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A Prescriptive Simulation Framework with Realistic

Behavioural Modelling for Emergency Evacuations

MD. SHALIHIN OTHMAN and GARY TAN, National University of Singapore, Singapore

Emergency and crisis simulations play a pivotal role in equipping authorities worldwide with the necessary

tools to minimize the impact of catastrophic events. Various studies have explored the integration of

intelligence into Multi-Agent Systems (MAS) for crisis simulation. This involves incorporating psychological

behaviours from the social sciences and utilizing data-driven machine learning models with predictive

capabilities. A recent advancement in behavioural modelling is the Conscious Movement Model (CMM),

designed to modulate an agent’s movement patterns dynamically as the situation unfolds. Complementing

this, the model incorporates a Conscious Movement Memory-Attention (CMMA) mechanism, enabling

learnability through training on pedestrian trajectories extracted from video data. The CMMA facilitates

mapping a pedestrian’s attention to their surroundings and understanding how their past decisions influence

their subsequent actions. This study proposes an efficient framework that integrates the trained CMM into a

simulation model specifically tailored for emergency evacuations, ensuring realistic outcomes. The resulting

simulation framework automates strategy management and planning for diverse emergency evacuation

scenarios. A single-objective method is presented for generating prescriptive analytics, offering effective

strategy options based on predefined operational rules. To validate the framework’s efficacy, a case study

of a theatre evacuation is conducted. In essence, this research establishes a robust simulation framework for

crisis management, with a particular emphasis on modelling pedestrians during emergency evacuations. The

framework generates prescriptive analytics to aid authorities in executing rescue and evacuation operations

effectively.
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1 INTRODUCTION

Emergency evacuation and rescue planning pose significant challenges due to the unpredictable
nature of human behaviour in fast-paced and escalating danger situations [8]. Traditional mod-
elling and simulation techniques have been instrumental in studying crowded areas to formulate
effective evacuation plans for crises like fires, bomb threats, or riots. However, simulating human
behaviour under the influence of evolving danger remains a key challenge. To address this
challenge, concepts from social sciences, such as BDI (beliefs, desires, intent) aspects [31], are
integrated into Multi-Agent Systems [38], where each agent represents individuals involved in
the simulation with unique characteristics and behaviour.

Other approaches, such as modelling human behaviour based on fluid dynamics [14] and
adjusting urgency through observational studies [17, 21], have also been proposed to enhance
the realism of emergency evacuations. Recognizing the importance of early preparation for
rescue and evacuation operations, this research acknowledges that advance plans are often
generic and may not address the ongoing crises well. These plans can only serve as guidelines
for authorities on the ground, who must make critical decisions as dangers escalate. Delays can
lead to higher casualties, emphasizing the need for symbiotic simulations [25] and digital twins
[3]. These systems digitally replicate physical systems and utilize the internet-of-things (IoT)

[2], incorporating smart devices and live CCTV footage for highly realistic simulations. While
current state-of-the-art systems offer a plethora of crisis event simulations to improve emergency
evacuation operations, challenges persist. The dependability of digital twins may decline in the
face of device destruction during an ongoing disaster. Additionally, generic behavioural models
may lack applicability globally, given the diversity of customs and reactions to danger among
people. As a result, there is an increasing interest in highly accurate predictive simulation [19, 45],
utilizing the predictive capabilities of machine learning models.

Machine learning has seen major advancements due to the recent availability of cheap and
powerful Graphical Processing Units (GPU) that can speed up matrix computations rapidly,
bringing down the overall performance time by a drastic measure [37]. This acceleration has
propelled research in data-driven models for various human tasks, achieving close to real-time
performance with remarkable accuracy in visual imagery (GoogLeNet [40], Inception-ResNet
[39]) and image classification [16], as well as text classification [20], speech recognition [34],
and more. While we may not have a model that replicates the entirety of human thinking, these
successes showcase the potential of training computational models to “think like a human” for
specific tasks, opening avenues for automation in diverse fields.

Recent work to capture human behaviour from video [41] and enhancing realism in simulation
[29] with the aid of machine learning techniques have shown that it is possible produce realistic
reactions in simulation [27, 28]. The higher level of realism introduced will allow for a more
accurate analysis of strategies to overcome or mitigate different what-if scenarios for the area
of concern. Hence, knowing what data-driven learning models can do today, it is pertinent
to leverage the power it offers by investigating how such realism can be achieved to simulate
realistic human behaviour in different emotional states and physical environments.

In our efforts to tackle the issue of realistic simulation of human behaviour in emergencies
so as to prescribe effective strategies for evacuation, this research introduces an architecture
to integrate the Conscious Movement Model (CMM) [26] into a simulation framework. The
trained CMM’s emergency behaviour can be assessed through real-life case studies involving
evacuation from enclosed spaces. The simulation framework is extended with prescriptive
analytics for crisis management, contributing to a functional utility for simulating emergency
evacuation with a trained behavioural model. This work builds upon a prior publication [30],
which covered the integration of CMM and evaluation in a small classroom case study. The
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expansion includes further evaluation on a larger theatre case study and an extension for
prescriptive analytics.

The next section will briefly cover key concepts of the Conscious Movement Model (CMM)
and explain why it stands as the state-of-the-art method for modelling human behaviour in
emergencies. Subsequently, Section 2 will also delve into related work for emergency evacuations
and prescriptive simulation. In Section 3, the methods and design for integrating the trained
behavioural model into a simulation framework for simulating emergency evacuations will
be delineated along with the techniques employed to integrate existing optimization methods
for prescriptive analytics. Finally, Section 4 will detail the experiments and evaluation for our
proposed methods, before concluding with recommendations for future work in Section 5.

2 RELATED WORK

This section will elucidate key concepts integral to the methods and design contributions pre-
sented in this paper. Firstly, we will provide a succinct overview of the foundational principles of
the Conscious Movement Model (CMM) based on our earlier work. Subsequently, we will delve
into the background and state-of-the-art methods related to emergency evacuation simulation. To
enrich our understanding and enhance our proposed framework, we will explore existing works
on prescriptive simulation that can offer valuable insights.

