
A M ipr o g r a m m i g M o n i t or f o r

Sinai1 Machines

GAI~,Y]). }{O,qNTBUCKLE
Uwiversil:y of Cag~yornia,* l~erledeU, C'a~@rnia

Although the monitor described here, called INT, is a
particular implementation on a small general-purpose
machine, a variety of devices are interfaced. The scheme
is considered to be general, and the recta-instructions are
thought to be a minimum set. Similar hardware and soft-
ware could be easily implemented on a wide variety of
machines.

INT, a combination hardware~software monitor designed to
control a wide variety of real-time input/output devices, is
described. The simple hardware additions provide a uniform
device to machine interface for such elements as keyboards,
graphic input devices, and interval timers. The software re-
lieves the user program from the details of input/output timing,
buffering, and task scheduling and provides parallel proc-
essing capability. User programs communicate with the
monitor through a small set of meta-lnstructions which consists
mostly of machinedanguage subroutine calls.

1. I n t r o d u c t i o n

A wide variety of small, general-purpose machines are
currently available primarily as process control com-
puters. Although advertised as providing easy inexpensive
interfacing of many devices, in reality the I/O multiplex-
ing is very rudimentary, usually only one interrupt is
available, and good monitor software is nonexistent. This
paper is a report on a powerful combination hardware/
software I/O monitor which resulted from an effort to
interface a CI~YI! graphic display to a small machine, the
PDP-5/8) which serves as a remote terminal to the
Project Genie SDS-940 time-sharing system [1]. The first
version began operation in August, 1965.

The handling of I/O from 8 variety of different word-
length and speed devices can be easy or difficult depending
upon hardware and software monitor. At the difficult ex-
treme there is no monitor (users program I/O commands
directly) and rio (or very primitive) interrupt faeitity re-
quiring many test/skip instructions just to decide what is
happening. What is easiest., of course, depends upon tile
user's intent- some prefer FOeTR~zv-like "print" or "read"
statements. However, such facilities require large over-
head, and hence are out of the question for providing very
flexible I/O with small supervisor overhead. The combina-
tion hardware/software monitor described here allows
close control of the I / 0 device but prevents interference
from attempted nmltiple use of the same device. It chan-
nels data to or from any size buffer in user memory, allows
parallel processing, and controls task sequencing.

* Departmenl; of Elect, rical Engineering. This work was supported
in part, by the Adwmced Research Projects Agency, Ofl]c:e of the
Secretary of Defense, Washington, I). C.
*The 7DigitM Equipment. Corpor..~ti(m PDP-5 and PDP-8 am
smerll, general-purpose computers with 4096 words of 12-bit men>
ory.

2. t lardware

The hardware portion of INT is a strictly external un-
pluggable addition to the machine and provides a uniform
interface for 16 devices, each of which earl either transmit
or accept data. To INT, a device is simply a unique binary
signal (called the atlentiort flag) which when true indicates
that the device is seeking attention. The primary function
of the hardware is to multiplex the 16 attention flags
through the machine's single interrupt facility. Two ver-
sions of INT are presently operating, each interfacing a
CRT display console, an ASI~ 33 teletype, a lightpen, an
z, y-coordinate input device, a 5-key handset, a eommtmi-
cations link to the 940 time-sharing system, and a memory
tube/keyboard console [2].

2.1 Scanner. The original decision to add hardware
was motivated by timing considerations. A software scan
called "polling" of the device attention flags would lhave
been too slow for the machine to keep up with the most
demanding device (one word every 250~see). On the other
hand, complex priority interrupt hardware was unneces-
sary because all attached devices were to be asynchronous,
i.e., they could wait almost indefinitely for acknowledg-
ment of the attention flag without data loss. Hence, a
hardware scanner (counter) was built which sequentially
tests the 16 attention flags and, when finding one true,
stops scanning (counting) until the machine has semriced
the device. The scan count provides a 4-bit device number
which earl be used by the software as a table index.

