
CODE- COM PL ET ION S Y S T EM S OF F ER I NG suggestions 
to a developer in their integrated development 
environment (IDE) have become the most frequently 
used kind of programmer assistance.1 When 
generating whole snippets of code, they typically use 
a large language model (LLM) to predict what the user 
might type next (the completion) from the context of 
what they are working on at the moment (the prompt).2 
This system allows for completions at any position in 
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 key insights
	˽ AI pair-programming tools such as GitHub 

Copilot have a big impact on developer 
productivity. This holds for developers 
of all skill levels, with junior developers 
seeing the largest gains.

	˽ The reported benefits of receiving AI 
suggestions while coding span the full 
range of typically investigated aspects of 
productivity, such as task time, product 
quality, cognitive load, enjoyment, and 
learning.

	˽ Perceived productivity gains are reflected 
in objective measurements of developer 
activity.

	˽ While suggestion correctness is 
important, the driving factor for these 
improvements appears to be not 
correctness as such, but whether the 
suggestions are useful as a starting point 
for further development.
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the code, often spanning multiple 
lines at once.

Potential benefits of generating 
large sections of code automatically 
are huge, but evaluating these sys-
tems is challenging. Offline evalua-
tion, where the system is shown a par-
tial snippet of code and then asked 
to complete it, is difficult not least 
because for longer completions there 
are many acceptable alternatives and 
no straightforward mechanism for 
labeling them automatically.5 An ad-
ditional step taken by some research-
ers3,21,29 is to use online evaluation 
and track the frequency of real us-
ers accepting suggestions, assuming 
that the more contributions a system 
makes to the developer’s code, the 

higher its benefit. The validity of this 
assumption is not obvious when con-
sidering issues such as whether two 
short completions are more valuable 
than one long one, or whether review-
ing suggestions can be detrimental to 
programming flow.

Code completion in IDEs using lan-
guage models was first proposed in 
Hindle et al.,9 and today neural syn-
thesis tools such as GitHub Copilot, 
CodeWhisperer, and TabNine suggest 
code snippets within an IDE with the 
explicitly stated intention to increase 
a user’s productivity. Developer pro-
ductivity has many aspects, and a re-
cent study has shown that tools like 
these are helpful in ways that are only 
partially reflected by measures such 

as completion times for standardized 
tasks.23,a Alternatively, we can leverage 
the developers themselves as expert 
assessors of their own productivity. 
This meshes well with current think-
ing in software engineering research 
suggesting measuring productiv-
ity on multiple dimensions and using 
self-reported data.6 Thus, we focus on 
studying perceived productivity.

Here, we investigate whether usage 
measurements of developer interac-
tions with GitHub Copilot can predict 
perceived productivity as reported 
by developers. We analyze ​2,631​ sur-

a	 Nevertheless, such completion times are 
greatly reduced in many settings, often by 
more than half.16
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Figure 1. GitHub Copilot’s code completion funnel.

Figure 2. Demographic composition of survey respondents.
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vey responses from developers using 
GitHub Copilot and match their re-
sponses to measurements collected 
from the IDE. We consider acceptance 
counts and more detailed measures 
of contribution, such as the amount 
of code contributed by GitHub Copilot 
and persistence of accepted comple-
tions in the code. We find that accep-
tance rate of shown suggestions is a 
better predictor of perceived produc-
tivity than the alternative measures. 
We also find that acceptance rate var-
ies significantly over our developer 
population as well as over time, and 
present a deeper dive into some of 
these variations.

Our results support the principle 
that acceptance rate can be used for 
coarse-grained monitoring of the per-
formance of a neural code synthesis 
system. This ratio of shown sugges-
tions being accepted correlates better 
than more detailed measures of con-
tribution. However, other approaches 
remain necessary for fine-grained 
investigation due to the many human 
factors involved.

