Check for
Updates

Orienting learners and teachers in introductory programming
classes: the ABC Framework

Quintin Cutts
University of Glasgow
Glasgow, Scotland
Quintin.Cutts@glasgow.ac.uk

ABSTRACT

This practice paper presents a framework that has been successfully
used in introductory programming classes to orient students to the
nature and purpose of programming, and teachers to the multiple
aspects of programming education. Orientation was one of the five
key difficulties for novices identified in du Boulay’s landmark 1986
paper, and it can still be an issue for both incoming students and
new computing teachers. The framework, known as ABC, presents
computing as a modelling activity, with: a multitude of possible
problem/task domains, or Application Areas (A); sets of Building
Blocks (B), such as programming languages and other computing
systems, which can be used for model building; and a set of skills
enabling the Creative Construction (C) of a solution, or model, of
a problem/task in a particular application area, using a particular
building block system. How the ABC Framework can be used to
help orient students and structure learning and teaching is pre-
sented, as well as insights derived from students and teachers of an
introductory programming course where this approach is used.

CCS CONCEPTS

« Social and professional topics — Computational thinking,.

KEYWORDS
introductory programming, orientation, difficulties, framework

ACM Reference Format:

Quintin Cutts. 2024. Orienting learners and teachers in introductory pro-
gramming classes: the ABC Framework. In Computing Education Practice
(CEP °24), January 05, 2024, Durham, United Kingdom. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3633053.3633063

1 INTRODUCTION

This practice paper concerns the adoption of the ABC Framework,
presented here, for understanding and organising the various as-
pects of programming, and of learning and teaching programming.
ABC points to much of the foundational research in learning to
program over the years and so will most likely seem familiar, par-
ticularly in relation to du Boulay’s and Soloway’s early works, e.g.
[2, 8]. In its very simplicity, hopefully, lies ABC’s greatest strength,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CEP °24, January 05, 2024, Durham, United Kingdom

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0932-6/24/01...$15.00
https://doi.org/10.1145/3633053.3633063

enabling us to integrate much of what we know about programming
into a coherent and immediately understandable framework.

Sections 2, 3 and 4 present our context and drivers for change,
an explanation of ABC, and its use in our course. Section 5 presents
students’ experience and teachers’ use of ABC, giving deeper insight
into its value. The paper concludes with next steps.

2 CONTEXT AND THE NEED FOR CHANGE

Our context is an “Introduction to Computational Thinking” course
with an enrolment of around 150 students who have no prior expe-
rience of programming (often referred to as a CS-0 class). Around
half the class have declared that computer science will be their
degree subject; for the rest, this is an elective option. The class
runs for 11 weeks with six contact hours per week. The course is
primarily a programming course, as an example of computational
thinking that captures the key aspects of the phrase as identified
by Wing in her later 2008 article [10] including both abstraction
and automation: learning to write simple programs to control a
computer gives experience in abstraction and automation.

Our programming course, like many others, and like most text
books, has tended in the past to be structured by the program-
ming language constructs, rather than by the problem domains to
which those constructs could be applied. For an intending computer
science student, it is perhaps acceptable to focus on the mechan-
ics of programming languages; but for an elective student, taking
the course as an option alongside their intended degree subject,
the value or potential application of what they are learning about
computation should be emphasised.

Furthermore, the actions that we take as programmers, the ac-
tions of computational thinking, are perhaps not all explicitly iden-
tified. We may have talked in our course about top-down decom-
position, or patterns, or debugging — but we didn’t have good
frameworks to introduce these topics properly. Via a combination
of live-coding and other forms of worked example, along with the
students working on programming tasks, we have hoped that these
problem-solving, or computational thinking, skills are acquired. But
we know that they aren’t, for many of our students.

In short, we recognise a need to provide more motivation and
orientation for our students, as well as a framework for discussing
the activities involved in computational thinking / programming.

3 THE ABC FRAMEWORK

ABC has been born out of a lack of easily understandable connective
tissue between a stated high-level goal such as learning to program,
and the low-level knowledge and exercises presented to students.
Such a structured connection is needed both for teachers, to ensure
that they are attending to all aspects of the knowledge and skills

https://orcid.org/0000-0002-6368-9912
https://doi.org/10.1145/3633053.3633063
https://doi.org/10.1145/3633053.3633063
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3633053.3633063&domain=pdf&date_stamp=2024-01-05

CEP ’24, January 05, 2024, Durham, United Kingdom

involved in programming, and for students, to help orient their
learning and make sense of all the low-level detail.