2.2 Ar~z/disarm. One of several hardware changes
occurred when the software necessary to keep track of the
devices which should be instantaneously listened to and
acknowledged grew excessively cumbersome. A hardware
arm/disarm feature was added consisting of a separate
flip-flop for each device to serve as a flag to selectively and
instantaneously ignore its attention flag (hence called the
re're~disarm]lag). One of the 16 arm/disarm flags is armed
When the machine wishes to listen to that device, or dis-
armed otherwise. Logically then, the condition for single
machine interrupt I is given by

[= Co.Ao.Ro V Ci. Ai.R1 V ' " V Cis.Aiz.Ri5

where C~ is the device number or scan count, A4 the atten-
tion flag, and R~ the arm/disarm flag for device i. Since the
set Ci are counter values, simultaneously occurring atten-
tion requests are considered one at a time.

Arm/disarm flags, hardware or software, provide an
ability for the program concerned with a particular device
to control that device without concern for others. In some

~ Vohtme 10 / Number 5 / May, 1967 Communica t ions of t i le ACM 273

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363282.363296&domain=pdf&date_stamp=1967-05-01

DEVICE
INPUT

PATA
LINES

~A
(RESET)

DEVICE
ATTENTIO~

FLAGS

u

ACCUMULATOR

--iIN~UT MULTIPLEX~R

(AND/OR ~ATES)

F
DEVICE

,i~ll, O UTP UT ALUM/ Ol GA R i~,4
FLAGS

(F L / P - FLOPS)
DATA
LIMES

DARM I, ~

(4-)

DEVICE
Ill SCANNER

DE, VICE

(4 -B IT COUNTER) ~OVNTS

(16)

(16)

|NDIVIDU~,L
CHANNEL
INTERRUPT

ACKNOWLE D~E

(AND GATES)

SCAN

ENAELE

ACKNOWLEDGE ~ T O (I ~)

I~A "'-----'ill, ATTENTION FLAG DEVICES

{PULSE AMPLIFIE RS ~

i= OR GATE

5CANN ER CONTROL

INTERRUPT MACHINE

READ/WRITE

GT~OBES

(PULSE AHPLIFIERS)

1 ; ; t
~ORW

INTERRUPT 5KIP
(TO MACHINE)

QE) TO
"~ - - ' l l " DE Vl C E

FIG. 1. Block diagram of INT hardware. The machine instructions IOA, IOS, IOILW, etc., are also decoded ia the INT hardware.

Interrupt

Save status
Redd device N. ° I
Branch fo devlce I

Addtask J I Contlnue
to queue L ~l in+errupted

DELAY BI¢ CLEAR

Convert file-N9 }
Clear task ~ueue l

to teble palnter I Clear devine fable]

f for devlce I

Y

Branch to USer
program

WAIT

Enter task in
local table]

Arm ~YNC devlce]

FIG. 2. Implementation of meta-instructions in INT. CONTINUE is a single instruction executed by user program which causes an
interrupt. FORK simply adds a task to the queue and continues.

274 C o m m u n i c a t i o n s o f the ACM Volume 10 / N u m b e r 5 / May, 1967

cases d~e ~d~b~tfl.i<m [fi~g sh.ould be ignored only temporarily.
For ex~mple, ii; is ch~ra(:geristie of some output devices to
dem:md atl;cntion when they can accept more data, and if
the progr~rn has no more output the demand is ignored
until such time as output is requested by the user prograrn.
The atl;enCion signal ~c~mnot be forgotten or control of the
device is lost, hence (;he arm/disarm and attention flags
must be given parallel significance. A device attention-
interrupt is allowed to happen only if both flag's are true.
An unacceptable approach would be to cause an automatic
attention reset if the device were disarmed. An equally bad
situation would occur if the attention signal were a pulse
which is :not allowed to set the ateention flag if it is dis-
termed. The arm/disarm flag state, however, is available
to the device. This feature is used, for example, by the
lightpen to avoid hanging up the display when a match
occurs while tile pen is disarmed.

By the time a second system was to be built, enough con-
fidence had been gained in the monitor software to warrant
a redesign of the hardware. The only significant innova-
tion was the use of the device number to avoid having
unique machine instructions to read/write each separate
device. In addition, this latest version has a uniform 16-
pin cable plug for each device as follows:

(a) 12 bits--data in or out
(b) read or write strobe from machine
(c) attention flag from device
(d) arm/disarm flag from machine
(e) acknowledge attention flag from machine.

