
parse-request is initiated. Thus, if a parse-request, P1, is
initiated as a parse-atom of a parse-request, P2, and if it
is successful, then its semantic routine will be initiated at
that point, in the midst of the parse of P2. Semantics
thus can be initiated at any point during a parse, giving
the user considerable flexibility. However, care must be
exercised when specifying "intermediate" semantics, be-
cause the parse may later fail on the parse-element list
which contained the parse-request which invoked the
semantics, and either move on to the next alternative, or
fail completely.

3. P a r s e R e s u l t s

APAREL also contains capabilities to make the results of
a successful (or unsuccessful) parse available to the code
portions of the language. This information is of two kinds:
pieces of the string parsed and information about which
alternatives were successful in the parse.

Various parse-elements, such as parse-request-se-
quences, parse-requests, parse-alternatives, and parse-
groups, can have names specified in APAREL. These names

626 Communications of the ACM Volume 12 / Number 11 / November, 1969

are the means by which the semantic code portions can
utilize information about a parse. If " N A M E " is the name
of one of these parse-elements, then after a parse, a P L / I
varying length string variable with the same name will
contain that portion of the parse-string corresponding to
the named parse-element (in the case of a parse-request-
sequence, the name is both the name of the result string
and the table of the DO-block; APAREL contextually re-
solves all uses of this name to remove any ambiguity), and
a P L / I variable, whose name is " N A M E _ O P T I O N " (i.e.
"_OPTION" is appended to the end of the name of the
parse element), will contain the index of the alternative
selected within the parse-element. Thus the semantic por-
tions can manipulate desired portions of the parse-string
through P L / I ' s normal string-handling capabilities and
can interrogate any portion of the parse-tree to deter-
mine which alternatives were selected.

In applications with large syntax specifications, chang-
ing the syntax--ei ther by addition or deletion of an alter-
native from the syntax--can affect the semantics, because
alternative determination is made on an indexed basis;
and altering the syntax alternative alters the indexing.
To alleviate the problem, APAREL allows the user to label
any or all of the alternatives. If a labeled alternative is
selected, then the OPTION variable for tha t group will
contain the name of the alternative selected rather than
its index (APAREL contextually resolves all uses of this
variable so that it can, in effect, take on either string or
numeric values). This naming correspondence is invariant
under additions or deletions to the set of alternatives.

4. P a r s e - T i m e R o u t i n e s

Sometimes success or failure of a parse cannot be made
on purely syntactic grounds alone; or, it is desired to per-
form some semantic operations during a parse. For these
reasons, the parse-time facility has been included in
APAREL. Parse-time routines are indicated in a parse-
element by placing the parse-time routine name followed
by its arguments, if any, enclosed in parentheses after a
semicolon at the end of the parse-element. The parse-time
routine will be initiated if and only if the parse-element
in which it occurs was successfully parsed. The initiation
results in a function call of the parse-time routine, passing
its arguments, if any. The parse-time routine, like the
semantic portions of APAREL, is coded in full P L / I and
can make use of all the facilities of APAREL, such as ini-
tiating parse-requests, manipulating parse-strings, and
interrogating the parse-trees. In addition, the parse-time
routine can perform any semantics desired and return a
true or false value indicating whether the parse-element it
is attached to should be considered successfully parsed or
not.

Since parse-request-sequences initiated in the syntactic
portion of a parse can be a block or a do-group that may
begin with a code section or may not contain any parse-
requests at all, these parse-request-sequences can be con-
sidered parse-time routines tha t return a success or failure

indication (and are formally the same as the parse-time
routines discussed above). Both ways of specifying these
parse-time routines have been allowed in APAREL, en-
abling users to choose the one corresponding to their way
of conceptualizing its function in their application.