2.1 The Conscious Movement Model

The proposed Conscious Movement Model (CMM) [26] is capable of dynamic transitions between
normal and evacuating states to reflect realistic behavioural reactions during emergencies. Within
the CMM, we also introduced attention and memory mechanisms, called the Conscious Move-

ment Memory-Attention (CMMA) model, to capture characteristics of human behaviour from
real-life video data. The trained CMMA can then be attached to the CMM for each agent spawned
into a simulation. As such, each agent will behave realistically based on its individual experiences.

The proposed CMM equation to compute a pedestrian’s conscious movement
−−→
CM at time t can be

written as follows:
−−→
CM (t ) = f

(
д

(−→
A t ,

∑−→
R t

)
,
−−→
CMt−1

)
× (Mt/ρt ) (1)

where the result of memory function, f , on the direction of motion, both attractive
−→
A t , and repul-

sive
−→
R t , with attention д, and the previous conscious movement

−−→
CMt−1, is multiplied by the force

of motion Mt at a rate proportional to the level of calmness ρt . The elaborate derivation of the
calmness term, explained in [26], is computed based an individual’s perceived level of risk accord-
ing to their own encounters at each time-step. In an evacuative state, the calmness term F (t )i for
agent i at time step t , is given by:

F (t )i = ρt−1
i + log(dt/st )α (2)

where dt is the agent’s current distance from the actual threat, st is the safety distance from threat
at that point in time (to avoid injuries), and α is the relative weight of influence on an agent’s
calmness. ρ0

i will start at 1 (total calmness) in normal state and fluctuates over each time step as

threat is introduced and danger escalates. The attractive directions,
−→
A t , include the attraction to

goal
−→
G t , attraction to empty space

−→
S t , and attraction to distractions

−→
D t . For clarity, the CMMA

model represents the first part of Equation (2) as such:

CMMA( �Gt , �St , �Dt , �Rt ) = f

(
д

(−→
A t ,

∑−→
R t

)
,
−−→
CMt−1

)
(3)
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Fig. 1. Forces of the CMM model (Image from [26]).

The CMMA takes in all the possible directions of motion, �Gt , �St , �Dt , �Rt , and outputs a “rational”

direction of motion, �Bt , based on attention and memory trained from historical trajectories of real-
life pedestrian movements. Figure 1, taken from [26], shows an overview of how each of the forces
in the CMM comes into play.

In Figure 1, all the possible directions of motion will present as options that an agent can take
as we pass them through a memory-attention mechanism, the CMMA, as features to produce the
best direction to take, instead of summing them all up like the Social Force Model and many of
its variants. It differs such that an agent will reflect similar movement behaviour to pedestrian
movements learned from the same scene (e.g., area, space, location). With the equations proposed,
the CMM can reflect movement behaviour based on as individual’s level of calmness and a
memory-attention mechanism, the CMMA model given by f ( �Gt , �St , �Dt , �Rt ), that will influence
the direction of motion based on its surroundings and previous movements.

The CMMA model is trained on real-life crowd video data to capture realistic decision-making
processes in response to various directional influences. At each time step, the CMM calculates
the directional forces for each agent, passing them through the CMMA model. The resulting
evaluation, considering individual calmness levels, guides the force of motion toward the desired
direction. Notably, experiments in [26] underscore the CMMA model’s transferability, showcasing
its commendable performance across different scenes.

In contrast to related works in a similar domain, most fail to consider social factors influencing
individual directional decisions or motion speed, as the CMM does. For instance, Yi et al. [44]
leverage Convolutional Neural Network (CNN) for image processing, predicting trajectory
paths only based on historical patterns. Heter-Sim [32] incorporates social influences such as
velocity continuity, collision avoidance, attraction, and direction control, yet overlooks the impact
of varying attention to surroundings that may also influence an agent’s decision to choose a tra-
jectory path. Similarly, the Proactive Crowd [22] model accounts for gap-seeking influences, akin
to the CMM’s attraction to empty spaces. However, like many other crowd modelling techniques
[5, 23, 49], these models lack the learning capability inherent in the CMM with its CMMA model.

To the best of our knowledge, the CMM stands out as the sole behavioural model with built-in
learning capabilities, consistently producing realistic behavioural reactions at each simulation
time step. The experiments and evaluations presented in [26] demonstrate that the proposed CMM
surpasses existing methods in terms of realism and dynamic responses to evolving environmental
situations.

2.2 Emergency Evacuation Simulation

Our main goal is to realistically reflect human behaviour in the simulation of evacuations and
explore methods to influence the level of urgency in emergency situations. To achieve this, we
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will review related works for modelling crowd dynamics and individual pedestrian dynamics in
emergency evacuation simulations.

Noteworthy contributions in the field of crowd evacuation modelling [13] have been made to
date. A flow-based modelling approach proposed by Almeida et al. [1] uses cellular automata
within a Multi-Agent System (MAS) to simulate evacuations in crowded buildings or spaces.
The proposed model integrates BDI techniques (Beliefs, Desires, Intentions) from social sciences,
where agents are driven by Desires (the goals), according to certain Beliefs (set of knowledge of the
world) and Intentions (actions) to fulfil the Desires. Zhong et al. [48] on the other hand, proposed
an automatic model construction of human crowd dynamics, formulated as a symbolic regression
problem solved by using self-learning gene expression programming. It is capable of describing
the crowd dynamics in different and unseen scenarios based on a set of behavioural rules.

In another work, Chen et al. [4] addressed the limitation of discrete crowd distribution data
by employing density estimation and optical flow. Density-based particle assignment is done to
identify crowds rather than individuals. Using Machine Learning, a regression model is trained to
match extracted features at each pixel of the crowd to find the corresponding density distribution.
This density distribution can then estimate the number of persons in the crowd for inputs to
a crowd simulation model. In order to track the movements of the crowd, Optical Flow-based
Displacement Tracking is employed. The author matches the simulated location with particle
allocation by using a matching algorithm to associate simulated locations of particles obtained
from the optical flow with the locations of particles directly calculated from the density map.
Another approach, using an Artificial Neural Network (ANN) classifier [47], focuses on
learning different clusters of human behaviour. During a simulation, the initial state is fed to the
classifier to predict the cluster it falls under, and then examples from that cluster are collected from
a hierarchical example database. One example is then selected for the actions to be copied in the
simulation.