Background
Offline evaluation of code completion 
can have shortcomings even in tracta-
ble circumstances where completions 
can be labeled for correctness. For ex-
ample, a study of ​15,000​ completions by 
66 developers in Visual Studio found sig-
nificant differences between synthetic 
benchmarks used for model evaluation 
and real-world usage.7 The evaluation 
of context-aware API completion for Vi-
sual Studio IntelliCode considered Re-
call@5—the proportion of completions 
for which the correct method call was in 
the top five suggestions. This metric fell 
from ​90%​ in offline evaluation to ​70%​ 
when used online.21

Due to the diversity of potential 
solutions to a multi-line completion 
task, researchers have used software 
testing to evaluate the behavior of 
completions. Competitive program-
ming sites have been used as a source 
of such data8,11 as well as handwrit-
ten programming problems.5 Yet, it 
is unclear how well performance on 
programming competition data gen-
eralizes to interactive development in 
an IDE.

In this work, we define acceptance 
rate as the fraction of completions 

56    COMMUNICATIONS OF THE ACM   |   MARCH 2024  |   VOL.  67  |   NO.  3



research

shown to the developer that are subse-
quently accepted for inclusion in the 
source file. The IntelliCode Compose 
system uses the term click through rate 
(CTR) for this and reports a value of ​
10%​ in online trials.20 An alternative 
measure is that of daily completions 
accepted per user (DCPU) for which a 
value of around 20 has been report-
ed.3,29 To calculate acceptance rate 
one must, of course, normalize DCPU 
by the time spent coding each day. For 
context, in our study, GitHub Copilot 
has an acceptance rate of ​27%​ and a 
mean DCPU in excess of 312 (See Fig-
ure 1).b These differences are presum-
ably due to differences in the kinds 
of completion offered, or perhaps to 
user-interface choices. We discuss 
later how developer objectives, choice 
of programming language, and even 
time of day seem to affect our data. 
Such discrepancies highlight the dif-
ficulty in using acceptance rate to un-
derstand the value of a system.

There is some evidence that accep-
tance rate (and indeed correctness) 
might not tell the whole story. One sur-
vey of developers considered the use 
of AI to support translation between 
programming languages and found 
indications that developers tolerated, 
and in some cases valued, erroneous 
suggestions from the model.26

Measuring developer productiv-
ity through activity counts over time (a 
typical definition of productivity bor-
rowed from economics) disregards the 
complexity of software development, 
as they account for only a subset of 
developer outputs. A more holistic pic-
ture is formed by measuring perceived 
productivity through self-reported 
data across various dimensions6 and 
supplementing it with automatically 
measured data.4 We used the SPACE 
framework6 to design a survey that 
captures self-reported productivity 
and paired the self-reported data with 
usage telemetry.

To the best of our knowledge, this 
is the first study of code suggestion 
tools establishing a clear link between 
usage measurements and developer 
productivity or happiness. A previ-
ous study comparing GitHub Copilot 
against IntelliCode with 25 partici-
pants found no significant correlation 
between task completion times and 
survey responses.22

Data and Methodology
Usage measurements. GitHub Copilot 
provides code completions using Ope-
nAI language models. It runs within 
the IDE and at appropriate points 
sends a completion request to a cloud-
hosted instance of the neural model. 
GitHub Copilot can generate comple-
tions at arbitrary points in code rath-
er than, for example, only being trig-
gered when a developer types a period 
for invoking a method on an object. A 
variety of rules determine when to re-
quest a completion, when to abandon 
requests if the developer has moved 
on before the model is ready with a 
completion, and how much of the re-
sponse from the model to surface as a 
completion.

As stated in our terms of usage,b the 
GitHub Copilot IDE extension records 
the events shown in Table 1 for all us-
ers. We make usage measurements 
for each developer by counting those 
events.