5. A d d i t i o n a l F e a t u r e s

In the semantic portions of APAREL, very often one
would like to output a modified or " t ranslated" version
of the parse-string. To make this operation simpler, a
special variable, TRANSLATION, has been defined; and
whenever an assignment is made to this variable, the
value assigned is output to the S Y S P RIN T data set. For
more flexibility, the user may define any additional vari-
able as being an output variable of specified size and
associated with a specified file. When an assignment is
made to one of these variables, if the value can be added
to the end of the present string value without exceeding
the maximum size of the variable, then the new value is
concatenated onto the existing va:ue. If not, then the
existing value is output on the file specified and the new
value becomes the value of the variable. If the size is not
specified, then outputt ing o~curs with every assignment.
If neither a file nor a size is specified, then a user-defined
procedure of the same name as the output variable is
called with the new value as the argument. This allows
the user to define arbitrarily complex procedures for out-
putting and corresponds to the updating routine (left-
hand size function) definitional capability of Dataless
Programming [2] and CPL [3].

Similarly, for input, a variable, PARSE_STRING, will
be automatically defined to hold the input to be parsed.
When the amount of input in this variable falls below a
system-defined limit, new input will be concatenated to
the variable to fill it out to its maximum size. The user
may define additional input variables together with their
minimum sizes, maximum sizes, and file from which input
is to come. If the minimum and maximum sizes are not
specified, references to the input variable will invoke a
user-defined accessing function of arbitrary complexity,
a la Dataless Programming. These minimum and maxi-
mum sizes limit the backtracking which can occur.

The user also can control which of several input sources
is used via the CONSIDER command. He may later
reestablish an input source via the R E C O N S I D E R com-
mand. These commands respectively stack and unstaek
which input source is being parsed. CONSIDER_LEVEL
contains the number of input sources so stacked, and
CO N S ID ER_ S TRIN G is an array containing, in ascend-
ing order, the names of these stacked input sources.

In parsing there are normally three requirements for
blank separation between the individual segments of the
parse-string matched by parse-atoms. The first is tha t no
blank may occur between the segments. This is indicated
in a parse-request by placing a minus sign between the
parse-elements. The other two normal blank-separation
requirements are tha t either any number of blanks (per-

Volume 12 / Number 11 / November, 1969 Communications of the ACM 627

haps none), or at least one blank (perhaps more), separate
the segments. Since the need for each of these require-
ments is highly application dependent, AeAnEL allows the
user to define the normal mode (used between parse-ele-
ments unless otherwise specified) and to request the other
requirement by placing a period between the parse-ele-
ments. The normal mode is set by either a N O R M A L
S E P A R A T I O N IS 0 command or a N O R M A L SEPARA-
T I O N IS 1 command. The default setting is N O R M A L
S E P A R A T I O N IS 1.

Similarly, the two normal ways to view the semantic
code port ion are either as open or closed subroutines. In
an open subroutine, flowing out of the bo t tom of a seman-
tic code port ion into a parse-request initiates tha t parse-
request. Whereas in a closed subroutine, flowing out the
bo t tom of a semantic code portion into a parse-request
effects a return to the caller of the parse-request whose
semantics have just completed. AI'AREL allows a user to
define which of these two modes he is using via the SE-
M A N T I C S O P E N and S E M A N T I C S CLOSED. The
default setting is S E M A N T I C S CLOSED.

Both the S E P A R A T I O N and S E M A N T I C S com-
mands are compile-time commands and affect the interpre-
ta t ion of all lexicographically following parse-requests in
the current or contained blocks or do-groups, until either
the end of the block or do-group, or another mode com-
mand, overrides the present normal mode.

Within a semantic code portion, the user may desire to
initiate a remote parse-request or to terminate the seman-
tics for the present parse. These capabilities are available,
respectively, through the I N I T I A T E PARSE and T E R -
M I N A T E PARSE commands.