2.3. Implementation Details. Figure 1 is a block dia-
gram of the existing monitor hardware. The external de-
vice scanner is a 4-bit, 1-megacycle binary counter whose
output is decoded into 16 possible device counts. Each de-
vice count is "anded" with a device atterttion flag and
arm/disarm flag. When all three become simultaneously
true for a particular device, the scanner is inhibited from
counting further and the single machine interrupt is
caused. The machine then reads the 4-bit device number
into the accumulator and uses the number to branch to the
program within INT responsible for the device. Within
this device response program, data is read in or out and the
~rppropriate gating signals are sent to the device, which
then clears its attention flag. The scanner is also reset and
st.arts at device 0, which provides a sort of priority in the
case of simultaneously occurring interrupts.

With the current software, attention requests can be
acknowledged every 36#sec with a PDP-8 or 222gsec
with a PDP-5/ Arbitrarily many data words can be ex-
changed between the device and machine at a given atten-
tion request, although only enough multiplexing gates are
included in the hardware of INT for up to fourteen 12-bit
words, which can be allocated in any way to the 16 devices.

Thesc times are based upon a 1.5ttsec and 6.0usec cycle time for
PDP-8 and 5, respectively and a single 12-bit word input or out-
put.

Volunte 10 / Number 5 / May, I967

Several of the devices currently attached have no data
associated with them, such as a panic button.

The special instructions for INT are:
(a) IOS --sense attention flag
(b) IORW --read/write data
(e) IOA --acknowledge attention flag
(d) ARM1,2 --arm
(e) DARM1,2--disarm
(f) RDN --read device number

IOS is used by disarming all devices except the one to be
tested; then IOS will skip if the attention flag of the sensed
device is true. IORW causes reading or writing; the gating
strobe is sent to the device in either ease to enable device
multiplexing of the data lines for more than two words
exchanged per attention request. A special provision is
built in to allow a few devices to input 24-bits (two words)
of data. IOA generates a signal which the device uses to
clear its attention flag. The PDP-5/8 allow any combina-
tion of IOS, IOA, and IORW to be executed simultane-
ously. The arm/disarm instructions selectively arm or dis-
arm devices based upon a mask in the accumulator. If the
bit corresponding to a particular device is off, the arm/dis-
arm flag of that device is unaffected. Two arm and disarm
instructions are necessary because of the 12-bit accumula-
tor and 16 devices. RDN actually reads the device number
and the appropriate bits to make up an instruction which
when executed causes a branch through a 16-word transfer-
vector.

3. Software

The software monitor provides parallel process capa-
bility which allows overlapped I/O. Programs to handle
any combination of the attached devices simultaneously
are easy to construct because of the simple yet powerful
meta-ianguage which relieves the user program from the
details of timing, buffering, and scheduling considera-
tions. The recta-instructions BIO (block input/output),
FORK, QUIT, WAIT, CONTINUE, CLEAR, and DE-
LAY are described below and illustrated in Figure 2.

The user normally wishes to initiate a macro-sized opera-
tion suck as read/write a block of data, and, while the I/O
is being performed, proceed on another task, perhaps to
initiate operations for other devices. In the simplest case,
the user may wish to listen for input from several devices
simultaneously. To allow this, INT has a task queue for
handling multiple tasks and uses the INT hardware for
overlapping I/O (device attention requests) with process-

ing.
The usual situation is that a user program (also called

task or process) is being executed at the same time atten-
tion is being sought by devices wishing I/O. A machine
interrupt causes temporaw suspension of the user process
while the I / 0 is performed by the device response program
within INT, after wtich the process is allowed to con-
tinue. I/O may be going on simultaneously with any of
the armed devices, and any one attention cycle takes only

Conmmnications of the ACM 275

a small amount of time from the interrupted process (see
the times given above).

When a user process is finished or "hung-up" (tempo-
rariIy suspended) to await a requested 2 /0 operation to
complete, a new task is taken from the task queue and
started up. New tasks get on the queue by an explicit user
request (parallel processes) and by a device response pro-
gram which has detected an I / 0 completion (previously
suspended tasks). The very simplest task scheduling is
used--first come, first served; a task is allowed to go to
completion or an I /O hang-up. A priority scheduling
scheme would cause no special difficulty but was con-
sidered unnecessary since the user programs are considered
to be well behaved; future results may alter this policy.
Such a ease might occur if two or more user programs were
operating simultaneously, one of them undebugged, for
instance. In no eases do user programs repeatedly test or
poll the mo~fitor or execute the 2 /0 or arm/disarm instruc-
tions described above.