These works indicate that, with more crowd data, machine learning frameworks can build
accurate crowd-moving patterns and behavioural models, facilitating risk analysis and decision-
making. However, modelling crowd dynamics only allow for an abstract study from a macroscopic
view, often overlooking the impact of collective individual behaviour on overall crowd dynamics.
Several works have sought to simulate different crisis conditions and how to efficiently evacuate
the scene with the lowest number of casualties. In order to achieve this, the behavioural dynamics
of individual evacuees have to be realistic and accurate. General cases of reaction to danger or
other environmental cues can lead to dire circumstances. For example, while evacuating a burning
building, it is common to observe a “follow-the-leader” pattern where everyone will simply follow
the person in front of them. During such situations, panic or visual clarity can affect a person’s de-
cision to find another exit. Such unanticipated conditions may result in different outcomes. These
“special cases” can be just one out of many due to the number of possible behavioural reactions.
Hence, it is important to factor in realistic behavioural reactions of individuals to different possible
environmental, physical, or emotional influences.

In an effort to comprehensively model human evacuation characteristics, Lovreglio et al. [21]
introduced an Evacuation Decision Model (EDM) that predicts the pre-evacuation state of
an evacuee among three possible states: Normal, Investigating, Evacuating. Considering the
perceived risk for an evacuation scenario, a person may transition from normal to investigating
the situation, to finally transitioning into evacuating state where they will search for the nearest
exits. Gelenbe and Wu [10] aimed to enhance human outcomes in emergencies through symbiotic
simulation and various tools, proposing a comprehensive approach involving physical sensors,
communication strategies, path-finding algorithms, simulation, and decision tools for large-scale
evacuations. Additionally, some emergency evacuation simulation studies [36, 46] have focused on
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the role of working personnel in expediting evacuations. These aspects are also just as important
and have been heavily covered in numerous research work and practical applications today [1].

However, despite the progress in various aspects of emergency evacuation simulations, our anal-
ysis identifies the modelling of human behaviour as a critical yet underdeveloped aspect in recent
years. Simulating emergency evacuations in enclosed spaces remains crucial, especially with large
numbers of civilians passing through daily, due to the probability of undesirable outcomes when
an emergency strikes. The motive of such simulations is to improve evacuation time and reduce
casualties in the event of such disasters. Hence, ongoing research aims to enhance methods and
strategy prescriptions to minimize casualties during disasters and emergencies.

2.3 Prescriptive Simulation

An emergency evacuation simulation aims to improve the evacuation process by understanding
the system better. For a typical emergency evacuation system, minimizing the total evacuation
time will typically result in fewer casualties as the threat escalates over time. As such, several cost-
minimization methods have been proposed in attempts to achieve optimal flow for evacuation that
can supplement preparation and planning for crisis events [35].

A Partially Observable Markov Decision Process (POMDP) model with the belief-
desire-intention (BDI) framework, was proposed by Rens and Moodley [33] to leverage the
reward-maximizing ability of POMDP and multi-goal management from BDI theory. Achieving
better results than standard POMDP architecture and previous works for both processing speed
and effectiveness, this approach can generate optimal plans for real-life applications. The min-

cost flow (MCF) network model is another popular method used in several works [6, 7] due to its
simplistic nature and optimal results. Using the MCF, the evacuation routes are viewed as a graph
where the nodes represent checkpoints towards the goal/exit. An objective function to measure
the cost, typically the total evacuation time is then applied to edges in the graph to ultimately de-
rive the minimum cost flow. The resulting paths will then represent the optimal evacuation route.
The simplicity of this model allows its use for several problems although the speed performance
may grow exponentially as the nodes or graph space increases. For more complex problems, other
works [24] apply multi-objective optimization (also known as Pareto optimization) to deal with
problems that necessitate the simultaneous optimization of multiple objective functions.

Prescriptive simulations can be viewed as an optimization problem, and there are already several
competitive methods available today that have been evaluated and tested with rigour. The key issue
when using these optimizers is that we assume the measured output from a simulation that we
are trying to minimize are realistic and accurate. No matter how good the optimizer is, unrealistic
inputs yield unrealistic results. Thus, it all points back to the realism of behavioural models to
simulate an area under study. With an effectively trained Conscious Movement Model (CMM), the
realistic output results can utilize any suitable optimizer for useful prescriptive analytics.

3 METHODS & DESIGN

We will first present the simulation framework designed for emergency evacuations, outlining
our proposed methods to harness the realism of the Conscious Movement Model (CMM). Sub-
sequently, we will detail our approach to generate prescriptive analytics within the proposed
simulation framework.

3.1 Emergency Evacuation Simulation Framework

Building upon the foundation laid in our prior work [30], we expand the scope by simulating
a larger area with increased exit choices. Additionally, we introduce prescriptive analytics to
optimize evacuation strategies. This section elucidates how the trained Conscious Movement
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Fig. 2. Overview of simulation framework with prescriptive analytics (image from [30]).

Model (CMM) [26] is employed to infuse realistic human behaviour into emergency evacuation
simulations [30], aiming for more accurate outputs that enhance effective analysis.

In the following, we will present one among several methodologies available in the literature
to generate prescriptive strategy recommendations. Leveraging multiple simulation runs and a
predefined objective function, we autonomously prescribe optimal strategies for execution during
emergency evacuations. The realism of this proposed utility will be rigorously evaluated to
ascertain its feasibility in real-life applications, particularly in optimizing emergency evacuation
operations. To provide context, Figure 2, taken from [30], presents an overview of the entire
system and demonstrates how this utility contributes to assisting relevant authorities in managing
emergency evacuations.

We incorporated the CMM’s behavioural learning architecture into our simulation framework,
which allows us to run simulations with realistic behavioural characteristics based on the scene
under study. The framework then simulates several what-if scenarios and generates strategic op-
tions for optimizing evacuation plans. Based on the output measures chosen, the framework will
prescribe ideal strategies to adopt for different case scenarios. The integration of a realistic be-
havioural model learned from real-life CCTV footage of pedestrian movements in a specific scene
to prescribe more effective strategies is the unique factor in this contribution.