The T E R M I N A T E PARSE command is also used to
specify the success or failure of a parse-request. T E R M I -
N A T E PARSE SUCCESSFULLY indicates a successful
termination, while T E R M I N A T E PARSE UNSUCCESS-
F U L L Y indicates an unsuccessful parse. T E R M I N A T E
PARSE with neither operand specified defaults to T E R -
M I N A T E PARSE SUCCESSFULLY. Thus, a parse-
request can be declared unsuccessful in three ways: (1) in
the syntactic specification of the parse-request when a
syntactic parse is unsuccessful; (2) in a parse-time routine;
or (3) in the semantics of a parse-request. The parse is
successful only if none of these indicates an unsuccessful
parse.

When initiating a parse-request-sequence, a user often
wishes to be able to inspect and manipulate the results of
the parse-requests before accepting any translation pro-
duced. Since these parse-requests should not (and need
not) know tha t they have been initiated from above, they
must be able to create translations just like any other
parse-request. Therefore, the user needs a way of telling
APARnL to redirect the translation (or output variables)
of any parse-request. This redirection causes the transla-
tion produced for the specified output variables to be col-
lected into the specified strings for review and/or manipu-
lation by the initiating routine. This redirection is specified
as additional operands (of the form x I N y, and sepa-

rated by iAND~) to the initiate parse-command. F o r

example:

INITIATE PARSE k COLLECTING translation IN s AND
output IN def;

The parse-request-sequence named k wiI1 be initiated. All
translation it, or any parse-request it initiates, produces
in the output variable named " t ransla t ion" will be col-
lected instead in the string named "s," and all t ranslation
produced in the output variable named "ou tpu t " will be
collected instead in the string named "def."

Finally, by placing a dollar sign ($) in front of parse-
names, parse-t ime routine names, or parse-atoms, the user
can indicate indirection; i.e. the parse-name, parse-routine
name, or parse-atom specified is the contents of the named
string. This facility, accomplished via a run-t ime symbol
table of all parse-related names (which must all be unique),
provides considerable flexibility for users desiring to alter
the parse-requests dynamically. I t also facilitates context-
sensitive parses requiring repetit ion of a parse-element
within the input string.

6. E x a m p l e s

One use of APAREL is aS a macro processor, handling
macros of the type commonly referred to as S Y N T A X
and/or F U N C T I O N macros [4]. I n such an application, a
user passes the macros over the source text, t ranslating
those portions tha t satisfy the macro syntax while leaving
the rest of the text undisturbed. APAREL is easily restricted
to this mode by defining a parse-request tha t picks off
source-language statements, one at a time, from the input
stream. The result of this parse, a single source-language
statement, is then passed through the various macros tha t
produce the desired translation when a parse request for a
macro is satisfied. I f the source s ta tement passes ~ll the
way through the macros without matching, it is ou tput
unmodified. Assuming the parse-request, PLl_s ta tement ,
has been predefined and will pick off one P L / I s ta tement
at a time, the following is an APAREL program tha t acts as
a S Y N T A X and F U N C T I O N macro processor for any
parse-requests defined in its body.

/,Method: PL/I statements are picked off the input stream one
at a time and used as the parse-string input for the user defined
syntax and function macros contained in the parse-request-
sequence USER_IVIACROS. If no parse-request in this parse-
request-sequence is successful then the PL/I statement is out-
put. Otherwise, the translation produced is added to the front
of the string RESCAN. If this string is not already being
CONSIDERed as the input string from which PL/I statements
are picked off, it is so CONSIDERed. Thus all PL/I statements
in the translation produced by the USER_MACROS are proc-
essed before any more are taken from the original input source.
After RESCAN has been exhausted, the original input source
is RECONSIDERed./

next_PLl_statement:
INITIATE PLl_statement; /*get next PL/I statement*/
IF PLl_statement_option = 0 /*was the parse successful*/

THEN DO; /*no, end of input must have been reached*
IF CONSIDERED_STRING (CONSIDER_LEVEL) =

'rescan' THEN DO; /*reconsider the original input
string*/
RECONSIDER;