At the heart of the Framework is the recognition that program-
ming (as a key exemplar of computational thinking, that is, what
we do as computing people) is fundamentally a modelling activity.
Implicit in modelling is the task domain, aspects of which we want
to model, and the modelling domain, aspects of which we are going
to use to build models, and finally, the modelling skills that we use to
analyse tasks in their domain, drawing out key attributes, which we
then fashion into a model using the tools of the modelling domain.
These three are the basis of the ABC framework, so called when the
two domains and one set of skills are renamed, respectively, Appli-
cation Areas, (A), Building Blocks, (B), and Creative Construction, (C).
These are depicted in Figure 1, where A and B are separate worlds,
divided by the horizontal line, and C is a process that involves
moving between the two worlds.

By making the three aspects explicit, teachers are prompted to
focus on application area and building blocks both separately and
in combination, as well as creative construction: do the students
thoroughly understand the A they’re working in (necessary for
effective C); is it a personally interesting area; have they thoroughly
learned about the individual building blocks, B; do they see the
relationship between recurring sub-tasks in the various As they’re
seeing and related templates in the B they’re using; is time being
spent on the skills involved in C?

We expect ABC to help address two of du Boulay’s five landmark
difficulties in learning to program [2], namely orientation, and the
pragmatics of programming. The framework also precisely locates
two more — notional machines and notation - in the B domain.

Application Areas
The context or domain within Q
which a given task exists

Building Blocks
A set of tools that can be used to
model aspects of an Application Area

Figure 1: The ABC Framework

Creative Construction
Model aspects of A
using the tools of B

4 WHAT IS THE NEW PRACTICE?

The course has been changed in the following ways based on think-
ing around the ABC Framework:

Structured by application area. The high-level structuring of the
course is now via five topic areas that introduce different application
areas - hence turning around a traditional focus on programming
language constructs (or building blocks). The delivery of each topic
requires the use of a steadily increasing set of programming lan-
guage constructs. Both the topics and the constructs they introduce
are given in Figure 1. The aim is that students will appreciate the
relevance of programming across their lives, even at the relatively
simplistic level covered in an introductory course.

Made students aware of ABC, with reminders. The ABC is intro-
duced in the first lectures of the course as a way of explaining the

Cutts

nature of computational thinking and programming as modelling
activities. ABC is initially exemplified with modelling using Lego,
mathematical modelling (creating a model to predict the number of
cars in a road network), and modeling a human information process
(carrying out long multiplication with pencil and paper). Addition-
ally, the learning of mathematics in schools is used to emphasise
the difference between application areas and building blocks, by
highlighting how so much of maths was simply about learning how
the building blocks worked, with little to no mathematical mod-
elling of real world tasks or problems. The 5 different application
areas (topics) are introduced to the students, and our use of Python
as the building blocks system. As each different topic is reached in
the course, students are reminded of the ABC and our progress.

Mapped the development of building block knowledge. A single-page
map of all the building block concepts to be learned in the course
is introduced early, with most greyed-out and only the ones that
have already been covered in black type. The aim is to make clear
the distinction between the building blocks world that they are
learning about, and task/topic specific understanding that may be
needed in the particular topic currently being studied. Furthermore,
we amplify the idea of a “restricted toolset”: at any point in the
course, the programming tasks we present to the students should
be solvable with only the building blocks currently covered. We
discuss the value of learning to work in this way — to make do
with the tools available — because each set of building blocks (that
is, each programming language, for example) will have different
blocks, and one must learn to work with what one has.

Highlighted commonalities across building block systems. As well
as noting the differences between building block systems, we also
assure the students that although they are only learning Python
in this course, there is much overlap with other programming
languages. While we are confident that most instructors will say
something like this, the introduction of the ABC gives an easy
language to talk about this.

Used modelling as the foundation for code comprehension. We use
the clear distinction between the application area and the building
blocks domain to introduce the two keys ways in which program
code must be understood - on the one hand, it is a collection of
instructions that will be applied to a (virtual) machine, while on the
other hand, it is a model of the activity described in the application
area. These are the Structural and Functional aspects, respectively,
of Schulte’s Block Model of code comprehension [7].