Our measures of persistence go fur-
ther than existing work, which stops at 
acceptance. The intuition here is that a 
completion which is accepted into the 
source file but then subsequently turns 
out to be incorrect can be considered 
to have wasted developer time both in 
reviewing it and then having to go back 
and delete it. We also record mostly un-
changed completions: A large comple-
tion requiring a few edits might still be 
a positive contribution. It is not clear 
how long after acceptance one should 
confirm persistence, so we consider a 
range of options.

The events pertaining to comple-
tions form a funnel which we show 
quantitatively in Table 1. We include 
a summary of all data in Appendix 
A.c (All appendices for this article can 
be found online at https://dl.acm.org/
doi/10.1145/3633453).

We normalize these measures 
against each other and write X _
per _ Y to indicate we have normal-
ized metric X by metric Y. For example: 
accepted _ per _ hour is calculat-
ed as the total number of accepted 
events divided by the total number of 
(active) hour events.

Table 2 defines the core set of met-

b	 See https://bit.ly/3S7oqZV
c	 Appendices can be found in the arXiv version 

https://arxiv.org/pdf/2205.06537.pdf.

It is unclear how 
well performance 
on programming 
competition 
data generalizes 
to interactive 
development  
in an IDE.
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Table 2. The core set of measurements considered in this article.

Natural name Explanation

Shown rate Ratio of completion opportunities that resulted in a completion being 
shown to the user

Acceptance rate Ratio of shown completions accepted by the user

Persistence rate Ratio of accepted completions unchanged after 30, 120, 300, and 600 
seconds

Fuzzy persistence rate Ratio of accepted completions mostly unchanged after 30, 120, 300, 
and 600 seconds

Efficiency Ratio of completion opportunities that resulted in a completion 
accepted and unchanged after 30, 120, 300, and 600 seconds

Contribution speed Number of characters in accepted completions per distinct, active hour

Acceptance frequency Number of accepted completions per distinct, active hour

Persistence frequency Number of unchanged completions per distinct, active hour

Total volume Total number of completions shown to the user

Loquaciousness Number of shown completions per distinct, active hour

Eagerness Number of shown completions per opportunity

Table 1. Developer usage events collected by GitHub Copilot.

Opportunity A heuristic-based determination by the IDE and the plug-in that a completion 
might be appropriate at this point in the code (for example, the cursor is not in 
the middle of a word)

Shown Completion shown to the developer

Accepted Completion accepted by the developer for inclusion in the source file

Accepted char The number of characters in an accepted completion

Mostly  
unchanged X

Completion persisting in source code with limited modifications (Levenshtein 
distance less than 33%) after X seconds, where we consider a duration of 30, 
120, 300, and 600 seconds

Unchanged X Completion persisting in source code unmodified after X seconds.

(Active) hour An hour during which the developer was using their IDE with the plug-in active

when using GitHub Copilot.” For each 
self-reported productivity measure, 
we encoded its five ordinal response 
values to numeric labels (1 = Strongly 
Disagree, ​...​, 5 = Strongly Agree). We 
include the full list of questions and 
their coding to the SPACE framework 
in Appendix C. For more information 
on the SPACE framework and how the 
empirical software engineering com-
munity has been discussing developer 
productivity, please see the following 
section.

Early in our analysis, we found that 
the usage metrics we describe in the 
Usage Measurements section  corre-
sponded similarly to each of the mea-
sured dimensions of productivity, and 
in turn these dimensions were highly 
correlated to each other (Figure 3). We 
therefore added an aggregate produc-
tivity score calculated as the mean of 
all 12 individual measures (excluding 
skipped questions). This serves as a 
rough proxy for the much more com-
plex concept of productivity, facili-
tating recognition of overall trends, 
which may be less discernible on indi-
vidual variables due to higher statisti-
cal variation. The full dataset of these 
aggregate productivity scores togeth-
er with the usage measurements con-
sidered in this article is available at 
https://bit.ly/47HVjAM.