628 C o m m u n i c a t i o n s of t h e ACM V o l u m e 12 / N u m b e r 11 / N o v e m b e r , 1969

GO TO nex t_PLl_s t a t emen t ;
E N D ;

ELSE /*we have exhaus ted the original inpu t s t r ing* /
T E R M I N A T E PARSE; /* t e rmina te the parse in this

manner in case we were in i t ia ted by someone, and are
no t the top level rout ine*/

E N D ;
ELSE DO; /*parse was successful, we now have a single P L / I

s t a t e m e n t * /
C O N S I D E R P L l _ s t a t e m e n t ; /*use resul t of P L / I s t a t e m e n t

as parse-s t r ing for user_macros*/
I N I T I A T E user_macros C O L L E C T I N G t rans la t ion IN par-

t ia l_ t rans la t ion; / , i n i t i a t e users syn tax and funct ion
macro parse-request-sequence contained in the block or
do_group labeled "user -macros" . The t r ans la t ion ou tpu t of
these macros is collected in the P L / I s t r ing "pa r t i a l_
t r a n s l a t i o n " * /

R E C O N S I D E R ; /*s top considering P L l _ s t a t e m e n t and re-
consider the parse-s t r ing in effect before i t* /

IF user_maeros_option--~ = 0 T H E N DO; /*one of the parse-
requests in the user_macros parse-request-sequence was
successful*/

rescan = par t iaLt rans la t ionHrescan; /*add par t ia l t rans la-
t ions to f ron t of rescan s t r ing so t h a t i t will be re t rans la ted
first. Not ice t h a t this defines a dep th first t r ans la t ion* /

IF C O N S I D E R E D _ S T R I N G (CONSIDER_LEVEL)--1 =
Wreseanl /*is resean the cur ren t ly considered parse-s t r ing*/
T H E N /*no it is not the cur ren t ly considered s t r ing* /

C O N S I D E R rescan; /*make i t the current parse-
s t r ing* /

GO TO n e x L P L l _ s t a t e m e n t ;
E N D ;

ELSE DO; /*none of the parse-requests in the user__macros
parse-request-sequence were successful*/

T R A N S L A T I O N = P L l _ s t a t e m e n t ; / *ou tpu t the PLI_
s t a t e m e n t t h a t did not m a t ch* /

GO TO nex t_PLl_s t a t emen t ;
E N D ;

Continuing the above example, two parse-requests are
shown below, both of which provide translations into
PL/I . They are placed in the do_group labeled "user_
macros" to conform to the preceding example(s) initiation
command. The first is a syntax macro that translates in-
crement or decrement commands, and the second is a
functional macro that translates various notations for
asking if a value is equal to one of a number of items.
Notice that the only difference between syntax and func-
tion macros is that syntax macros require successful
parses to be anchored to the beginning of the parse-string,
while functional macros allow successful parses anywhere
within the parse-string.

The annotated parse-requests are given below, followed
by a set of example input parse-strings with their trans-
lations:

user_macros: DO; /*begin labeled do group t h a t defines a parse
sequence*/

NORMAL S E P A R A T I O N IS 1; /*unless otherwise specified,
parse-elements mus t be separa ted by one or more b lanks* /

S E M A N T I C S CLOSED; /*upon reaching the end of the se-
mant ics of a parse-request , au tomat ica l ly generate a termi-
nate-parse command*/

: : increment_command: command_type(updated_var iab le : sub-
scr ipted_variable) by (increment_amount:ARB}d;w ::
/*an increment command is a command type followed by a
possibly subscr ip ted var iable , called "updated_variable",
followed by the l i teral " B Y " (literal since i t is not defined),

followed by an a rb i t r a ry s t r ing called " i n c r e m e n t _ a m o u n t " ,
followed by a semicolon (the semicolon has to be quoted
since i t is pa r t of the parse-reques t language). The period
indicates t h a t a space is no t required in f ront of the semi-
colon*/