In a typical simulation model for emergency evacuation of a particular area, we have static and
dynamic data where we can observe how dynamic data changes in different scenarios with respect
to static data. Static data (things that do not change) includes the area of space, exits, and static
objects. As for dynamic data, we have humans with different roles (e.g., evacuees, staff, rescuers)
and threats (e.g., fire, bombs, riots) that may change their positions or severity over time. Based on
these data, we can run several simulations with different scenarios and measure critical metrics
such as evacuation time or the number of casualties. Some of the things we can change to optimize
these metrics may be static, such as the number of exits, or dynamic, such as the number of staff
tasked to lead people to safety. The primary requirement for using our proposed framework is
to have the necessary static data available. Hence, we will assume at this point that we already
have static data such as distribution of arrivals, desired speeds, and positions of static obstacles.
All that is left will be to introduce an intelligent behavioural model into each agent spawned into
the simulation.

In our proposed Multi-Agent System, each agent will be able to process anything they see or
encounter in the simulation environment and react appropriately based on forces acting around
them, prior knowledge (memory), and their attention to the surroundings. These evacuees will
need to transition from a normal state to an evacuating state at the start of the simulation. The
CMM’s computation of calmness handles this by assessing each agent’s perceived level of risk
and dynamically transitioning the state for each of them accordingly. The goal for each evacuee
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will simply be to reach an exit. To this end, the CMM can directly be used for regular evacuees
navigating a scene and evacuating to the nearest or safest exit when a threat is encountered, or
emergency evacuation procedure commences.

As for staff or security personnel tasked to usher evacuees to safety, we can also think of them
as regular pedestrians with fear of danger but with a different goal. While ensuring their safety by
keeping a safe distance from the threat, the goal of these ushers will be to reach as many people
as they can and guide them to safety. As such, we can apply the same behavioural model set with
a different (more appropriate) goal for such agents, if any were to be spawned into the simulation.
For rescuers coming into a place of crisis, they also need to portray realistic human behaviour as
well.

Therefore, for all three different roles, the computation of calmness based on an individual’s
perceived level of risk can still be applied to reflect the change in calmness over time as danger
escalates. The main difference is the calmness threshold for the different roles since rescuers tend
to have a higher threshold when handling threats. Thus, the goal for these rescuers will be to
eliminate the threat and guide evacuees to safety. To achieve this, we can replace the requirement
to keep a safe distance from the threat with the ability to reduce the severity of the threat. Assuming
rescuers will have tools to handle the threat, such as a water hose for fires, we can imply that their
presence can gradually reduce the threat over time. The severity of the threat can then be reduced
accordingly based on realistic timings recorded by authorities, such as fire departments. Before
rescuers arrive, we can also proportionally increase the severity of the threat over time, based on
records of similar crisis events. These parameters can be set before running the simulation and
considered as static data required before running simulations. Therefore, we can adopt the CMM
for all three different typical roles by setting the appropriate goals for each of them as follows:

(1) Evacuees
• Goal is to reach the nearest and safest exit as quickly as possible.

(2) Staff/Security Ushers
• Goal is to get to as many people as possible, directing them to the best evacuation route

while maintaining personal safety.
(3) Rescuers
• Goal is to reduce threat and guide evacuees to safety.

Realistically, each evacuee may consider changing their goals in order to avoid injury and evac-
uate faster, either by rushing to the nearest exit or looking for the safest exit. This decision-making
process can be viewed as a game of balancing risks and rewards. As such, we devised a Panic Game
to help each evacuee decide whether or not to update their goal. The algorithm for the Panic Game
is shown in Algorithm 1.

The Panic Game will continue for each evacuee as long as they are still in the scene and have
not reached any exit. During the simulation, evacuees may encounter ushers or rescuers who
will point them in the right direction or assist them in getting to safety. The algorithm will then
account for the consideration to change their goal. As such, no changes to the CMM are necessary
to differentiate the various roles mentioned. Algorithm 1 is intended to reflect humans’ realistic
tendency to revise their goals based on what they believe will be most beneficial in achieving
their desired outcome. When it comes to evacuation, the goal is to get out as quickly and safely as
possible. Hence, when confronted with a threat or evacuation warnings such as directions from
ushers/rescuers or exit signs, an agent will seek the nearest exit. If an agent is having difficulty
getting through their current exit, they may change their goal and find another exit that may be
faster to get through. Thus, in Line 4, an agent will scan its surroundings for threats or evacuation
warnings communicated by other agents. If the condition is met, it will update its goal to the
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ALGORITHM 1: Panic Game

Require: τ ← speed threshold ;

Require: τ ′ ← wait threshold ;

1 EC ← [tarдet] � list of possible destinations ;

2 wait = 0 ;

3 Function: f indNearestExit (); � searches EC for nearest exit w/o passing threat;

4 if encountered a Threat/Evacuation warning then

5 Update selfдoal ← f indNearestExit () ;

6 if
�
�
�
selfvelocity

�
�
�
< τ then

7 wait += 1 � path is blocked - clogging/jams

8 else

9 wait = 0 � no jams, reset wait

10 end

11 if wait > τ ′ then

12 Remove current goal from EC ;

13 update = false ;

14 foreach aдent ∈ self’s angle of sight do

15 if aдentдoal � selfдoal & aдentvelocity > selfvelocity then

16 add aдentдoal to EC if not already in � neighbour is moving faster ;

17 update = true ;

18 end

19 if update then

20 Update selfдoal ← f indNearestExit ()

nearest and safest exit without passing through the threat. Line 6 examines the agent’s current
velocity and increments the wait counter only if it falls below a predefined speed threshold τ .
The wait counter is reset whenever an agent returns to an acceptable moving speed, as shown in
Line 9.

Following that, we check to see if the wait counter has surpassed a predefined waiting threshold
τ ′, in Line 11. This only happens when there is a bottleneck at an exit and the rate of egress is too
slow. An agent will then look around to see if there are any better options and will only stay
on if there are none. If the condition in Line 11 is satisfied, Line 12 will first remove the agent’s
current goal from the list of possible exits, implying that this agent is probably quite far back in
the bottleneck.