Given it has been impossible to pro-
duce a unified definition or metric(s) 
for developer productivity, there have 
been attempts to synthesize the fac-
tors that impact productivity to de-
scribe it holistically, include various 
relevant factors, and treat developer 
productivity as a composite mea-
sure17,19,24 In addition, organizations 
often use their own multidimensional 
frameworks to operationalize produc-
tivity, which reflects their engineering 
goals—for example, Google uses the 
QUANTS framework, with five compo-
nents of productivity.27 In this article, 
we use the SPACE framework,6 which 
builds on synthesis of extensive and 
diverse literature by expert research-
ers and practitioners in the area of de-
veloper productivity.

SPACE is an acronym of the five di-
mensions of productivity:

	˲ S (Satisfaction and well being): 
This dimension is meant to reflect 
developers’ fulfillment with the work 
they do and the tools they use, as well 

on Mar. 6, 2022.
The survey contained multiple-

choice questions regarding demo-
graphic information (see Figure  2) 
and Likert-style questions about dif-
ferent aspects of productivity, which 
were randomized in their order of ap-
pearance to the user. Figure  2 shows 
the demographic composition of our 
respondents. We note the significant 
proportion of professional program-
mers who responded.

The SPACE framework6 defines five 
dimensions of productivity: Satisfac-
tion and well-being, Performance, Ac-
tivity, Communication and collabora-
tion, and Efficiency and flow. We use 
four of these (S,P,C,E), since self re-
porting on (A) is generally considered 
inferior to direct measurement. We 
included 11 statements covering these 
four dimensions in addition to a sin-
gle statement: “I am more productive 

rics we feel have a natural interpreta-
tion in this context. We note there are 
alternatives, and we incorporate these 
in our discussion where relevant.

Productivity survey. To understand 
users’ experience with GitHub Co-
pilot, we emailed a  link to an online 
survey to ​ 17, 420​ users. These were 
participants of the unpaid technical 
preview using GitHub Copilot with 
their everyday programming tasks. 
The only selection criterion was hav-
ing previously opted in to receive com-
munications. A vast majority of survey 
users (more than 80%) filled out the 
survey within the first two days, on or 
before February 12, 2022. We there-
fore focus on data from the four-week 
period leading up to this point ("the 
study period"). We received a total of 
2,047 responses we could match to 
usage data from the study period, the 
earliest on Feb. 10, 2022 and the latest 
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documentation or the speed of an-
swering questions, or the onboard-
ing time and processing of new team 
members.

	˲ E (Efficiency and flow): This di-
mension reflects the ability to com-
plete work or make progress with little 
interruption or delay. It is important 
to note that delays and interruptions 
can be caused either by systems or hu-
mans, and it is best to monitor both 
self-reported and observed measure-
ments—for example, use self-reports 
of the ability to do uninterrupted work, 
as well as measure wait time in engi-
neering systems).

	˲ A (Activity): This is the count of 
outputs—for example, the number of 
pull requests closed by a developer. As 
a result, this dimension is best quanti-
fied via system data. Given the variety 
of developers’ activities as part of their 
work, it is important that the activ-
ity dimension accounts for more than 
coding activity—for instance, writing 
documentation, creating design specs, 
and so on.

	˲ C (Communication and collabora-
tion): This dimension aims to capture 
that modern software development 
happens in teams and is, therefore, 
impacted by the discoverability of 

as how healthy and happy they are 
with the work they do. This dimension 
reflects some of the easy-to-overlook 
trade-offs involved when looking ex-
clusively at velocity acceleration—for 
example, when we target faster turn-
around of code reviews without con-
sidering workload impact or burnout 
for developers.

	˲ P (Performance): This dimension 
aims to quantify outcomes rather than 
output. Example metrics that capture 
performance relate to quality and re-
liability, as well as further-removed 
metrics such as customer adoption or 
satisfaction.

Figure 3. Correlation between metrics. Metrics are ordered by similarity based on distance in the correlation matrix, except for manu-
ally fixing the aggregate productivity and acceptance rate at the end for visibility.
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Table 3. Effects of experience on facets of productivity where result of linear regression 
was a statistically significant covariate.