3.1 Meta-Instructions
BIO--Blocl~ I/O. The single statement for initiating

I /O is B20 (d, s, e), whered is a device file number (nogthe
device number used by the hardware) which serves to
uniquely define the I /O device and to address certain
tables within INT. The number of words to be trans-
mitted or received is identified by the block starting
address s and ending address e. A word or character in-
struction is not provided because little (one word) would
be saved in the calling sequence, extra monitor program
would be necessary, and because word operations are
possible anyway (with s = e). Characters are not expected
to be packed in this application, so that character and
word operations are identical.

Certain devices such as the panic button have no data
associated with them. In these eases, the number of words
e - s ÷ 1 indicates the number of times the device seeks
attention, such as number of panic but ton depressions,
rather than number of data words. In those eases where
devices have more data than one machine word per atten-
tion request, e is the last machine word in the buffer and
e - s + l is the number of words input or output, rather
than number of attention traps.

In all eases, the user's program is hung-up at a BIO;
that is, another task (if one exists) is initiated and the
hung-up task is continued only when the operation re-
quested is completed. Hang-up can be avoided, if so de-
sired, by creating a parallel task as follows:

FORK(p) create parallel process p
BIO(d, s, e) do I /O
QUIT quit when I/C complete
p: parallel process to avoid BIO hang-up

Attempts to perform I /O on busy devices are remem-
bered (until the task queue overflows) by adding to the
bottom of the queue a task which causes the BIO for the
busy device to be repeated periodically until the device
becomes free. However, the order in which the requests

276 Communica t ions of the ACiM

are completed has no relatiot~ to the order in which r~:~.
quests are made. In cases where order is essential, th~
hang-up at B I 0 avoids multiple hanging requests. On th~?:~
other hand, the use of parallel processes can Nlow ~.
process to communicate with a gives device witho~.~
having to concern itself with whatever other process ~.~
using it. This feature is useful if several processes at,:::
using a continuously changing input data variable whos.~:~
values can be more or less randomly distributed betwee?:~
processes.) 'or example, two separate processes cou|d us~::~
RAND tablet coordinates [3] which appear to each procc.~.~
to occur at one ha]f the normal rate. Also, several ind~:~_
pendent processes can output simultaneously to the saint-..
device if, for examples each BIO were to write a bloe~o~
consisting of the data plus information sufficient t~-)
uniquely identify the data.

FORK. Parallel processes are created by the instm~:..
tion FORK(p) where p, a machine address, is simpl. F
added to the task queue and the process causing the FOtl i'[i
is eontiImed. From that point on, the processes hav,e
identical s tatus--no structure or hierarchy is remember,e~
The F O RK was a byproduct of the implementation ~:4'
RIO but provides much of the power of INT.

QUIT. A process is terminated by the QUIT instruc
tion, whick is simply a transfer to the task scheduler.

WAIT, CONTINUE. Intended to be used in pa i r s .
WAIT(i) and CONTINUE(i) provide a means for sy ~~-
chronizing processes. The index i simply provides a nu~"~a-
bet of pairs (5 in INT).

WAIT(i) executed by some process A, say, causes A
to be suspended until another process, say B, executes ::~
CONTINUE(i) . Process B proceeds and A is added ~:..,:~
the task queue and continued later.

CONTINUE is in reality an instruction which sets :~
device attention flag (called the S Y N C device) and t.hu~
causes an interrupt. The S Y N C response program the~:~
adds the corresponding suspended process (which h ~ ,:~
executed a WAIT) to the task queue. The order of occ'~.~:~
renee of W A I T / C O N T I N U E pair is of no concert's;
WAIT causes the SYNC device to be fa'med, CONT2NL" t)i2
sets the attention flag. A join, complement of FORK, i~
implemented with a W A I T / C O N T I N U E pair; the C O S "
T I N U E is followed by a QUIT.

