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ABSTRACT
Practitioners who wish to build real-world applications that rely
on ranking models, need to decide which modelling paradigm to
follow. This is not an easy choice to make, as the research literature
on this topic has been shifting in recent years. In particular, whilst
Gradient Boosted Decision Trees (GBDTs) have reigned supreme for
more than a decade, the flexibility of neural networks has allowed
them to catch up, and recent works report accuracy metrics that
are on par. Nevertheless, practical systems require considerations
beyond mere accuracy metrics to decide on a modelling approach.

This work describes our experiences in balancing some of the
trade-offs that arise, presenting a case study on a short-video rec-
ommendation application. We highlight (1) neural networks’ ability
to handle large training data size, user- and item-embeddings al-
lows for more accurate models than GBDTs in this setting, and
(2) because GBDTs are less reliant on specialised hardware, they
can provide an equally accurate model at a lower cost. We believe
these findings are of relevance to researchers in both academia and
industry, and hope they can inspire practitioners who need to make
similar modelling choices in the future.
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1 INTRODUCTION & MOTIVATION
In modern large-scale platforms, recommender systems generally
consist of two stages [9, 10]. The initial stage, known as candidate
generation, involves the selection of a subset of candidates from a
vast pool, often comprising millions of items. Because of latency
constraints for real-time inference, complex large-scale Machine
Learning (ML) models are often impractical to deploy at this stage.
Simpler methods are then preferred, such as the widely used “two-
tower” neural network approach [36].
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Shortlisted candidates are then passed on to the ranking stage.
Because of the reduced size of the action space —typically in the
order of thousands— it then becomes practical to leverage more
sophisticated models that produce the final ranking. In this work,
we focus on this final ranking stage. Compared to classic academic
work on Learning-to-Rank (LTR), common challenges occur in
practical applications:

(1) Whilst the classical LTR literature measures ranking qual-
ity using a single “relevance label”, such a single “ground truth”
is seldom available in real-world systems. Indeed, we often need
to consider multiple correlated and conflicting relevance signals,
quantifying different user behaviours that need to be balanced.

(2) Publicly available datasets typically consist of millions of
training data points. For many modern platforms on the web, train-
ing dataset sizes easily pass a billion data points. This has implica-
tions on the accuracy one can achieve, given hard constraints on
model training time and hardware cost. This additionally affects
the model size and the cost of maintaining the system at scale,
which leads to further trade-offs between training accuracy and
the overall cost of system maintenance. The literature on deployed
recommender systems and LTR in general, typically focuses on
one of two prevalent ML models: Gradient Boosted Decision Trees
(GBDTs), or Neural Networks (NNs).

Where the “deep learning” school of thought has led to impres-
sive progress in various ML applications, GBDTs have long re-
mained a go-to method for other tasks: classification and regression
with tabular data [30], and ranking problems [29] in particular. Qin
et al. were the first to show that well-tuned neural rankers can
perform on par with GBDT-based models, in certain cases [29].
Nevertheless, as we have argued, accuracy is only a single aspect
that practitioners who wish to build real-world systems need to
consider. Our work aims to add to this literature, taking a pragmatic
stance. We present insights and lessons learned from our pursuit of
answering this question: “Should we focus on GBDT-based models,
or embrace the neural paradigm?”

ShareChat is a social media application, presenting users with
personalised video and image feeds. We present a case study where
we aim to decide whether we should adopt GBDT- or NN-based
model architectures to power our product.

Our experimental results show that neural rankers outperform
GBDTs slightly, for our specific setting. We present insights from
an ablation study, and find that neural rankers exhibit superiority
in handling common embedding features, and that our neural meth-
ods show higher marginal improvements for increased training
data sizes. Whilst our neural methods are easier to scale to larger
datasets, they also come at a higher cost due to specialised hard-
ware requirements. It is our hope that the findings and insights
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Figure 1: Relevance signals on our platform: explicit signals
are red, implicit signals are green.

presented in this work can inspire practitioners who need to make
similar modelling choices in the future.

Related Work: Learning-to-Rank is a classic information re-
trieval problem, adopted across industrial applications, such as web
search [5, 22], question-answering [1], e-commerce [19] and rec-
ommendation systems [12, 18]. When designing a recommender
system, practitioners often encounter various challenges and mod-
elling alternatives to consider. For some areas, such as computer
vision and natural language understanding, neural networks have
clearly been superior for several years. Nevertheless, GBDTs have
remained state-of-the-art in LTR problems [24], with recent em-
pirical studies showing neural networks that perform at par with
GBDTs [26, 29]. We specifically focus on the modelling choice from
the industry perspective where, in addition to performance, scala-
bility [13, 21], time and cost are important aspects, as pointed out
by other published works detailing deployed models on platforms
like Youtube [9], Facebook [15] and Pinterest [37]. Both GBDTs
and neural rankers can be found in industry, with Yandex lever-
aging GBDTs [11], and Youtube adopting neural rankers [39]. Our
work aims to add to this growing body of literature, focusing on a
pragmatic case study for a short-video recommendation platform.