Emphasising the skills involved in creative construction. The C part
of the framework encourages the explicit identification of skills
involved in developing programs. Two examples are: identification
and discussion of patterns / plans as a way of linking the task
and modelling domains, drawing on Soloway’s notions of goal
and template respectively as making up a plan [8]; and debugging,
beyond syntax errors, as an exercise in comparing the intended
program model in our head with the actual program model we
have created and finding out how these differ. Of course, if the two
models are the same, yet we aren’t getting the right output, then
we have analysed the problem incorrectly and come up with the
wrong intended model.

Orienting learners and teachers in introductory programming classes: the ABC Framework

CEP ’24, January 05, 2024, Durham, United Kingdom

Table 1: Application Area Topics and related Building Blocks

Application Area Topic | Description

Building Blocks

Processing text - You are a | Manipulating tabular data in text files for | Expressions, variables, control flow (sequence, selection,

data wrangler

data cleaning and simple operations

repetition), file handling, interactive texual I/O, lists

Generating graphics - You | Drawing 2D colour graphics incorporating | Function calls, actual parameters and return values, side

are a games designer

data from files. Simple guessing games

effects. Using a library (Turtle graphics)

Organising data - You are a | Modelling more complex data and perform- | Dictionaries. Complex data models using both lists and

data scientist ing detailed data analysis

dictionaries

Developing apps - You are | Introducing the challenges of working with | Creating functions, seeing Turtle as a framework, event

a software engineer larger projects

loop and callback functions

Your task - The Free Pro- | An opportunity for students to pick their | Consolidating the learning of all constructs encountered

gramming Project

Included the students’ own application areas of interest. The fifth
topic area is an opportunity for the students to pick their own
application area and task within it. This final topic gives the students
a level of agency and ownership within the course, and enables
them to develop their skills in creative construction, working on an
entirely new task, developing an appropriate solution in the task
domain and then modelling that in Python.

Made (some) tutors aware of ABC. Some of the tutors were aware
of the ABC framework from an optional tutor training course run
by the department, and were able to work with it during their
tutorial/laboratory sessions. This continuity of approaches across
the different teaching staff seen by students is important.

5 DOES IT WORK?

The value of ABC was discussed with two tutors and two lecturers
on the course, and informal and formal feedback was sought from
students, with input from eight students, some at the end of one
run of the course, others a few weeks into the next. Standard ethics
procedures were followed in acquiring and processing this data.
This is obviously not a rigorous evaluation, but the comments of
instructors and students indicate high value in the approach.

The Framework has helped instructors see the “big picture” of
programming education: “fABC] hasn’t dramatically altered my
perspective on programming, but it has helped me better realise the
complexity of the programming process, and how to break it down”
and “If I were to design a programming course from scratch, I would
draw considerably from the ABC Framework. I see it as a structured
curriculum approach that mirrors programming as a modelling pro-
cess, giving equal emphasis to problem domains, modelling domains,
and the development of problem-solving and modelling skills.” En-
suring that students see modelling as crucial to the true essence of
programming was emphasised.

The instructors noted the importance of making the application
area explicit, both for interest and programming skill. For example,
one said ‘T like ABC from the point of view of a teacher, because it
makes me think explicitly about application areas — and it’s important
to be diverse when picking them — to arouse interest and enthusiasm
in students with a range of backgrounds.” Another noted “If a student
does not know anything about A and does not know how to solve the
problem without the computer, no understanding of Python or any

own application area and task within it

so far, integrated into the solution of a unique task

other language is going to enable them to solve the problem.” This un-
derlines the importance of considering whether given tasks are set
in application areas familiar or attainable by students. For example,
success in maths is correlated with success in programming: is this
because maths and computing are related, or because many of the
tasks in programming classes require mathematical knowledge?

On the building blocks, one of the tutors wrote “the students need
to know what tools they have available to solve it and how they work.
This knowledge is separate from the problem they are solving. It does
not change from problem to problem. This knowledge is constant for
all exercises. A for loop always behaves the same way. They need to
have a good understanding of the tools in order to use them correctly,
predict how they will behave and enable them to debug when the
result is not correct.” There is a clear emphasis here that we need
to understand a building block thoroughly before we can use it in
creative construction.