CLEAR. Another means of process communieatiota ~
the ability of a process to CLEAR(d) all knowledge t~ ~<
monitor has about the state of device d. All the tables ~f'~:"
cleared, the device interrupt disarmed, and all tasks i~
the queue relating to the device are erased. One of flat:
device interrupts (panic button) causes IN T to clear ~~!
other devices as a mat ter of course in its a t tempt to r 'C~
cover from a panic. In the current system, a disaster ~'.i~
panic which has destroyed the panic recovery routines) ~'~
recoveraNe only through a bootstrap loader.

DELAY. An interval timer capability is provided !c~.)'
DELAY(t), which causes the process to be t e m p o r a r i l y

Volume 10 / Number 5 / 3Iay, ~9 ~'f

suspended, or delayed, for t units of time, where a unit is
approximately 30msec.

As can be seen from the recta-instructions available,
INT is a small rudimentary time-sharing system. Even
memory-swapping could be performed through the com-
munications link to the 940. However, no plans are cur-
rently under way to exploit these possibilities. The parallel
process capability is viewed here as a means for writing
nontrivial control programs for a wide variety of I /O
devices rather than a way to run several computations in
parallel, although the latter is clearly possible.

3.2 Implementation Details. The software may be
broken down as follows:

M:eta-instruetion subroutines
Task scheduler
Task queue
Device response programs
Device tables

Initially all devices are disarmed and the task queue
empty when the user program starts. Assume that at
some point the user wishes to do I /O and executes at
location p a BIO(d, s, e). The B I 0 subroutine first cheeks
to see if tile device d is busy, and if not, sets up the first
3 words of the 4-word device table entry for device d as
follows:

Word Meaning IMllal value

1 buffer pointer s
2 words remaining e -- s + 1
3 suspended task location p + 1
4 arm/disarm mask (unique for device d)

Device d then becomes busy by definition since entry 2
is nonzero. As mentioned above, d is actually the device

file number and is the relative location of the correspond-
ing 4-word block within the device tables. Finally, BIO
uses entry 4 to arm the device without affecting or know-
ing anything about the state of off mr devices.

Rather than return to the user program at location
p ÷ l , BIO transfers control to the task scheduler which
searches the task queue for the next active task and starts
i~ if one exists. Otherwise the scheduler simply loops
waiting for a task.

5J[eanwhile, interrupts occur for the armed devices.
Initially at each interrupt, an RDN instruction is executed
which reads the 4-bit device number and uses it to trans-
fer to a unique device response program. The response
program then reads or transmits a word into or out of the
memory cell whose location is the first entry of the appro-
priate block of tile device tables, increments that entry,
and decrements ent~T 2, the words remaining. If the result
is zero, the block I /O has been completed and entry 3,
suspended task location, is added to the task queue and
the device is disarmed. With the exception of the panic
butto~z, interrupt response programs always continue the
interrupted task. Most of the device response programs
are common since the pointers and counters are identically
arranged for all devices in the tables.

V o l u m e 10 / N u m b e r 5 / May, 1967

The task queue is simply a 16-word ring buffer operated
in a first-in/fiRst-out fashion. A word contains the memory
address of active tasks; initial values of the machine
status registers are assumed 0 for a task. If a process were
not allowed to go to completion1 but arbitrarily suspended
to run another process, the machine status would have to
be saved. Two pointers define tile beginning and end of
the queue which is empty if beginning equals end. New
tasks are added to the end of the queue by FORK. QUIT
simply invokes the task scheduler.

WAIT and CONTINUE simply make use of one of the
interrupts and a small table to provide for several WAIT/-
CONTINUE pairs. CLEAt{ does the obvious thing for
the device referenced.

The current, implementation is approximately 300
words long, 200 of which are instructions with the rest
data or tables; this seems remarkably smedl compared to
other general-purpose, multiple-task monitors.

4. Example

Figure 3 illustrates a variety of INT's features in a
program for a graphic display. An object is pointed to,
by a RAND tablet sWlus [3] for example, until the object
flashes (slowly blinks). Then a button (the tablet stylus)
is pressed which causes an identification of tile object to
be sent to the 940. Flashing of an accidentally selected
object is stopped if the button is not pressed within two
seconds. Otherwise the flashing is erased when the 940
acknowledges receipt of the message.