I F command_type_opt ion = " i n c r e m e n t _ c o m m a n d " /*was
the opt ion in command_type labeled " increment_com-
m a n d " chosen*/

T H E N /*yes this is an inc rement command*/
t r ans la t ion = updated_variablel l I=IIlupdated_variable]]L43

i[inerement_amount[l~;T; / *ou tpu t PL1 ass ignment for in-
c rement ing var iab le* /

ELSE /*no, mus t be decrement command*/
t r ans la t ion = updated_variableH T=111updated_variable]i

C(l[lincrement_amountI[T) ;~; ~ / * o u t p u t P L / I ass ignment for
decrement ing var iable enclosing increment__amount in
paren thes i s* /

/* the next s t a t e m e n t is a parse-reques t in the same block or do
group as the present parse-reques t ; therefore, i t indicates
the end of this semant ic code; and since semant ics have to
be set closed, i t au tomat ica l ly generates a t e rmina te -parse
command*/

/* th is parse-request will be ac t iva ted if the preceding parse-
request fai led*/

: : one_of :(front :ARB)(x :subscripted_variable)<is lis among I. = .)
a l t e rna t ive_ l i s t (back:ARB) :: /*a one_of funct ion macro
is an a rb i t r a ry s t r ing (the ARB pr imi t ive parse-request
funct ion matches the smal les t s t r ing t h a t allows the res t
of the parse request to be successful. This may require
backup and repeated a t t empts , each t ime increasing the
length of the s t r ing ma tched by the ARB parse-reques t
funct ion) named " f r o n t " followed by a subscr ip ted var iable
named "x" followed by e i ther "is", " i s " followed by
"among", or by "= ". This is followed by an a l ternat ive_l is t
followed by an a rb i t r a ry s t r ing named " b a c k " . The separa-
t ion between these elements is one or more b lanks - -excep t
for the equal sign, which may have zero or more b lanks on
e i ther side of i t as indica ted by the normal separa t ion over-
ride no ta t ion (the per iods)*/

t r ans la t ion = f rontHPLl_al ternat ivesl lback; /* the s t r ing
" P L l _ a l t e r n a t i v e s " replaces the funct ion macro in the
parse-s tr ing, and the resul t is ou tpu t as the t r ans la t ion of
the parse-s tr ing. The PL l_a l t e rna t ive s s t r ing was bu i l t up
in the semant ic por t ion of the a l te rna t ive_l i s t parse-reques t
shown below*/

E N D user_macros; /* th is is the end of the do-group. I t indi-
cates the end of the semant ic por t ion of the one_of parse-
request ; and, since semant ics are closed, au tomat ica l ly
generates a t e rmina te parse-command for t h a t parse-
request . If th is parse-reques t had failed, then, since i t was
the las t parse-request in the parse-request-sequence, the
sequence would have fai led*/

/* the following are parse-requests referred to above. Since they
are defined in another do-group or block t han the preceding
parse-requests , they do not form pa r t of i ts parse-request -
sequence*/

:: subscripted_.variable: variable()(~.BAL))W.i) : : /*a sub-
scr ipted var iable is a var iable followed by a left pa ren thes i s
followed by an a rb i t r a ry s t r ing ba lanced wi th paren theses
followed by a r ight parenthes is or a var iable followed b y a
null. The parentheses and the balanced s t r ing do not have
to be separa ted by blanks. There are no semant ics specified
for th is pa rse - reques t* /

: : command_type: (increment_command: incrementNinc) l (deere-
ment_command:decrement ld tdec) :: /*a command type is
e i ther an increment_command or a decrement_command.
These two types can each be indicated in one of three ways:
" i n c r e m e n t " , "i", or "inc" and "dec r emen t " , "d", or
"dee" . There are no semant ics specified for th is parse-
reques t* /

V o l u m e 12 / N u m b e r 11 / N o v e m b e r , 1969 C o m m u n i c a t i o n s of t h e ACM 629

