
Automated Assessment for Databases Units
Anthony Kleerekoper, Andrew Schofield

Department of Computing and Maths
Manchester Metropolitan University

Manchester, UK
a.kleerekoper@mmu.ac.uk

ABSTRACT
With ever-growing class-sizes, automated assessment can be an ex-
tremely valuable tool in higher education. In this paper, we present
our tool for automatically assessing SQL programming and reflect
on five years of its use. We highlight some of the changes and chal-
lenges we have encountered as well as lessons learned. Our tool
has proven successful in both its primary goal and in secondary
goals such as encouraging student participation. Since its inception
it has grown incrementally and been adapted for other contexts. It
is now undergoing a major overhaul to expand its remit to include
elements of database design and theory. We will discuss how this is
being done and how we are aiming to construct a single, integrated
assessment tool. Ultimately, the tool could be adapted to other con-
texts as well and our aim is to raise awareness of the issues facing
automated assessment and encourage its adoption.

KEYWORDS
Automated Assessment, Databases, SQL, Web-based Learning
ACM Reference Format:
Anthony Kleerekoper, Andrew Schofield. 2024. Automated Assessment
for Databases Units. In Computing Education Practice (CEP ’24), January
05, 2024, Durham, United Kingdom. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3633053.3633059

1 INTRODUCTION
Large classes have been a problem for many years in Computer
Science Education and are only likely to increase. One of the chal-
lenges it poses is how to provide authentic assessments with timely
feedback. Automated assessment systems are a frequently used
solution.

In this paper, we describe our automated assessment tool for
SQL and reflect on our experiences of using it and improving it
over five years. SQL Tester was introduced in the 2017/18 academic
year to replace an existing non-automated assessment which had a
number of serious problems. An initial experience was extremely
positive and the first version was reported on in [2].

SQL Tester has proved popular with students over many years
and in different teaching units. It has been successful in meeting its
primary aim of providing authentic assessment at scale. By incor-
porating practice tests, it has also enabled and encouraged students

This work is licensed under a Creative Commons Attribution International
4.0 License.

CEP ’24, January 05, 2024, Durham, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0932-6/24/01.
https://doi.org/10.1145/3633053.3633059

to revise more and this has led to a slow expansion of its learn-
ing functionality. It is currently evolving into Mmudbox, MMU’s
database sandbox, which also support multiple-choice questions.

Our experience with SQL Tester is that the initial time invested in
producing a bespoke automated assessment tool has been extremely
valuable over many years and has led to improved educational
outcomes for many cohorts.

2 MOTIVATIONS AND USAGE CONTEXT
The creation of SQL Tester was motivated by the needs of a second-
year undergraduate unit called Database Systems. The unit was
originally taught over 24 weeks to approximately 120 students
per year. The students had previously taken a first-year unit that
covered some database elements. When we took over the unit, 10%
of the unit grade came from a set of 5 portfolio tasks that required
students to write SQL Select statements. These tasks were marked
during lab time by the lab tutors.

We found that students coming from the first-year unit often did
not have a strong grasp of SQL and the portfolio tasks were not
encouraging them to learn. Since these tasks were completed and
marked during lab-time, collusion was the norm and little attention
was paid to learning SQL via labsheets. Moreover, much of the tutor
time was taken marking and not helping.

Therefore, in the Summer of 2017 we decided to adopt an al-
ternative, automated approach. From the literature, we identified
AsseSQL, a tool produced by Prior et al., as an archetype system
[4, 5]. Unfortunately, the source code for AsseSQL was not publicly
available (and is still not to the best knowledge of the authors), nor
did we receive a response from the authors. Therefore, we devel-
oped our own version of AsseSQL and called it SQL Tester. The
main components of SQL Tester were essentially the same as those
described in AsseSQL.

SQL Tester was used for a five years in its original unit and was
also used in another, smaller unit of about 20 Degree Apprentice
students. During the Covid-pandemic, the size of the tests were
increased and the weighting increased to 30% because another
element of the unit’s assessment (a group-based coursework) was
no longer considered usable.

Due to changes in our institution’s degree courses, the original
unit no longer runs and instead there is a first-year unit that focuses
solely on databases. SQL Tester is now used in that unit to provide
50% of the unit grade (this unit is also worth 15 credits whereas the
second-year unit was worth 30 credits). This unit is taught to about
450 students per year.