The first fork establishes a process A to continuously
listen to the 940. The only function shown is to erase the
flashing of a displayed object caused in F. The second
fork establishes separate processes for listening to the
RAND tablet input (C and D) andlistening for a "match,"
a lightpen-like input from the pen (B, E, and F). Process
C reads and processes pen coordinates and informs process
E that the pen is down (i.e., the pen switch is closed). D
waits for the pen to lift (pen switch to open), sends the
coordinates to the 940, and restarts C and D. B waits for
a match to occur, and then starts E and F so that the
object pointed to can be flashed whether or not the pea is
down. E is executed only if the pen goes down, and then
clears the DELAY started in F and sends to the 940 the
information about the object being pointed to. Process F
causes the object to flash and starts a 2-second DELAY.
Hence, if the pen switch fails to close within 2 seconds
following a match, the flashing is locally ceased. Other-
wise, the flashing continues until the 940 responds (in A).

5. Conclusions

No attempt was made at the time of the original desigr~
to pattern IN T after other multiprogramming systems
[4, 5], although some similarity exists. A FORK mete-
instruction exists in most such systems with the parallel
process structure remembered by the monitor, thus pro-
viding an ability for a process to transmit control informa-
tion to its "controlling" process (that which created it)

C o m m u n i c a t i o n s o f t h e ACM 277

~C~ ~ , <~:/

Y

;e l
.BJ_~.. (pen down)
C O N T I N U E (I)
convert pen

] c o o r d i n a t e s
....... to ink track

I

FORK I

0

(pen up)
(940 transmi£)

CLEAR (pen down)

I

FORK

STAKT

....... I FORK

[_~.~(ma±ch)

J FORK

--I

WAIT(I)
CLEAR (d e ~)

(940 transmit)

FlaSh objec't m&{ched
DELAY (2 Seconds)
e f t flash
QUIT

FIG. 3. Structure of user program for a graphic display example. Parallel horizontal lines indicate parallel processes started by a
FORK instruction. Underlined meta-instructions cause temporary hang-up of the process.

without the explicit knowledge required by a WAIT/-
CONTINUE pair. Also, with INT a process cannot
(legitimately) obtain the instantaneous status of another
process or for that matter an I/O device. In the latter
case a SENSE(d) meta-instruction could be added to test
skip if device d is busy. File handling (naming, directories,
I/O, etc.) could be added in an "executive" which uses
INT to control the I/O. The problems of process inter-
ferenee and memory swapping have been given little con-
sideration because of the purpose for which INT was
created.

However, as a monitor for I/O control within a remote
graphic terminal of a powerful time-shared computer,
INT has performed admirably. Suggestions for improve-
ment are given careful consideration, but it has generally
been the ease that the amount of monitor software neces-
sary for the addition of a new feature has been greater
than the amount of software necessary for the user to
implement the feature himself.

Acknowledgments. The author thanks William Teo and
Barry Borgerson for their efforts in redesigning the original

hardware to provide a simpler, more general package, and
also Ralph Love, who as the first major user contributed
significantly in a thorough shakedown of the software.

RECEIVED'OCTOBER, 1966; REVISED DECEMBER, 1966

REFERENCES

1. LICHTENBERGER, ~ . , AND PIRTLE, ~ . W. A facility for ex-
perhnentation in man-machine interaction. Proc. AFIPS
1965 Fall Joint Comput. Conf., Vol. 27, Par t 1, 1965, pp. 589-
598.

2. HORNBUCKLE, G . D . GO, Genie graphical input/output sys-
tem. Doc. No. 30.80.10, Project Genie, Dept. of Electrical
Engineering, U. of California, Berkeley, Calif., July 1, 1966.

3. DAVIS, M. R., AND ELLIS, T. O. The RAND tablet: a raan-
machine communication device. Proc. AFIPS 1964 Fail
Joint Comput. Conf., Vol. 26, Par t 1, 1964, pp. 325-332.

4. LAMPSON, B. W., LICHTENBERGE[{, W. W., AND Pie'rL~:, M. W.
A user machine in a time-sharing system. Proc. IEEE £~,
12 (Dec. 1966).

5. DENNIS, J. B., AND VAN HORN, E .C . Programrning semantics
for multiprogrammed computation. Comm. ACM 9, 3 (March
1966), 143-155.

278 Communications of the ACM Volume 10 / N u m b e / 5 / May, 1967