:: alternative_list: Initial_semantics ARBNO(alternative, (','[
or)) :: /*an alternative_list is an initial_semantics fol-
lowed by an arbitrary number (with a minimum of one) of
alternatives separated by either commas or the literal "or".
The parse-request, initial_semantics, does not perform any
parsing, but is used to initialize the string, PLl_alternative,
used in the semantics of "alternative". There are no se-
mantics specified for this parse-request*/

:: alternative: expression:: /*an alternative is an expression. Its
semantics follow. The same effect could have been achieved
by replacing alternative in the parse-request alternative_
list by expression; alternative_semantics where alternative
_semantics would be the name of the following semantic
routine. The choice is left to the user depending on his
particular bias,/

If --1 first_alternative then PLl_alternatives = PLl_alternatives
II'll[lx]]'='ll expression; /*the alternative is added to the
end of the alternatives already found. I t is separated from
the preceding alternatives by 'q", and consists of the sub-
scripted variable (the value of x from the parse-request,
"one_of") followed by an equal sign followed by an expres-
sion just parsed above*/

ELSE DO; /*this is the first alternative*/ first_alternative -~
'0'B; /*indicate no longer first alternative*/ PLl_alter-
natives = x]I'='ll expression; /*PLl_alternatives is set
to the first alternative found*/

END;
TERMINATE PARSE; /*indicate end of semantics*/

initial.semantics: DO; /*initial_semantics is a parse-request-
sequence containing no parse-request*/

first_alternative = ~i'B; /*indicate parse-request was suc-
cessful*/

END;

7. T r a n s l a t i o n R e s u l t s

Using the APAREL program defined in Section 6, We in-
dicate below the translations tha t would result for various
input examples. I f the input passes through unchanged,
the translation entry is left blank to facilitate recognition.

Input Trans la t ion

increment x by 5; x ~ x "-I- 5;

d a b c b y x - - 4; abe = abc -- (x -- 4);

i def by7;

decrement by 3;

if abc is z -- 3 or 0 i fabc ~ x - - 3 1 a b c = 0
then do; then do;

R = (def is among l, 2, R ~ (d e f = 1 I def = 2
Z -- 4 or 9); [def ffi Z - - 4 [def

9);

w h e n h ~ 5 , o r 7 t h e n when h = 5 1 h = or 7
do; then do;

i f x i s 3 , >5, o r 0

i f x = i o r 4 t h e n i x b y i f x = l] x = 4 t h e n x =
x - - l ; x ~ x - - 1 ;

630

Comments

the decrement translation
suppl ies parentheses around
the decrement amount .

no separating b lank after
" b y "

" b y " is p icked up as the sub-
scripted variable, bu t the
parse then fails because
' ` b y " cannot be found.

c o m m a after 5 causes parser
to pick up "or" as an ex-
pression rather than as t h e
separator between expres-
sions. The syntax of the
functional macro should be
corrected to prevent th is
error. Notice how the error
is reflected in t h e transla-
t ion;

" > 5" is not an expression.

C o m m u n i c a t i o n s o f t h e A C M

8. Implementation

The initial implementat ion of APAR~I, has been com-
pleted on au IBM-360 computer. This implementat ion
consists of two parts: a preprocessor tha t converts APAREL
programs into equivalent legal P L / I programs with exter-
nal calls for parse requests; and the run-t ime parser tha t
provides APARnL'S parsing capabilities. The preprocessor
is an APAREL program tha t was boots t rapped into opera-
tion, and the run-t ime parser is an assembly language pro-
gram. The current implementat ion of each of these par ts
imposes some restrictions on the full APAREL language.
These restrictions are:

(1) The ARB and BAL primit ive parse-request func-
tions are not implemented.

(2) The scan of parse requests is strictly left-to-right.
Thus, in the parse request

(A I B)C
if A is matched, B will be skipped, and if C then fails, the
sequence B followed by C will not be tried. This can be
remedied by:

(AC I BC}
(3) The parser matches the max imum string it can.