This will force the consideration for a change of goal. Line 14 then scans its surrounding agents
to see if any of them have a different goal (possibly relayed through other agents or ushers) and
can move faster. In this case, it will include that goal into a list of potential exits. In Line 20, it
will then update its goal to the nearest and safest exit based on the new list of possible exits, only
if one or more options are available. All agents will eventually follow through to reach the best
exit based on their own encounters. When all evacuees have been removed from the scene, the
simulation will come to an end. The flowchart for the Panic Game was presented in [30].

Having detailed the methodologies for integrating the Conscious Movement Model (CMM)
into a simulation model, it is essential to underline that this research exclusively concentrates on
emergency evacuations within enclosed spaces. Our proposed methods are applied to gauge the
resulting outputs, providing a basis for validating the accuracy of our model. The subsequent step
involves a thorough evaluation of the model’s capability to realistically simulate these emergency
evacuation events.
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Fig. 3. Prescriptive analytics: Strategy prescription method.

3.2 Prescriptive Analytics for Emergency Evacuation Simulation

Building on the results obtained from our proposed evacuation simulation framework, we
introduce a technique to automate the simulation of strategies and recommend the best course
of action based on a predefined objective function. It will allow users to input a range of possible
“what-if” scenarios, along with the metrics or measures to optimize. Additionally, users also need
to provide options or strategies to minimize or maximize measures through an objective function.
The framework is designed to automatically expand these scenarios into numerous possible
combinations of provided options, evaluating their outputs through the objective function to
derive candidate solutions.

Our methods employ the min-cost flow (MCF) network model, utilizing it to generate optimal
paths and facilitate the automatic generation of robust strategies. The overview of deriving
prescriptive analytics using our proposed simulation framework and the MCF network model is
illustrated in Figure 3.

The method begins with the user setting inputs for the simulation, including what-if scenarios
and strategic options (e.g., number/size of exits, number of control staff) they wish to study. The
simulation model will then initiate the simulation for each scenario and compute user-specified
measures based on a given objective function. This process is described in Algorithm 2.

Since each replication may produce slightly different behaviour, different strategies may be
generated. Hence, at least n new strategies will be generated for each strategy simulated. From
the new n strategies, only unique sets of strategy options will be added into the strategy list for
the next run unless the terminating condition is already met. Line 5 can include a simple check
to only run strategies that have yet been assigned scores so we will not run the same strategy
twice. Generating strategies in Line 10 of Algorithm 2 uses the min-cost flow network to find
optimal flows and generate different combinations of strategic options to simulate again. These
strategic options will be deployed at points with min-cost paths in order to distribute the flow
of evacuation in an effort to minimize the output measure. The range of options is the minimum
and the maximum number of each specified strategic option available to deploy. The algorithm
will then distribute these options accordingly based on how the resulting measures improve after
the simulation. Each individual’s path towards their exit is recorded and their speeds at key aisles
are associated to the corresponding edges in the flow network. The min-cost path in this case
would suggest slow moving traffic. As such, new strategies generated will give more attention to
these paths that were identified. This cycle continues until either the min-cost flow model can no
longer generate better combinations or the output measures have met a user-specified threshold.
At the end of the run, the framework can then prescribe a list of best strategy combinations for
each scenario based on the resulting output measures.
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ALGORITHM 2: Prescriptive Analytics

1 strategyList = initial list � at least one initial strategy ;

2 while terminating condition not met do

3 strategies = empty list ;

4 foreach strategy ∈ strategyList do

5 i = 0 ;

6 while i < n do

7 output← runSimulation(strategy) ;

8 build min-cost flow network with output measures ;

9 identify high-cost paths ;

10 objective function→ generate new strategy ;

11 strategies← add new strategy ;

12 i += 1 � run n replications

13 end

14 compute average results from output ;

15 record scores for this strategy

16 end

17 add all unique strategy in strategies to strategyList ;

18 update terminating condition

19 end

20 return recorded scores for all strategies→ sorted

This method, coupled with our proposed simulation framework integrated with realistic human
behaviour produces a novel utility contribution that can extend from predictive simulation to
prescriptive strategy recommendation. However, it may not be an ideal solution for real-time
applications due to its high time complexity in predicting pedestrians’ trajectory at each time step
as well as the exhaustive search for the optimal strategy. We will discuss possible enhancements
to these limitations in our further work.

4 EXPERIMENTS & EVALUATION

The work done in [30] experimented the framework on a small setting of a classroom. We will
extend the evaluation of the simulation framework against a bigger case study of real-life evac-
uation in a theatre. Then, we will show experiments on the theatre case study model to derive
prescriptive analytics with the methods proposed.

4.1 Theatre Case Study

In this study, we evaluated the framework on a larger scale. An enclosed theatre with multiple
exits and larger capacity can result in a much higher fatality rate if a threat occurs and evacuation
plans are not executed well. Therefore, Imanishi and Sano [15] carried out an elaborate study to
analyse evacuation drills in a theatre. The study ultimately produced and captured useful data for
evacuation and rescue planning. The input and output data for this case study were provided based
on real-life simulations. Hence, we can prove the realism of our simulation framework by validat-
ing that the input-output transformation between them is consistent. Figure 4 shows a snapshot
of the theatre, and Figure 5 shows its schematic representation used to build the 3D model.

The desired speeds for the agents were fixed at a normal distribution, as in [15], with a mean
of μ = 0.8 m/s and a standard deviation of σ = 0.2. We conducted simulations for the evacuation
according to the experiment parameters, across three distinct scenarios involving varying numbers
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Fig. 4. Theatre snapshot. Fig. 5. Theatre schematic.

Table 1. Details of Theatre Evacuation Experiments

Scenario No. of Evacuees No. of Control Staff Avg. Exit Flow (persons/s)

1 398 13 0.54

2 540 7 0.60

3 476 2 0.59

of evacuees and control staff guiding them to safety. While the presence of evacuees with reduced
mobility could potentially impact total evacuation time [11, 18], the setup outlined by Imanishi
and Sano [15] included only two wheelchair users for the first and second runs and none for the
third run. The results indicated no significant effects from the wheelchair users, given their small
numbers and the availability of helpers prepared to assist these evacuees.

Hence, for the sake of simplicity, our simulation excludes evacuees with reduced mobility.
Table 1 presents our findings, evaluating whether our model can produce exit flow rates similar
to those reported by Imanishi and Sano for each scenario.