3 SQL TESTER FUNCTIONALITY
SQL Tester presents students with a timed test where their answers
are automatically and immediately marked. A typical test consists

17

https://orcid.org/0002-3621-8568
https://doi.org/10.1145/3633053.3633059
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3633053.3633059
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3633053.3633059&domain=pdf&date_stamp=2024-01-05


CEP ’24, January 05, 2024, Durham, United Kingdom Anthony Kleerekoper, Andrew Schofield

Figure 1: A screenshot of the SQL Tester system during a practice test.

of 10 questions to be completed within 50 minutes (though when
the test was worth 30% of the second-year unit we increased this
to 20 questions in 100 minutes). The questions can be attempted in
any order and as many times as a student wants. The test continues
until either the time runs out or all questions are answered correctly
(or the student gives up trying). Each test has its own base length,
but when students are entered into the system they can be given
a multiplier to give them more time. This is used to comply with
Personal Learning Plans that require appropriate adjustments for
students with personal needs.

Alongside each question, the students are shown an Entity Rela-
tionship Diagram (ERD) of the database the question relates to. The
ERD shows the table names; the column names and data types; and
illustrated foreign key relationships. Antonija Mitrovic suggested
that having to memorise the database schema was a contributor to
student errors [3]. Therefore, SQL Tester includes the ERD along-
side every question to reduce this burden.

Below the ERD, the student sees the desired output based on a
model answer that the tutor has set for their question and a set of
sample data. The student can use this to help guide them to the
correct answer. Although this is not authentic because in the real-
world a developer won’t typically know exactly what the output
of a query should look like, Prior et al. argued that including this
helps remove ambiguity and is especially helpful for students for
whom English is not their first language [5]. This is a persuasive
argument.

Immediately below the question text, there is a textbox for stu-
dents to type their solution. Every attempt is logged by the system
and when a student returns to a question they have already at-
tempted their last attempt is shown in the textbox. This allows

students to save some of their progress and makes it easier for them
to come back to a previously attempted question.

Finally, when they submit an attempt they are shown the output
from their query. If their submission contained a syntax error, the
error message from the database system is shown. If there were no
syntax errors, the output from their query is shown. Whatever the
output, if their solution was not correct they can use the output to
help guide them towards the correct solution.

If their attempt was correct, the appropriate question number in
the list turns green to indicate it is correct. If not, a message box
appears to inform them that they are wrong and encourage them
to keep trying. We only use a message box for incorrect answers
because otherwise the student may not realise that their attempt
was submitted (as the output might not obviously change from
their previous attempt).

It is worth pointing out that although we did not strongly con-
sider colour-blindness when choosing the colours for the question
backgrounds, we have never been told by any students that they
struggle to differentiate between correct and incorrect questions.
A check of the colours from a screenshot using the color-blindess
simulators Coblis and Pilestone also show that the colours can be
distinguished even by those with colour blindness.

3.1 Question Banks and Categories
Every test in SQL Tester consists of questions drawn at random
from a question bank. We aim to have a large bank of questions for
each test so that students can attempt the same practice test many
times. Each question within the bank belongs to a specific category
and tests are created by drawing questions at random from the
categories in a set proportion. Initially, we had nine categories (with

18



Automated Assessment for Databases Units CEP ’24, January 05, 2024, Durham, United Kingdom

two questions drawn from the Inner Join category). The categories
chosen were influenced by those used in AsseSQL (as reported
in [1]), but with some changes. Specifically, we dropped the two
categories they found to be the hardest for students (self-joins
and correlated subqueries) and added some simpler ones (such as
questions requiring a SELECT with a row function). In the most
recent version we have simplified many of the questions and added
a Challenge category to stretch the strongest students.

3.2 Marking
In the original version, an answer was marked as correct only if it
matched the desired output precisely. That meant it had to have the
same column names and same row contents in the same order and
case. We required rows to be in the same order because some of
the questions required a specific order. We also required the cases
to match because some questions required specific cases.

One of the big problems with this method of marking was that it
was possible to trick the automatedmarker by producing the desired
outputwithout correctly answering the question. For example, some
questions required the use of a subquery to provide the correct filter
in a WHERE clause. However, it was possible to produce the correct
output without using a subquery by noting the desired output. In
the first year, we manually checked through all answers to correct
for these occurrences.

In the second version, we introduced a second, hidden set of
tables with different data. Student submissions were compared not
only against the visible data but also against the hidden data. Only if
their outputs matched for both sets of data was their answer marked
as correct. This prevented them from gaming the marking system.
For the first iteration of this system, we only used the hidden tables
to flag a submission as possibly being incorrect and continued with
manual checking. However, after the first year of using this we felt
confident that the second system worked and so incorporated it
fully.

When a student submits an answer that produces the correct
output on the visible data but incorrect on the hidden data, they
receive a message to that effect. Currently, this message reads,
“Unfortunately that answer was not correct. It produces the desired
output for the sample data, but does not answer the question. Keep
trying!” Some students do not fully understand the message but we
have always been able to explain it to them.