Productivity measure coeff

Proficiency Better code −0.061*

Proficiency Stay in flow 0.069*

Proficiency Focus satisfying 0.067*

Proficiency Less effort repetitive 0.072**

Proficiency Repetitive faster 0.055***

Years Better code −0.087*

Years Less frustrated −0.103**

Years Repetitive faster −0.054*

Years Unfamiliar progress 0.081*

(*: p ¡ 0.05, **: p ¡ 0.01, ***: p ¡ 0.001.)

is intuitive in the sense that shorter 
periods move the measure closer to 
acceptance rate. We also expect that 
at some point after accepting the com-
pletion it becomes simply part of the 
code, so any changes (or not) after that 
point will not be attributed to GitHub 
Copilot. All persistence measures 
were less well correlated than accep-
tance rate.

To assess the different metrics in 
a single model, we ran a regression 
using projection on latent structures 
(PLS). The choice of PLS, which cap-
tures the common variation of these 
variables as is linearly connected to 
the aggregate productivity,28 is due to 
the high collinearity of the single met-
rics. The first component, to which 
every metric under consideration con-
tributes positively, explains ​43 . 2%​ of 
the variance. The second component 
captures the acceptance rate/change 
rate dichotomy; it explains a further ​
13 . 1%​. Both draw most strongly from 
acceptance rate.

This strongly points to acceptance 
rate being the most immediate indica-
tor of perceived productivity, although 
it is beneficial to combine with others 
to get a fuller picture.

Experience
To understand how different types of 
developers interact with Copilot, our 
survey asked respondents to self-report 
their level of experience in two ways:

	˲ "Think of the language you have 
used the most with Copilot. How pro-
ficient are you in that language?" with 

What Drives Perceived Productivity?
To examine the relationship between 
objective measurements of user be-
havior and self-reported perceptions of 
productivity, we used our set of core us-
age measurements (Table  2). We then 
calculated Pearson’s R correlation co-
efficient and the corresponding p-val-
ue of the F-statistic between each pair 
of usage measurement and perceived 
productivity metric. We also computed 
a PLS regression from all usage mea-
surements jointly.

We summarize these results in 
Figure  3, showing the correlation co-
efficients between all measures and 
survey questions. The full table of 
all results is included in Appendix  B, 
available online.

We find acceptance rate (accept-
ed _ per _ shown) most positively 
predicts users’ perception of produc-
tivity, although, given the confound-
ing and human factors, there is still 
notable unexplained variance.

Of all usage measurements, accep-
tance rate correlates best with aggregate 
productivity (​ρ  =  0 . 24​, ​P  <  0 . 0001​).  
This measurement is also the best per-
forming for at least one survey ques-
tion in each of the SPACE dimensions. 
This correlation is high confidence but 
leaves considerable unexplained vari-
ance. Later, we explore improvements 
from combining multiple usage mea-
surements together.

Looking at the more detailed met-
rics around persistence, we see that it 
is generally better over shorter time 
periods than over longer periods. This 

Developer productivity has been 
a controversial topic in software 
engineering research over the 
years. We point readers to excellent 
presentations of the existing discourse 
in the community in Meyer et al.12 
and Murphy-Hill et al.;15 however 
we summarize the key points of 
discussion below:

	˲ Inspired by economics 
definitions of productivity as output 
per unit of input, some research has 
defined developer productivity in the 
same terms—for example, numbers of 
lines of code per day, function points 
per sprint, and so on. However, such 
measures are not connected to goals 
(for instance, it is not the goal of a 
developer to write the most lines of 
code), they may motivate developers to 
game the system, they do not account 
for the quality of the output, and they 
are in tension with other metrics (for 
example, a higher number of commits 
or PRs will create a higher need for 
code reviews).