Due to the larger area and multiple numbers of exits, we have control staff to usher the evacuees
towards the best exit in order to achieve the most efficient exit flow rate. A higher exit flow rate
will also reduce the total evacuation time proportionally to the total number of evacuees. Hence,
we simulated these scenarios and observed the resulting flow rate to validate the accuracy of our
simulation framework in representing a real-world evacuation.

4.1.1 Verification & Validation. We designed the space of the theatre in Unity 3D to propor-
tional scale based on the experiments in the case study. We used the provided bridge in Unity to
access the trained CMMA model written in Python. The CMM model was written within Unity in
C#. For the 3D model, the theatre has a capacity of 925 folding seats and eight wheelchair seats.
The chairs are fixed to the ground and cannot be pushed away. The width between the seats of
each row is 60cm. The side aisles are 75cm wide, while the middle aisle is 95cm wide.

There are a total of eight doors with similar inner widths of 165cm. In order to verify that we
have built the model correctly, we will need to check that the following requirements are met:

— Space and exits are built to scale in the simulation environment.
— The locations of evacuees and staff at the start of the simulation are the same.
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Fig. 6. Theatre model 3D. Fig. 7. Theatre evacuation 3D.

Table 2. Experiments for Theatre Exit Flow Rate (Persons/s)

Scenario 1st Run 2nd Run 3rd Run 4th Run 5th Run 6th Run

1 0.76 0.33 0.56 0.67 0.64 0.39

2 0.59 0.62 0.55 0.54 0.65 0.57

3 0.45 0.67 0.33 0.58 0.72 0.64

— Events and agent behaviours are represented correctly.
— The mathematical formulae and relationships we used in the simulation are valid.

Hence, for this case study, every agent is fully aware of the eight exits located around the theatre.
Each agent then simply makes its way to the best exit (nearest and least congested) and may change
its goal accordingly with the changing environment. Control staff are placed in between aisles and
at exits without blocking the way while informing nearby evacuees of the direction towards an exit.
The system then records the number of evacuees crossing the exit every second and computes the
average to compare with the real system. Figure 6 shows the 3D simulation model of the theatre,
while Figure 7 shows a snapshot of an evacuation being carried out in the theatre model.

Through simulations and observations, we can verify the correctness of events represented and
the logical flow of our model. Next, we validate the correctness of the simulation being carried out.
To do that, we evaluated its ability to behave and produce similar results to a real-life evacuation
or mock drills. We ensured that the model we have built has high face validity and the model, as
well as its structural assumptions, follow the experiments specified in [15]. In order to conduct the
t-test, we computed the required number of replications (R) from the inequality equation below:

R ≥
Z 2

α /2,R−1
S2

0

ϵ2
(4)

We retrieved the population variance S2
0 from an initial sample for each scenario and computed

R with a confidence interval α = 0.1 and a pre-specified accuracy ϵ . It was concluded that no
fewer than six replications are required. Therefore, a total of six replications (runs) were executed
for each scenario, s . The average exit flow for six independent runs for each scenario is reported
in Table 2.

The mean absolute errors (MAE) of the simulation results were compared against the real-
world results in Table 1. For each scenario, the MAE scores for each replication is shown in Figure 8.
The average MAE across all three scenarios over six independent replications is only 0.096, with
the highest error reaching no more than 0.26.

From the six independent replications (runs) for each of the scenarios, we computed the mean
and standard deviation. For this hypothesis test, we evaluated whether the resulting exit flow,
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Fig. 8. Simulation vs real-world MAE scores.

Table 3. Theatre Hypothesis Test t-score

Scenario E (Zi ) Mean (μ) Standard Deviation (σ ) t0 Accept/Reject

1 0.54 0.56 0.17 0.29 Accept

2 0.60 0.58 0.04 1.22 Accept

3 0.59 0.57 0.15 0.33 Accept

given by function E, from the simulation, Y , and the real system, Z , are the same. We derived the
null hypothesis H0 and the alternate hypothesis H1 as follows:

Hypothesis H0. : E (Yi ) = E (Zi ) seconds

Hypothesis H1. : E (Yi ) � E (Zi ) seconds

With a level of significance of α = 0.05, and sample size (n = 6), we computed the t-score t0
for each scenario s with the mean μs

y and standard deviation σ s
y against the true value E (Zi ), with

Equation (5) and reported the results in Table 3.

ts
0 =

�
�
�
�
�
�

μs
y − E (Zi )

σ s
y/
√
n

�
�
�
�
�
�

(5)

The critical value for a 2-sided test was tcr it ical = 2.571. Table 3 showed that all the t-values
are lower than the critical value. Hence, we can safely accept the null hypothesis H0 proving
that the average exit flow for each scenario from our simulation is similar to the output results
from real-life evacuations. Regardless of the size of evacuees, the average flow rate at the exits
does not vary significantly, which makes sense since the door sizes do not change. Through
this input-output transformation, we confirmed the model’s ability to correctly simulate an
emergency evacuation, in this scenario of a theatre, realistically. We were also able to observe
realistic changes in the resulting output when the input data was modified accordingly.

4.1.2 Simulation Experiments & Discussion. We evaluated the emergency movement behaviour
of the CMM for this scenario by observing the changes in speed. State-of-the-art methods in
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Fig. 9. Theatre: Speed changes.

trajectory prediction was shown to be less than ideal for such evacuation simulations in [30].
Thus, we will evaluate the experiments on the popular Headed Social Force Model (HSFM)

[9] and the Social Force Model with Tolerance [42] and Panic [12] (SFM-T+P). Figure 9 show
the speed changes between the three different models based on six independent replications.
We simulated Scenario 1 on all three behaviour models to observe the changes in speed. The
simulation parameters were set up accordingly as in Table 2.