This applies only to the nonliteral matches, such as
A R B N O and the blank scan, which match as much as
possible. Note tha t this will prevent the parse request

A R B N O (A , ') A
from being parsed successfully because the arbi t rary
number of A's separated by N U L L s will include all such
A's in the input, forcing the final A after the A R B N O to
fail.

(4) Left-recursion is handled in a special way. The s tate
of the parser is determined by two variables, the position
in the input string and the position in the parse-request.
Before a t tempt ing a match for any alternative, the parser
checks to see if the present s tate has occurred before
(during the current initiation of the original parse-re-
quest). I f it has, then a left reeursive loop has occurred,
and the parser simply moves on to the next al ternative to
break this left recursive loop. This, therefore, would cause
the rule

number :number digit I digit
to fail on more than 2 digit numbers. This can be reme-

died by use of the A R B N 0 function, which allows itera-
t i r e specification ra ther than nested recursive definition.

Thus
number: A R B N O (digit,")

A number is an arbi t rary nonzero number of digits sepa-

rated by NULLs. Or even more elegantly:
expression: ARBNO(expression, operator) [

(expression) [var iable [number I
unary_operator expression

An expression is an arbi t rary nonzero number of expres-
sions separated by operators, or a parenthesized expres-
sion, or a variable, or a number, or a unary_operat ion

followed by an expression.

V o l u m e 12 / N u m b e r 11 / N o v e m b e r , 1969

APPENDIX
B N F D e f i n i t i o n o f A P A R E L ' s S y n t a x L a n g u a g e

(parse-request) : : = (parse-delimitator)(parse-request-name):
(parse-alternative -list) (parse -delimitator)

(parse-alternative-list) : : =
(parse-alternative-name)(parse-element-list)[
(parse-alternative-name)(parse-element -list)' 1 '
(parse-alternative-list)

(parse-element-list} : : = (parse-element)l
(parse-element); (parse-time-routine-name)l
(parse-element)(parse-element-list)]
(parse-element). (parse-element-list)]
(pa r se - e l emen t) - (parse-element-list)

(parse-element) : : = (parse-atom)](parse-group)
(parse-group) :: = '(' (parse-alternative-list) ') ' 1

' (' (parse-request-name) :(parse-alternative-list) ') '
(parse-atom) : : = (parse-name)](text-literal)]

(primitive-parse-request-function)] (empty)
(parse-name) : : = (parse-request-name)]

(parse-request-sequence-name)
(parse-alternative-name) : : = ((PL/1 identifier)) [(empty)
(parse-delimitator) : : = : :
(parse-time-routine-name) : : =

(name of a PL/1 bit valued function) (arguments)
(parse-request-name) :: = (PL/1 identifier)
(parse-request-sequence-name) :: = (PL/1 identifier)
(primitive-parse-request-function) : : =

(reserved PL/1 identifier) (arguments)
(arguments) : : = ((argument-list))l(empty)
(argument-list) : : = (parse-atom)](parse-atom), (argument-list)

RECEIVED SEPTEMBER 1968; REVISED MAY 1969

R E F E R E N C E S

1. P L / I Language Specification. Form C28-6571-4, IBM Corp.
2. BALZER, R. M. Dataless programming. Proc. AFIPS 1967 Fall

Jo int Comput. Conf., Thompson Book Co., Washington,
D.C., pp. 535-544. Also RM-5290-ARPA, Rand Corp.,
July 1967.

3. STRACHEY, C. (Ed.) C P L W o r k i n g Papers . London Inst i tute
of Computer Science and the Universi ty Mathematical
Laboratory, Cambridge, England, 1966.

4. LEAVENWORTH, B . M . Syntax macros and extended transla-
tion. Comm. A C M , 9, 11 (Nov. 1966), 790-793.

5. BACKUS, J. W. The syntax and semantics of the proposed
international algebraic language of the Zurich ACM-GAMM
Conference. Proc. Intl. Conf. on Information Processing,
UNESCO (1959), pp. 125-132.