	˲ Observational studies of 
developers reveal that developers 
spent more than half their working 
day on activities other than coding.13 
Given this, the view of developer 
productivity as inputs and outputs, 
or using metrics that strictly focus on 
coding, ignores the reality of the work 
developers do.

	˲ In addition, developers’ 
perspective on what affects their 
productivity12 and what metrics might 
reflect it14 differs from the inputs/
outputs view. When asked when they 
are productive and how they measure 
productivity, developers do not cite 
lines of code or function points per 
sprint, but rather completing tasks, 
being free of interruptions, usefulness 
of their work, success of the feature 
they worked on, and more.

	˲ To sum up, after many studies 
and many definitions, measurements, 
and approaches to productivity, 
the empirical software engineering 
research community has concluded 
that developer productivity is a 
multidimensional topic that cannot 
be summarized by a single metric.10 
Both objective and subjective 
approaches to measurement have 
been tried, leading to the conclusion 
that they both have advantages and 
disadvantages.

Developer 
Productivity  
and the 
SPACE 
Framework
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Figure 5. Linear regressions between acceptance rate and aggregate productivity by 
subgroup defined through years of professional experience or programming language 
use. Dashed lines denote averages. The x-axis is clipped at (0, 0.5), and 95% of respon-
dents fall into that range.
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Figure 4. Different metrics clustering in latent structures predicting perceived pro-
ductivity. We color the following groups: flawless suggestions (counting the number of 
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Table 4. Correlations of acceptance rate 
with aggregate productivity broken down 
by subgroup.

options ‘Beginner’, ‘Intermediate’, and 
‘Advanced’.

	˲ "Which best describes your pro-
gramming experience?" with options 
starting with "Student" and ranging 
from "0–2 years" to "16+ years" in two-
year intervals.

We compute correlations with pro-
ductivity metrics for both experience 
variables and include these two vari-
ables as covariates in a multivariate re-
gression analysis. We find that both are 
negatively correlated with our aggre-
gate productivity measure (proficien-
cy: ​ρ  =  − 0 . 095​, ​P  =  0 . 0001​; years of 
experience: ​ρ  =  − 0 . 161​, ​P  <  0 . 0001​).  
However, in multivariate regressions 
predicting productivity from usage 
metrics while controlling for demo-
graphics, proficiency had a non-sig-
nificant positive effect (​coeff  =  0 . 021​, ​
P  =  0 . 213​), while years of experience 
had a non-significant negative effect  
(​coeff  =  − 0 . 032​, ​P  =  0 . 122​).

Looking further at individual mea-
sures of productivity, (Table 3) we find 
that both language proficiency and 
years of experience negatively predict 
developers agreeing that Copilot helps 
them write better code. However, pro-
ficiency positively predicts developers 
agreeing that Copilot helps them stay 
in the flow, focus on more satisfying 
work, spend less effort on repetitive 
tasks, and perform repetitive tasks 
faster. Years of experience negatively 
predicts developers feeling less frus-
trated in coding sessions and per-
forming repetitive tasks faster while 
using Copilot, but positively predicts 

subgroup coeff n

none 0.135* 344

≤ 2y 0.178** 451

3 – 5 y 0.255*** 358

6 – 10 y 0.265*** 251

11 – 15 y 0.171* 162

≥ 16 y 0.153* 214

JavaScript 0.227*** 1184 

TypeScript 0.165*** 654

Python 0.172*** 716

other 0.178*** 1829
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until mornings 7:00 am PST, where the 
average acceptance rate is also rather 
high at ​23%​.

	˲ Typical working hours during the 
week from 7:00 am PST to 4:00 pm PST, 
where the average acceptance rate is 
much lower at ​21 . 2%​.

Conclusions
When we set out to connect the pro-
ductivity benefit of GitHub Copilot to 
usage measurements from developer 
activity, we collected measurements 
about acceptance of completions in 
line with prior work, but also devel-
oped persistence metrics, which ar-
guably capture sustained and direct 
impact on the resulting code. We 
were surprised to find acceptance rate 
(number of acceptances normalized 
by the number of shown completions) 
to be better correlated with reported 
productivity than our measures of 
persistence.