We can observe similar issues through this analysis. The changes in speed show how the HSFM
was unable to display any phenomena of urgency in emergency evacuations. Even when there
is more space to pick up speed towards the exit, the HSFM would comfortably increase its speed
to the desired pace and eventually pass through the exits with minimal arching and clogging at
bottlenecks. As we have learnt from social science theories and observational studies [17], such
phenomena are common in emergency evacuations. Due to the absence of any influential variable
that can reflect appropriate urgency in evacuation for the HSFM, this behavioural model is not
ideal for such critical simulations. As for the SFM-T+P, it showed a quick increase in speed before
a sudden drop when most agents have reached an exit. The average speed then continues to drop
as the repulsive forces come into play, causing agents to bounce off one another before sliding past
the exit. As a result, the total evacuation time was much higher than the results from the real-life
case study on average. Again, the CMM was able to reflect a much smoother change in speed that
showed an initial surge as agents begin to evacuate, and then slow down when approaching the
exits to allow efficient egress. We show in Figure 10 a closer study on the changes in speed of the
CMM against the development of calmness over time.

Since the HSFM has no urgency term, while the SFM-T+P only has a fixed panic threshold that
influences urgency, we cannot measure the development of emergency behaviour in these two
models. However, for the CMM, the computation of calmness based on an individual’s perceived
level of risk allows us to quantitatively analyse the development of calmness and its effects on the
average speed of egress. We found that in a large setting such as a theatre, the level of calmness
drops more gradually as compared to a smaller space such as a classroom [30]. We can also see
the average speed increasing as the level of calmness drops. However, the average speed begins
dropping at a period where everyone was already at the exit area waiting for the exits to unclog.
At this point, the level of calmness continues to drop. As more evacuees leave the scene, we can see

ACM Transactions on Modeling and Computer Simulation, Vol. 34, No. 1, Article 4. Publication date: January 2024.



4:16 Md. S. Othman and G. Tan

Fig. 10. Theatre: Development of calmness vs average speed over time (CMM).

Table 4. Categories of Moving Speed

Category Slow Walk Fast Walk Jogging Running

Speed Range (m/s) 1.21 - 1.75 1.76 - 2.21 2.22 - 2.68 2.69 - 2.97

the level of calmness begins restoring to normal, and the average speed becomes more regulated.
This logic can also be expected in a real-life scenario.

Having shown the performance of the CMM against other recent behavioural models and its
realism in reflecting emergency behaviour, we can now use the proposed simulation framework
to simulate different scenarios and observe different metrics for effective analysis. For a larger
simulation such as this case study, there are a number of things that can be considered for opti-
mization such as the size of doorways, the number of doors, the spaces between aisles, the number
of control staff to facilitate evacuation, and how different numbers of evacuees and speeds can
affect evacuation time. For this evaluation, we will focus on an average capacity of 470 evacuees
evacuating through eight 1.65m exits at different categories of walking speed listed in Table 4 [43].
We can then observe how control staff placed at strategic points may affect the overall exit flow
rate.

Although control staff were set as a scenario parameter for verifying the similarity of our simu-
lations to the real-life evacuation drill, we strategically place the control staff in our experiments to
assist in the distribution of traffic flow so as to improve the resulting evacuation time. As such, the
placement of control staff is now a strategy parameter in our optimization experiments. Assuming
the theatre is an existing site where we cannot change the size of aisles and doors, or the number
of exits, the resulting egress rate based on occupancy and speed can still be optimized through
strategic placements of control staff to facilitate evacuation effectively. Hence, we will study the
effects on the exit rate with different numbers of control staff deployed at different placements. For
both scenarios, we experimented on the exit flow rate with 0 to 8 control staff randomly placed
at strategic spots in the theatre. Figure 11 shows the possible placements of control staff at exits,
while Figure 12 shows possible placements of control staff at major aisles.
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Fig. 11. Staff placements at exits. Fig. 12. Staff placements at aisles.

Fig. 13. Case study II: Exit rate with staff at exits.

Figure 13 shows the exit rate for Scenario 1 with control staff at exits, while Figure 14 shows
the exit rate for Scenario 2 with control staff at major aisles. They show how different speeds may
change the exit flow rate and how different numbers of control staff were able to regulate the flow
of exit as well.

Based on the graphs, we can see that placing staff at aisles can regulate the flow much better as
compared to placing them at exits. This is possibly due to the clogging happening at exits. Placing
a staff there may block the exit or produce no results since evacuees coming to that exit must have
already made the decision to use that exit. On the other hand, staff placed at aisles were able to
give evacuees advanced information on which is the best exit they should take and regulate their
speed earlier before clogging at the exits starts to form.

The regulation of speed is crucial since we can see how running speed usually results in a much
lower exit rate as compared to jogging speed. The results also showed that placing a few control
staff (2 - 4) made almost no difference. We deduced that just a few staff is not sufficient to make
a significant impact in large areas such as this theatre. Although we can see some significant
effects in the average exit flow with more control staff (6 - 8), our goal is to reduce casualties
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Fig. 14. Case study II: Exit rate with staff at aisles.

without adding more people that could end up as casualties themselves. Thus, finding the optimal
configuration for effective egress is pertinent.

4.2 Prescriptive Analytics

The theatre case study we have evaluated is of a bigger area than the classroom case study done
in [30], with many strategic options available to improve the average evacuation time. Hence, we
will use this case study and apply the proposed prescriptive analytics method to derive optimal
strategies to adopt in an emergency evacuation. The proposed methods can allow for automated
simulation runs for each of the strategies generated for every fire evacuation scenario that a user
wishes to study. Through the simulation runs, the user-defined measures will be recorded for out-
put analysis to determine the best strategies to adopt. The strategic options we can supply to the
strategy generation algorithm may include, but are not limited to, the following:

— Number of doors: for high evacuation time
— Size of doors: for congested doorways
— Number of control staff: for heavy traffic flows

To simplify this experiment, we will study a single evacuation scenario and seek to find the
best combination for the number and placement of control staff facilitating the evacuation. The
number of doors, size of exits, and the width of aisles, will remain the same in order to focus on
improving the regulation of evacuation flow. The measure we will optimize is the total evacuation
time. The experiment was set up with 470 evacuees, evacuating through eight 1.65m exits at a
normal distribution of speeds between 1.21 - 2.97 m/s, with mean μ = 2.09 and standard deviation
σ = 0.29. The initial simulation will provide the following strategic options with a range of 4 to
16 available resources to deploy:

— Control staff at exits: for congested doorways
— Control staff at aisles: for heavy traffic flows

The simulation framework with prescriptive analytics should then help us find the optimal place-
ment and number of control staff to deploy in this theatre evacuation scenario. Figure 15 shows
the traffic flow with control staff only at exits, while Figure 16 shows the traffic flow with control
staff only at aisles.
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Fig. 15. Traffic flow: Staff at exits. Fig. 16. Traffic flow: Staff at aisles.