2 PROBLEM SETTING
We study Sharechat, a large-scale social media platform with over
180 million monthly active users generating over 200 million ses-
sions in a day in over 18 different languages. The platform serves
video and image content across various genres.

Formalising our LTR use-case, we assumeusers in a distribu-
tion denoted as 𝑢 ∼ U, interacting with a set of candidate items
𝑋 = 𝑥1, . . . , 𝑥𝑛 having relevance labels 𝑅 = 𝑟1, . . . , 𝑟𝑛 . Each can-
didate 𝑥𝑖 can be represented as a feature vector pertaining to the
respective user-candidate pair.We aim to learn amodel 𝑓 (𝑥𝑖 ), which
predicts the personalised relevance 𝑧𝑖 = 𝑓 (𝑥𝑖 ) for each candidate.
The primary objective is to achieve an optimal arrangement of final
rankings 𝑠 = argsort(𝑧), wherein the predicted relevance guides
the ordering. Such models are personalised and contextual—we
drop this from our notation to avoid clutter.

We log several user actions for these final candidates shown
to the user. In real-world recommendation systems, we often en-
counter various user actions like engagement, time spent, com-
ments, and more, leading to multiple relevance criteria. Figure 1
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Figure 2: Pearson’s correlation coefficient among signals.

highlights several such engagement signals on the ShareChat plat-
form. Each of these ranking signals could capture diverse user
behaviours; for instance, the Share signal reflects users sharing con-
tent on other social media platforms, while video play signifies the
watching behaviour of a user. While designing our ranking system,
we should optimise multiple such engagement signals, capturing
diverse user behaviours. As such, we should rank candidates based
on a final relevance score, after combining these multiple signals.
We note that each engagement signal signifies a positive user intent
toward the content they have interacted with and these signals
demonstrate a positive correlation with one another, as depicted
in Figure 2. Note that several ways of combining such scores have
been proposed in the literature [27, 38], we assume this is given in
our work and focus on the model 𝑓 instead.

3 ON NEURAL RANKERS AND GBDTS
As we have argued, practitioners often face the task of optimising
multiple signals that tell us something about user preferences. These
signals often exhibit varying degrees of correlation. In this work, we
treat the prediction of each of these signals as a separate task, where
the same set of features is used to predict the labels. As is natural, we
model this in a Multi-Task-Learning (MTL) framework [6]. Various
neural methods have been proposed and effectively implemented
in industry, including the Wide-and-Deep model [8], Deep & Cross
networks [32], Masknet [34], and others. In the case of multiple
tasks with relatively low correlations (such as the ones presented
in Figure 2), Multi-gate Mixture of Experts (MMoE) [25] have been
shown to significantly outperforms other approaches [39]. We find
MMoE to be very effective compared to alternatives, and hence,
focus on this method as our neural ranking contender.

There are several GBDT algorithmswith publicly available imple-
mentations such as XGBoost [7], LightGBM [20], and Catboost [28],
that have been successfully used for ranking problems in industrial
applications. Bentéjac et al. compared such GBDT algorithms and
found Catboost giving the best results among the three, although
the differences in performance are small [2]. In addition, Catboost
offers support for raw categorical variables, embedding features
and novel Ranking functions such as LambdaRank [4], Stochas-
ticRank [31] and YetiRank [14]. For this reason, we adopted the
Catboost library to implement our GBDT-based models. For a fair
comparison between the two paradigms, we optimise Catboost for
a pointwise multi-objective logloss (cross-entropy) function.
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Table 1: For all the evaluation metrics, MMoE outperforms Catboost across all signals.

Signal Model Type learning rate logloss ROC-AUC PR-AUC

Like MMOE 0.0003 0.0628 0.9420 0.4142
Catboost 0.01 0.0650 0.9388 0.3922

Share MMOE 0.0003 0.0254 0.9317 0.1332
Catboost 0.01 0.0260 0.9236 0.1116

Favorite MMOE 0.0003 0.0551 0.9145 0.1874
Catboost 0.01 0.0560 0.9077 0.1700

Video Play MMOE 0.0003 0.4029 0.8096 0.5238
Catboost 0.01 0.4290 0.7907 0.4961

Despite the successes of GBDT methods on publicly available
data sets, conclusions drawn in most papers about the superiority
of GBDTs do not account for many factors:

(1) Data volume. While GBDTs obtain state-of-the-art results
on small and medium-scale data sets, on large-scale data sets
with billions of data points, deep learning starts to catch up.
Indeed: neural networks are universal function approxima-
tors.