Non-productive student behaviours were identified and explained
in terms of the ABC components: “Students tend to read a problem
and jump right into trying to solve it (go straight to C) without first
considering A (do they know what the problem is, and how it can be
solved without a computer) or thinking of all their tools in B, (they
tend to take the first tool that comes to hand and use it for the job
without considering what the tool does or doesn’t do and whether it
is the correct tool for the job or if there are better ones.) This leads to
hacky code where the student keeps writing code until it forces the
output to be correct (or at least appears to be)”

This need for students to pay attention to what they know was
amplified by the second tutor who talked about students mid-course
who have trouble writing a program from scratch. He described
how paying attention to A and B was a crucial part of the creative
construction process. First, “What we would do is try and nail down,
‘what does the program need to do’ and write it all down.” This was
about setting objectives for the program to achieve, a C activity but
requiring sound A knowledge. Action around the building blocks
was more explicit: ‘T got them to write down EVERYTHING they knew
how to program. They were relatively new programmers so really we
*could”, sort of, just put everything they knew onto a bit of paper: for
loops, while loops, functions, etc. This became a bit more interesting
when they started thinking of it as actual building blocks, so one
would say something like, ‘I can use a for loop to count occurrences of
an element in a list’ which we put down as another “thing™ we could
do.” Finally, with their understanding of A and B clear, they could

CEP ’24, January 05, 2024, Durham, United Kingdom

much more successfully tackle C: “Then, with the objectives on one
bit of paper and a whole load of blocks on another, we put them next
to each other and said ‘how can we fit these together: how can we use
some of the blocks we have on B to match the list of tasks on A?’ This
part was the part they were always the most scared of, but they were
always able to do it quickly and easily because they had everything
they needed in front of them.”

Student feedback mainly centred on the holistic nature of the
approach. For example, ‘T think the way the course is taught, how we
learn to use python for mathematical purposes, then expanding with
lists and dictionaries learning how to use it for practical everyday
situations, then the turtle library for animation/games etc, makes
one understand it is multipurpose. This structure is brilliant! In the
span of four months one sees its broad practical side, how with one
program/system one can do so much.” This student clearly valued
the explicit attention paid to different application areas, and the
comments match well to what one of the instructors said about ABC:
“it has the potential to foster a deeper appreciation of the nature of
programming and its interconnection with diverse disciplines, making
students understand that programming is not an isolated skill but an
adaptable tool applicable to multiple domains.”

New students were asked whether their view of programming
had changed as a result of ABC. One wrote “It reminds me of “ %/l
1T4— ’in Chinese, — it means ‘unity of knowledge and action’ in
English. In fact, we have already studied [a lot of] math so far, [so] we
have enough blocks to use, but we don’t know how to build a structure
with actual [value]. Maybe it’s not the best, but it’s a good start point
of engineering journey.” Another said their view had changed a lot:
“My only previous experience was on Scratch in a very unstructured
class so I hadn’t previously considered problem solving (A) we just
memorised/copied (B) from the worksheet and B was already partially
done with those blocks you drag about.” And a third (who appears to
have programmed before): “Yes, a little — it helped me put words to
how I’ve thought through programming problems.”

Students noted enjoyment of the course, although this can’t be
directly ascribed to ABC: ‘Tt was such a pleasant surprise to see that
there is a fun way to learning computing hahaha!”, “I wanted to
express how much I enjoyed the class this semester. Before coming to
the university last year I would have never considered to do computing
science ... but when looking back at the beginning of the semester I am
amazed to what my skills have developed to”, “Incredibly accessible
to students who have never coded before. Taught the skills at a very
manageable and stimulating speed”, “Even though I had not done any
coding before, the skills were built up slowly and all the information
that I had learnt tied together beautifully in the end with the final
project which gave the freedom to the learners to choose their favourite
way to show what they had learned this semester”, and finally, ‘T had
attended 2 years of a software development course 10 years ago, and
left it feeling like I couldn’t solve anything. After 1 semester here I
already feel much more capable than I ever thought I would. I have
never had a fixed mindset, but I did not expect the way I solve problems
to change this much in 3 months.”

6 WHERE DID THE IDEA COME FROM?

The ABC Framework is a simplification of a national framework
for schools computing education [1]. Broadly the same structure

Cutts

is also evident in the Realistic Mathematics Education (RME) move-
ment, in which the real world application of mathematics, or its
use as a modelling tool, is balanced against mathematical mod-
elling concepts and detail [9]. As noted earlier, much of what we
know about programming education can be sign-posted from ABC,
to help both teachers and learners. As well as Soloway’s and du
Boulay’s work, some examples are: Papert’s microworlds [6] to rep-
resent different application areas; pattern-oriented instruction [5]
and sub-goal labelling [4] for learning and teaching of aspects of
creative construction; and tracing [11] and notional machines [3]
in the building blocks area.