We have also softened our marking criteria over the years. In
the latest version we no longer use case-sensitive tests for the data
because we have switched to teaching MariaDB which, by default,
is mostly case-insensitive. As a result, we removed questions that
required using the UPPER or LOWER functions.

Furthermore, the requirement that the output be in the same or-
der as the desired output has generally been dropped. The exception
is of course when the question specifies an order.

The final big change in marking is with regards to column names.
Initially, these had to match the desired names exactly meaning that
if a column had an alias in the model answer, it had to have the same
alias in the output. We needed to include aliases in model answers
to hide function calls. However, we felt that requiring aliases to be
correct to get the answer correct was too harsh. It effectively meant
that students who did not know how to make an alias would very

Figure 2: Three question buttons showing the different states.
Question 1 is currently incorrect, Question 2 is correct but
with incorrect column names and Question 3 is completely
correct.

likely fail the entire test. For a period, we stopped checking column
names entirely and only checked that the content was the same. But
this meant we could never test a student’s ability to create aliases.

In the latest version we have changed our marking system so
that a question can have a partial mark (whereas previously an
answer was either right or wrong). Now if an answer is completely
correct, including the column names, then the submission has a
mark of 1. However, if the column names are wrong, the submission
has a mark of 0.9 (though this value can be tweaked as desired).
A correct answer with incorrect column names is indicated with
diagonal red and green lines which show it is partially correct. The
three backgrounds of question buttons is shown in Figure 2, where
Question 1 is incorrect, Question 2 is correct with incorrect column
names and Question 3 is completely correct.

4 STUDENT FEEDBACK
Our own observations are that students enjoy using the SQL Tester
and engage well with it. The more motivated students complete
the topic tests as they progress, but even the less motivated take
many practice tests in the run-up to the assessed test. In end of
unit feedback surveys we receive positive comments about the
tester. For example, in the latest end of unit survey, one student
commented: “The SQL tester was extremely helpful for revision,
couldn’t recommend it enough.” Another student sent the following
in an email to tutors:

“[SQL Tester] was by far the best due to it allowing stu-
dents like myself and others the ability to see where
about they are at in terms of sql confidence and I per-
sonally enjoyed this because it allowed me to see how
my progress went from little to no confidence to then
being ever so confident ”

5 FROM ASSESSMENT TO TEACHING TOOL
SQL Tester started purely as an assessment tool. The first version did
include practice tests so that students could familiarise themselves
with the test system before the assessed test. The practice tests
offered a different scenario than the assessed test and therefore,
obviously, different questions. But the questions were drawn from
the same categories and in the same proportions as the assessed
test and we tried to make the level of difficulty about the same.

From the beginning we observed that students engaged very
strongly with the practice tests, far more than we anticipated. Stu-
dents took a median of 8 practice tests each before their assessed
test and, on a voluntary questionnaire, more than 90% agreed that
they wanted to keep taking practice tests until they could get a
good mark.

After a couple of years, we added five “topic tests“ that aligned
with the SQL topics we taught and offered more focussed practice

19



CEP ’24, January 05, 2024, Durham, United Kingdom Anthony Kleerekoper, Andrew Schofield

in addition to the existing practice tests. We encouraged students
to take the topic tests as a final-step in their weekly learning, after
completing the labsheets.

Since SQL Tester is now used for a first-year unit we have in-
creased our steps towards expanding the role of SQL Tester into a
teaching aid not just an assessment tool.

As a first step, help links were added to the tester for the topic
tests. These can be seen in Figure 1 as three icons immediately to the
right of the answer box. The aim of the links was to provide students
with a way of finding more direct help with a particular question.
Since this was experimental, the help links were not enabled by
default and students had to opt-in to them being available for their
particular instance of a topic-test.

We offered three links for each question. The first was a link to
a unit “handbook” (more akin to a bespoke unit textbook) which
took students to the relevant page where they could read about
the function or concept required for answering the question. The
second took students to a LinkedIn Learning 1 video relevant to the
question (as the University has a subscription to LinkedIn Learning
and all students have access to it). The third link was to a relevant
w3schools page 2.

Although a full analysis of the use of these links is still ongoing,
our initial observations were that most students did not use them.
One of the challenges with the help links was trying to predict
what concept would most help the students, since in any given
question there are multiple concepts required. We didn’t always
get this right so many times the links were not actually helpful to
students. This is an area we are actively working on.

SQL Tester is now undergoing a major overhaul and evolving
into Mmudbox (MMU’s database sandbox), an educational sandbox
to aid the teaching of databases, both SQL programming and design
theory. As part of that evolution, we are incorporating new elements
into the SQL side. For a start, help links will always be available to
students in their topic tests.