(2) Online learning.GBDTs are not well adapted for the case of
continuous online learning. While in classic applications like
search engine ranking, there is no need to train models in an
online manner as the relevance of query does not change fast,
in the world of recommendation systems with short-lived
interests, online learning plays a crucial role [23].

(3) Diversity. GBDT models are not well adapted to produce
diverse sets of results as they don’t learn internal embedding
representation. A wide variety of approaches like Determi-
nantal Point Processes [3], Maximal Marginal Relevance [35]
rely on embeddings to produce final rankings. Having em-
beddings coming from the same ranker model means that
this is a much easier system to maintain.

(4) Feature Engineering. GBDTs require a lot of feature engi-
neering to be done to incorporate such things as the history
of interactions of the user, meanwhile, “deep learning” al-
lows us to incorporate this seamlessly by adopting frequency
encoding for all interactions.

4 EXPERIMENTAL RESULTS
4.1 Dataset and Description
Whenever a user interacts with the system, we log a range of at-
tributes including behavioural aspects, and interactions. These at-
tributes consist of embeddings, historical engagements, viewed
posts, duration of engagement on the platform, and more. We ad-
ditionally capture demographic details such as age, gender, and
platform login dates. All the collected data are anonymized to re-
move identifiable attributes. The data includes users across all age
groups and languages.We store it in the form of incremental session
activities: every time a user logs into the platform, their interac-
tions (i.e. views, likes shares), and total time spent are stored in
increasing time order. In total, we use approximately 500 features.

In addition to the features mentioned above, we capture various
explicit (likes, shares, favourites, clicks) and implicit signals (video
play) highlighted in Figure 1. These are the signals we wish to
optimise for. For efficiency and scalability reasons, we downsample

the data passed to GBDT models. We train on 7 days of data and
reserve the next day for testing (to adhere to temporal constraints
in the data) [16]. This leads to approximately 2 billion data points
for training — approximately 5% of training data points have at
least one positive feedback signal.

4.2 Offline Experiments
We compare MMoE and Catboost models to predict positive en-
gagement signals on ranking candidates and evaluate models based
on typical classification metrics: area under the receiver-operating-
characteristic curve (ROC-AUC) and area under the precision-recall
curve (PR-AUC). We do not consider ranking metrics such as Nor-
malised Discounted Cumulative Gain to focus on models’ predictive
capabilities [17]. The ability to capture higher-order feature interac-
tions is one of the most important aspects to consider in modelling.
In Catboost models, this is given by the max_ctr_complexity hy-
perparameter, whereas MMoE allows for additional dot & cross
layers [32] to capture such interaction before passing them to ex-
perts. Given that the cost of training models is high, automated
hyper-parameter tuning can become overly costly very quickly.
Hence, we manually tune the hyper-parameters based on trends in
previous iterations and on subsampled datasets. Table 1 shows the
results of the experiments, where the best-performing model for ev-
ery signal is boldface. Due to the size of our dataset, all results are
statistically significant. We observe that the MMoE model performs
slightly better for all the metrics across all signals. We have lots
of categorical features in the dataset such as userId, itemId, User
historically engaged itemId etc. On further evaluation, we find that
the primary reason for the neural ranker’s superior performance
compared to GBDT can be attributed to (1) better handling of his-
torical categorical features due to embeddings, and (2) improved
scalability over very large datasets.

4.2.1 Ablation of historical features: We represent users’ recent
history as the last 20 items they have interacted with. To be maxi-
mally informative when predicting engagement signals with the
target post, we aggregate these historical features and leverage dot
products. When 𝑣𝑖 is the candidate item and 𝑣𝑖 𝑗 is the historical item
the user engaged with (out of 𝑛 total), we aggregate final historical
features ℎ𝑖 as:

ℎ𝑖 = 𝑣𝑖 ·
∑𝑛

𝑗=1 𝑣𝑖 𝑗

𝑛
. (1)

Removing such features leads to a drop in AUC. We notice a
larger drop for MMoE compared to Catboost models — indicating
that the former is more reliant on it. Although Catboost has the
ability to learn embeddings from such categorical features similar to
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Table 2: Relative training time and hardware cost comparison for MMoE and Catboost across various configurations.