7 WHAT NEXT?

Following on from the tutor comments above, the full tutor group
will be made aware in future of the ABC approach used in the
lecture side of the course. Also, the structure of the C aspects, while
better than before, still needs further formalisation.

ACKNOWLEDGMENTS

ABC originated in discussion with Richard Connor, and later, Judy
Robertson. Maria Kallia and Jeremy Singer enriched the idea in
class. Steve Draper provided valuable comments for this paper.

REFERENCES

[1] Richard Connor, Quintin Cutts, and Judy Robertson. 2017. Keeping the Machinery
in Computing Education. Commun. ACM 60, 11 (oct 2017), 26-28. https://doi.
org/10.1145/3144174

[2] Benedict Du Boulay. 1986. Some difficulties of learning to program. Journal of

Educational Computing Research 2, 1 (1986), 57-73.

Sally Fincher, Johan Jeuring, Craig S. Miller, Peter Donaldson, Benedict du Boulay,

Matthias Hauswirth, Arto Hellas, Felienne Hermans, Colleen Lewis, Andreas

Miihling, Janice L. Pearce, and Andrew Petersen. 2020. Notional Machines in

Computing Education: The Education of Attention. In Proceedings of the Work-

ing Group Reports on Innovation and Technology in Computer Science Education

(Trondheim, Norway) (ITiCSE-WGR °20). Association for Computing Machinery,

New York, NY, USA, 21-50. https://doi.org/10.1145/3437800.3439202

[4] Lauren E. Margulieux, Mark Guzdial, and Richard Catrambone. 2012. Subgoal-
Labeled Instructional Material Improves Performance and Transfer in Learning
to Develop Mobile Applications. In Proceedings of the Ninth Annual Interna-
tional Conference on International Computing Education Research (Auckland, New
Zealand) (ICER ’12). Association for Computing Machinery, New York, NY, USA,
71-78. https://doi.org/10.1145/2361276.2361291

[5] Orna Muller. 2005. Pattern Oriented Instruction and the Enhancement of Analog-
ical Reasoning. In Proceedings of the First International Workshop on Computing
Education Research (Seattle, WA, USA) (ICER 05). Association for Computing
Machinery, New York, NY, USA, 57-67. https://doi.org/10.1145/1089786.1089792

[6] Seymour Papert. 1981. Mindstorms: Children, computers, and powerful ideas. Basic
Books, New York, NY. http://www.amazon.fr/exec/obidos/ASIN/0465046274/
citeulike04-21

[7] Carsten Schulte. 2008. Block Model: An Educational Model of Program Com-
prehension as a Tool for a Scholarly Approach to Teaching. In Proceedings of
the Fourth International Workshop on Computing Education Research (Sydney,
Australia) (ICER "08). Association for Computing Machinery, New York, NY, USA,
149-160. https://doi.org/10.1145/1404520.1404535

[8] Elliot. Soloway. 1986. Learning to Program = Learning to Construct Mechanisms
and Explanations. Commun. ACM 29, 9 (sep 1986), 850-858. https://doi.org/10.
1145/6592.6594

[9] Marja Van Den Heuvel-Panhuizen. 2003. The didactical use of models in realistic
mathematics education: An example from a longitudinal trajectory on percentage.
Educ. Stud. in Mathematics 54 (2003), 9-35.

[10] Jeanette M Wing. 2008. Computational thinking and thinking about computing.
Phil. Trans. R. Soc. A. 366, 1881 (2008), 3717-3725.

[11] Benjamin Xie, Greg L. Nelson, and Amy J. Ko. 2018. An Explicit Strategy
to Scaffold Novice Program Tracing. In Proceedings of the 49th ACM Tech-
nical Symposium on Computer Science Education (Baltimore, Maryland, USA)
(SIGCSE ’18). Association for Computing Machinery, New York, NY, USA, 344-349.
https://doi.org/10.1145/3159450.3159527

B3

https://doi.org/10.1145/3144174
https://doi.org/10.1145/3144174
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1145/2361276.2361291
https://doi.org/10.1145/1089786.1089792
http://www.amazon.fr/exec/obidos/ASIN/0465046274/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0465046274/citeulike04-21
https://doi.org/10.1145/1404520.1404535
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/3159450.3159527

	Abstract
	1 Introduction
	2 Context and the need for change
	3 The ABC Framework
	4 What is the new practice?
	5 Does it work?
	6 Where did the idea come from?
	7 What next?
	Acknowledgments
	References