We are also adding an option for students to show a partial
answer for the topic tests. The partial answer will show them the
structure of the answer and explicitly show where some SQL is
missing. For example, where a function is required or that another
clause is needed. Additionally, we will be making model answers
visible to students once their test ends so they can see how the
question could have been answered.

A major component of the overhaul is that we will be incorporat-
ing multiple-choice questions into Mmudbox, both single-response
andmultiple-response questions. Previously, wewere running a sep-
arate multiple-choice question test using Moodle, but we wanted to
integrate everything into one system. These questions will be used
to assess students’ understanding of database design concepts and
their understanding of ERDs. By adding practice multiple-choice
question tests into the system, this will hopefully encourage more
revision and preparation as we observed with the SQL questions.

One area we haven’t yet tackled, but have plans to, is with the
error messages from the database management system. We find,
consistently, that students do not make good use of these messages
to help them solve syntax errors when writing SQL. Often this is

1https://www.linkedin.com/learning/
2https://www.w3schools.com/

because the messages are too vague to be helpful, or point to the
wrong part of the code. However, sometimes the messages are clear
enough but not to students. So, we will be looking to add some
explanation to the message and a hint based on it. For example,
when the error message states that a table “doesn’t exist” we may
add a note that explains to the student that they most likely have a
spelling or case error in their FROM clause.

6 CONCLUSION
SQL Tester is an automated assessment tool for SQL that has been
used and improved for five years. It is now evolving into a more
general-purpose database assessment and teaching tool which we
are calling Mmudbox (MMU’s database sandbox). The original idea
behind the Tester was to replace a small assessment that consisted
of portfolio tasks that weremarked in lab sessions and had a number
of disadvantages.

Student engagement with the tool has been very strong and
they have used it as a learning tool by testing themselves with
the practice tests and later the added topic tests. Feedback from
students has been very positive.

SQL Tester was not a unique concept in its original form, as it
was based heavily on the description of AsseSQL. However, its new
evolution is the result of a move from being an assessment to a
teaching tool with more support for learning SQL, including (a)
links to helpful sources for each question (b) the ability to see a
partial answer for practice tests and (c) being able to see a model
solution when the time is completed.

Mmudbox will be a more general-purpose tool that includes
multiple-choice questions that will be used to assess database design
and other concepts. This replaces an existing test that was run in
Moodle and brings all our database assessments into one place.

Our experience indicates that providing students with a safe,
simple and responsive environment to practice SQL programming
encourages more practice and engagement. Students enjoy the
instant feedback, even if its only correct/incorrect and can gain
confidence from this. We believe that this approach can be more
widely applied in other contexts and institutions to provide scalable
and authentic assessment systems.

REFERENCES
[1] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2015. A Quan-

titative Study of the Relative Difficulty for Novices of Writing Seven Differ-
ent Types of SQL Queries. In Proceedings of the 2015 ACM Conference on In-
novation and Technology in Computer Science Education - ITiCSE ’15. 201–206.
https://doi.org/10.1145/2729094.2742620

[2] Anthony Kleerekoper and Andrew Schofield. 2018. SQL tester: an online SQL
assessment tool and its impact. In Proceedings of the 23rd Annual ACM Conference
on Innovation and Technology in Computer Science Education - ITiCSE 2018. ACM
Press, New York, New York, USA, 87–92. https://doi.org/10.1145/3197091.3197124

[3] Antonija Mitrovic. 1998. Learning SQL with a computerized tutor. ACM SIGCSE
Bulletin 30, 1 (1998), 307–311. https://doi.org/10.1145/274790.274318

[4] Julia Prior. 2014. AsseSQL: an Online, Browser-based SQL Skills Assessment
Tool. In Proceedings of the 2014 conference on Innovation & technology in computer
science education ITiCSE ’14. ACM Press, New York, New York, USA, 1. https:
//doi.org/10.1145/2591708.2602682

[5] Julia Coleman Prior and Raymond Lister. 2004. The backwash effect on SQL skills
grading. ACM SIGCSE Bulletin 36, 3 (2004), 32. https://doi.org/10.1145/1026487.
1008008

20

https://doi.org/10.1145/2729094.2742620
https://doi.org/10.1145/3197091.3197124
https://doi.org/10.1145/274790.274318
https://doi.org/10.1145/2591708.2602682
https://doi.org/10.1145/2591708.2602682
https://doi.org/10.1145/1026487.1008008
https://doi.org/10.1145/1026487.1008008

	Abstract
	1 Introduction
	2 Motivations and Usage Context
	3 SQL Tester Functionality
	3.1 Question Banks and Categories
	3.2 Marking

	4 Student Feedback
	5 From Assessment to Teaching Tool
	6 Conclusion
	References