Model Type Objective # CPU RAM (GB) # GPU # TPU Cost/hr Total Training Time Total Cost

Catboost

Logloss 96 624 8 × V100 - 5.71 1.00 1.24
Logloss 96 624 4 × T4 - 2.04 2.46 1.00
YetiRank 96 624 8 × V100 - 5.71 1.50 1.74
YetiRank 96 624 4 × T4 - 2.04 3.46 1.41

MMoE

Logloss 16 60 - v2-8 1.00 5.38 1.06
Logloss 16 60 - v2-32 3.44 2.69 1.84
Logloss 16 60 - v3-16 3.07 3.46 2.11
Logloss 16 60 - v3-32 5.97 1.92 2.28

Table 3: MMoE performance (ROC-AUC) increases significantly with more data, whereas Catboost stagnates more quickly.

Model Type Dataset Size Like Video Play Favourites Shares

MMoE
20M 0.933 0.7903 0.8961 0.909
300M 0.939 0.8048 0.9089 0.9275
9B 0.9417 0.8065 0.9133 0.9306

Catboost
18M 0.9313 0.7876 0.895 0.9114
75M 0.9388 0.7907 0.9077 0.9236

110M (in batches) 0.939 0.7912 0.906 0.9238

neural rankers, we notice that it is difficult to perform such complex
aggregations of learnable embeddings. Neural rankers on the other
hand support this seamlessly, giving them an advantage.

4.2.2 Performance across data sizes: We report model performance
for varying training data set sizes, for both GBDTs and neural
models in Table 3. We observe that the performance of both the
neural ranker and GBDT-basedmodels is similar on smaller datasets.
Nonetheless, as the dataset size increases, the marginal improve-
ment in the neural ranker’s performance is higher than that of
GBDTs, especially when considering a scale of approximately 9 bil-
lion data points. In contrast, the performance of Catboost stagnates
at a higher number of data points. Note that we were unable to test
Catboost on all data points due to cost and engineering constraints.

4.2.3 Cost & training time comparison: Table 2 shows various hard-
ware configurations (CPU/GPU/TPU) for training models, with
their run-time and normalised cost (i.e. we divide actual values by
the minimum observed value over all configurations). Since TPU
works best in terms of runtime for neural architectures [33] and
GPU in the case of Catboost, we choose these accelerators respec-
tively. Note that the fastest runtime does not always coincide with
the lowest cost. We also note that using pairwise objectives such
as YetiRank takes significantly more time compared to point-wise
loss — another reason why we exclude it from our analysis.

For MMoE, we leverage distributed training across all the TPU
configurations. The v2-32 TPU is significantly faster compared to
v2-8 while maintaining reasonable costs in comparison to v3-16 and
v3-32. We also note that aligning TPU, training data regions and
host machine regions significantly reduces time and cost, because
of less data transfer across regions.

4.2.4 Scalability & engineering considerations: For recommender
systems on large-scale platforms, such as ShareChat, it is impor-
tant to have a model that can generalise from a large training
dataset. Hence, scalability becomes a crucial factor. We trained
both Catboost and MMoE on various dataset sizes to assess model
performance as shown in Table 3. Overall, MMoE both exhibited

superior performance in terms of classification metrics and had
higher flexibility to scale while having faster training cycles due to
TPUs. Additionally, “deep learning” frameworks such as Tensorflow
provide TPU distribution strategies out-of-the-box, which signifi-
cantly helps when scaling neural rankers. For GBDTs, on the other
hand, libraries like Catboost require additional integration with
big-data tools such as Apache Beam. The latter results in additional
data transfer costs and engineering effort — which also have a role
to play when deciding on a model architecture in practice. As such,
we find that scaling neural architectures comes easier compared
to GBDTs. By design, the latter performs best when trained on the
whole dataset at once, which is not feasible for our largest datasets.

Taking into the insights gained from various experiments & anal-
yses discussed above, we choose MMoE as the preferred modelling
framework for ranking problems at ShareChat.

5 CONCLUSIONS & OUTLOOK
In this work, we have focused on comparing twomodelling paradigms
to build large-scale recommendation feeds: neural rankers via Multi-
Task Learning, and GBDTs. We have highlighted the fundamental
differences between them, how they handle large data volumes,
support online learning, require feature engineering, and other
aspects that are often neglected in the academic research literature.
In addition to these fundamental differences, we have highlighted
some of the challenges that are faced in the industry such as multi-
task learning, training dataset sizes in the order of billions, and
various implications of the same on accuracy, training time, cost
and scalability. Our experimental results show superior accuracy of
neural rankers compared to GBDTs, which we can primarily attrib-
uted to the scale of the training dataset and their better handling
of historical embedding features. While neural rankers perform
slightly better at a high number of data points, we find better con-
vergence of GBDTs at smaller dataset sizes and lower costs. While
in the current work, we focus on offline training, we envision a fu-
ture extension of our work, extending the comparison of real-time
training with industry-scale datasets.
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