6. CnEAWr~AM, T . E . The introduction of definitional facilities
into higher level programming languages. Proc. AFIPS 1966
Fall Joint Comput. Conf., Spartan Books, New York,
pp. 623.--637.

7. FARBER, D. J . , GRISWOLD, R. E. AND POLONSKY, I . P . "The
SNOBOL3 programming language," Bell Sys t . Tech. J . 45,
6, (July-Aug. 1966), 895-944.

8. FELDMAN, J. A., AND GREIS, D. Translator writing systems.
Comm. A C M 11, (Feb. 1968), 77-113.

9. GALLER, B., AND PERLIS, A . J . A proposal for definitions in
ALGOL. Comm. A C M 10, 4 (Apr. 1967), 204--219.

10. IaONS, E. T. A syntax directed compiler for ALGOL 60.
Comm. A C M $, 2 (Jan. 1961), 51-55.

11. McCLuRE, R. M. TM6--A syntax-directed compiler. Proe.
ACM 20th Nat. Conf., 1965, pp. 262-274.

12. MONDSCHEIN, L. VITAL compiler-compiler reference
manual. TN 1967-1, Lincoln Lab., MIT, Lexington, Mass.,
Jan. 1967.

L L O Y D D. FOSDICK, Editor

A L G O R I T H M 359

F A C T O R I A L A N A L Y S I S O F V A R I A N C E * [G1]

JOH~ R . HOWELL (Recd . 2 A u g . 196~ a n d 12 M a y 1969)

D e p a r t m e n t of B i o m e t r y , M e d i c a l C e n t e r , V i r g i n i a C o m -

m o n w e a l t h U n i v e r s i t y , R i c h m o n d , V A 23219
* This investigation was supported in part by Public Heal th
Service Research Grant FR 00016-05, from the National
Inst i tutes of Health.

K E Y WORDS AND PHRASES: factorial variance analysis,
variance, statist ical analysis
CR C A T E G O R I E S : 5.5

COMMENTS. This subroutine transforms a rec tory y, observed
in a balanced complete h X t ~ X . . . X t ~ factorial experiment, into
an interaction vector z, whose elements include mean and main
effects.

The experimental observations y,, (s = (s~ , s2 , - • -, sn) ; s~ = 0,
1, . - . , t~ -- 1; i = 1, 2, . . . , n) are assumed to be stored in the
array Y in increasing order by the composite base integer s.
After the transformation, the array Z will contain the interactions
in natural order.

The method used is Good's [1.2] modification of Yates 's [5] in-
teraction algorithm. In [1, p. 367], the interactions are expressed
in the form z = (M1 ® M2 ® - . . ®M,)y, where Me is a t~Xtl
matrix of normalized orthogonal contrasts and where ® denotes a
direct (Kronecker, tensor) product. The interactions can also be
writ ten z = (C~C2 . . . C~)y, where

C1 = M1 ® Its ® "'" ® [tn

C2 = It1 ® M2 ® "'" ® It~

Cn = I t l ® I t 2 ® " " ® M~

and where It~ is the t~Xt~ ident i ty matrix.
By performing elementary operations (row and column inter-

changes) on the C~ we get z = (DID2 . . . D~)y, where

and where M~j is r o w j of M~ . The symbol ~ denotes a direct sum.
For an example of this for an unnormalized matrix, see Good
[1, p. 362].

Since each row of D~ consists of a row of M~ and zeros, we only
need M~ for forming z. The subroutine forms first D~y, then this
result is premultiplied by Dn_l, and so on until we obtain z. The
elements of z are the required interactions.

This method can be mechanized for hand computation in the
following way. (The subroutine was wri t ten from this point of

V o l u m e 12 / N u m b e r 11 / N o v e m b e r , 1969 C o m m u n i c a t i o n s o f t h e ACM 631