Fig. 17. Optimization for prescriptive analytics.

After the first simulation run, Algorithm 2 will then redeploy the control staff at positions with
high traffic flow accordingly with the knowledge of minimum cost paths to guide the evacuees.
We can see from Figure 15 that the flow of traffic is quite distributed among all the exits when
there are control staff placed only at exits. In Figure 16, when control staff are only placed at aisles,
we found that the flow of traffic is heavily congested at the middle exits while the exits at the top
are quite empty. However, experiments in Section 4.1.2 suggest that placing control staff at aisles
resulted in a much better overall exit flow rate. This is due to the regulation of speed from the
control staff at the aisles that are not blocking the exits. Hence, we see how there is a need to
combine both the placements at exits and aisles to derive an optimal solution.

Figure 17 shows the optimization process from Algorithm 2. For each run, we plotted the number
of strategies generated and the best average evacuation time among all strategies for that run. Each
strategy is simulated over 10 replications. We started with no strategies at all (0 staff at aisles and 0
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Table 5. Prescriptive Analytics Report

Rank Placement at Aisles Placement at Exits Average Evacuation Time

1 2 4 4.36 mins

2 4 2 4.39 mins

3 6 8 4.45 mins

4 4 4 4.53 mins

5 4 6 4.60 mins

Fig. 18. Evacuation at 1-minute. Fig. 19. Evacuation at 2-minutes.

staff at exits). Referring to Algorithm 2, the first run will generate 10 strategies based on the MCF
network. Out of the 10 strategies, only 3 were unique. As such, the second simulation run would
simulate 3 different strategies over 10 replications each, generating 30 strategies of which only 5
were unique. This is reasonable considering for each strategy, the min-cost paths through several
replications would usually be about the same, thus producing the same strategy result.

With reference to Figure 17, the first run reported over 4.8 minutes for the best average evacu-
ation time. The optimization then generated three strategy combinations (strategy options) to be
executed in the second run. The process repeats until no better average evacuation time was found
after two consecutive runs. Finally, we recommend the top strategies to adopt based on the best
average evacuation time found. Table 5 presents the top 5 combinations with their corresponding
average evacuation time.

The report shows ideal combinations, which otherwise would have been difficult to derive man-
ually or by trial and error. From the original case study of real-life evacuations, the average evacua-
tion time is about 4.83 minutes, with a few different combinations of control staff deployed around
the theatre. In our simulation for finding the ideal number and placement of control staff to be
deployed, we found a maximum of up to 5.42 minutes of average evacuation time as the worst
combination. Ultimately, we found that the ideal combination is to have 2 control staff to regulate
traffic at the aisles and 4 of them placed at exits to guide evacuees and maximize the available exits.
Figures 18–21 show the progression of the simulated evacuation (with no strategies employed) at
1 minute, 2 minutes, 3 minutes, and 4 minutes, respectively.

In this proof-of-concept, we have demonstrated a single-objective optimization utilizing
min-cost flow to recommend optimal staff placement configurations, enhancing the efficiency
of the evacuation process. The flexibility inherent in the framework extends to the ability to
switch optimizers and objective functions, facilitating the utilization of Pareto methods for
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Fig. 20. Evacuation at 3-minutes. Fig. 21. Evacuation at 4-minutes.

multi-objective optimization. With the implementation of our proposed framework, we have
established a more effective approach for examining evacuation systems that incorporates realistic
behavioural reactions, thereby enhancing the capabilities for prescriptive analytics.

5 CONCLUSIONS

We introduced a simulation framework for integrating intelligent agents trained from real-life
video, enabling realistic responses to emergencies. This framework, driven by predefined output
measures, autonomously generates strategies and optimal solutions for diverse case scenarios.
Our findings have been shown to advance the current state of the art in related fields. The focus
on emergency evacuations addresses a crucial real-world problem, offering a comprehensive
study given the range of potential crisis events worldwide. However, any influences from various
types of crises will necessitate careful investigation and integration with our proposed methods.
To that end, we achieved our goals of enhancing the realism of emergency evacuation simulations
through high-accuracy behavioural modelling and designing a simulation framework with
prescriptive analytics to recommend ideal strategies for authorities to adopt.

In summary, we utilized a recent novel solution, the Conscious Movement Model (CMM), that
learns pedestrian dynamics from video through the Conscious Movement Memory-Attention
(CMMA) model. We thoroughly evaluated the CMM on its emergency behaviour by analysing
how urgency develops throughout the evacuation. A realistic simulation can result in a better
and timely strategic response for several disaster events occurring all around the world. The
contributions made through this research can see the possibility of its application into real-world
systems such as traffic or crisis management. Its successful application in the real world can lead
to lives being saved or rescued in disaster situations. Such potential impact will certainly push
the boundaries of several research areas surrounding this work.

5.1 Recommendations for Future Research

Our research presents a novel approach to simulating emergency evacuations, incorporating realis-
tic human behaviour and offering strategy recommendations for real-world evacuation operations.
This advancement enhances the authenticity of critical simulations, particularly in crisis manage-
ment, with potential global benefits. To further advance this research, we emphasize the need
for improved optimizations and the introduction of distributed parallel architectures to enhance
performance speed.

For future work, addressing the speed performance of proposed methods is crucial. Exploring
the integration of additional functionalities for advanced simulation systems and incorporating
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efficient parallel and distributed architectures, such as leveraging GPUs for training the CMMA
model, can significantly enhance processing speed. Developing a distributed architecture for the
simulation framework could optimize strategy options and scenario outputs, improving overall
efficiency for authorities during unprecedented crisis events.

Furthermore, collaborative efforts with relevant authorities to obtain actual crisis data can be
instrumental in refining and evaluating the emergency behaviour of the proposed behavioural
model. In conclusion, this work establishes a robust foundation for advancing realistic behavioural
modelling in crisis simulation, paving the way for future significant contributions in the field.
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