In hindsight, this makes sense. 
Coding is not typing, and GitHub Co-
pilot’s central value lies not in being 
the way users enter most of their code. 
Instead, it lies in helping users to make 
the best progress toward their goals. A 
suggestion that serves as a useful tem-
plate to tinker with may be as good or 
better than a perfectly correct (but ob-
vious) line of code that only saves the 
user a few keystrokes.

This suggests that a narrow focus 
on the correctness of suggestions 
would not tell the whole story for these 
kinds of tooling. Instead, one could 
view code suggestions inside an IDE to 
be more akin to a conversation. While 
chatbots such as ChatGPT are already 
used for programming tasks, they are 
explicitly structured as conversations. 
Here, we hypothesize that interactions 
with Copilot, which is not a chatbot, 
share many characteristics with natu-
ral-language conversations.

We see anecdotal evidence of this 
in comments posted about GitHub 
Copilot online (see Appendix  E for 
examples), in which users talk about 
sequences of interactions. A conver-
sation turn in this context consists of 
the prompt in the completion request 
and the reply as the completion itself. 
The developer’s response to the com-
pletion arises from the subsequent 
changes incorporated in the next 
prompt to the model. There are clear 

developers making 
progress faster when 
working in an unfa-
miliar language. These 
findings suggest that 
experienced developers 
who are already highly 
skilled are less likely 

to write better code with Copilot, but 
Copilot can assist their productivity in 
other ways,  particularly when engag-
ing with new areas and automating 
routine work.

Junior developers not only report 
higher productivity gains; they also 
tend to accept more suggestions. How-
ever, the connection observed in the 
section "What Drives Perceived Pro-
ductivity" is not solely due to differing 
experience levels. In fact, the connec-
tion persists in every single experience 
group, as shown in Figure 5.

Variation over Time
Its connection to perceived productiv-
ity motivates a closer look at the accep-
tance rate and what factors influence 
it. Acceptance rate typically increases 
over the board when the model or un-
derlying prompt-crafting techniques 
are improved. But even if these con-
ditions are held constant (the study 
period did not see changes to either), 
there are more fine-grained temporal 
patterns emerging.

For coherence of the cultural impli-
cations of time of day and weekdays, 
all data in this section was restricted 
to users from the U.S. (whether in 
the survey or not). We used the same 
time frame as for the investigation in 
the previous section. In the absence 
of more fine-grained geolocation, we 
used the same time zone to interpret 
timestamps and for day boundaries 
(PST), recognizing this will introduce 
some level of noise due to the inhomo-
geneity of U.S. time zones.

Nevertheless, we observe strong 
regular patterns in overall acceptance 
rate (Figure 6). These lead us to distin-
guish three different time regimes, all 
of which are statistically significantly 
distinct at ​p  <  0 . 001%​ (using boot-
strap resampling):

	˲ The weekend: Saturdays and Sun-
days, where the average acceptance 
rate is comparatively high at ​23 . 5%​.

	˲ Typical non-working hours during 
the week: evenings after 4:00 pm PST 

Experienced 
developers who 
are already highly 
skilled are less 
likely to write 
better code with 
Copilot, but Copilot 
can assist their 
productivity in other 
ways.

• more online

All appendices 
for this article 
can be found 
in the online 
supplemental 
file at https://
dl.acm.org/
doi/10.1145/ 
3633453.
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programming parallels to factors 
such as specificity and repetition that 
have been identified to affect human 
judgements of conversation quality.18 
Researchers have already investigated 
the benefits of natural-language feed-
back to guide program synthesis,2  so 
the conversational framing of coding 
completions is not a radical proposal. 
But neither is it one we have seen fol-
lowed yet.�
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