
CODE- COM PL ET ION S Y S T EM S OF F ER I NG suggestions
to a developer in their integrated development
environment (IDE) have become the most frequently
used kind of programmer assistance.1 When
generating whole snippets of code, they typically use
a large language model (LLM) to predict what the user
might type next (the completion) from the context of
what they are working on at the moment (the prompt).2
This system allows for completions at any position in

Measuring
GitHub
Copilot’s
Impact on
Productivity

DOI:10.1145/3633453

Case study asks Copilot users about its impact
on their productivity, and seeks to find their
perceptions mirrored in user data.

BY ALBERT ZIEGLER, EIRINI KALLIAMVAKOU, X. ALICE LI,
ANDREW RICE, DEVON RIFKIN, SHAWN SIMISTER,
GANESH SITTAMPALAM, AND EDWARD AFTANDILIAN

 key insights
 ˽ AI pair-programming tools such as GitHub

Copilot have a big impact on developer
productivity. This holds for developers
of all skill levels, with junior developers
seeing the largest gains.

 ˽ The reported benefits of receiving AI
suggestions while coding span the full
range of typically investigated aspects of
productivity, such as task time, product
quality, cognitive load, enjoyment, and
learning.

 ˽ Perceived productivity gains are reflected
in objective measurements of developer
activity.

 ˽ While suggestion correctness is
important, the driving factor for these
improvements appears to be not
correctness as such, but whether the
suggestions are useful as a starting point
for further development.

54 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

research

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3633453&domain=pdf&date_stamp=2024-02-22

the code, often spanning multiple
lines at once.

Potential benefits of generating
large sections of code automatically
are huge, but evaluating these sys-
tems is challenging. Offline evalua-
tion, where the system is shown a par-
tial snippet of code and then asked
to complete it, is difficult not least
because for longer completions there
are many acceptable alternatives and
no straightforward mechanism for
labeling them automatically.5 An ad-
ditional step taken by some research-
ers3,21,29 is to use online evaluation
and track the frequency of real us-
ers accepting suggestions, assuming
that the more contributions a system
makes to the developer’s code, the

higher its benefit. The validity of this
assumption is not obvious when con-
sidering issues such as whether two
short completions are more valuable
than one long one, or whether review-
ing suggestions can be detrimental to
programming flow.

Code completion in IDEs using lan-
guage models was first proposed in
Hindle et al.,9 and today neural syn-
thesis tools such as GitHub Copilot,
CodeWhisperer, and TabNine suggest
code snippets within an IDE with the
explicitly stated intention to increase
a user’s productivity. Developer pro-
ductivity has many aspects, and a re-
cent study has shown that tools like
these are helpful in ways that are only
partially reflected by measures such

as completion times for standardized
tasks.23,a Alternatively, we can leverage
the developers themselves as expert
assessors of their own productivity.
This meshes well with current think-
ing in software engineering research
suggesting measuring productiv-
ity on multiple dimensions and using
self-reported data.6 Thus, we focus on
studying perceived productivity.

Here, we investigate whether usage
measurements of developer interac-
tions with GitHub Copilot can predict
perceived productivity as reported
by developers. We analyze 2,631 sur-

a Nevertheless, such completion times are
greatly reduced in many settings, often by
more than half.16

MARCH 2024 | VOL. 67 | NO. 3 | COMMUNICATIONS OF THE ACM 55

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 J
U

S
T

I
N

 M
E

T
Z

research

Figure 1. GitHub Copilot’s code completion funnel.

Figure 2. Demographic composition of survey respondents.

Think of
the language
you have used
the most with
OurTool.
How proficient
are you in
that language?

Beginner
Intermediate
Advanced

Student/Learning
0–2 Years Prof. Experience
3–5 Years Prof. Experience
6–10 Years Prof. Experience
11–15 Years Prof. Experience
16+ Years Prof. Experience

Student
Professional
Hobbyist
Consultant/Freelancer
Researcher
Other

Python
JavaScript
TypeScript
Java
Ruby
Go
C#
Rust
HTML
Other

Which best
describes your
programming
experience?

Which of
the following
best describes
what you do?

What
programming
languages
do you usually
use? Choose
up to three
from the list.

0% 25% 50% 75% 100%

A
ve

ra
g

e
n

u
m

b
er

 o
f

ev
en

ts
 p

er
 s

u
rv

ey
 u

se
r

ac
ti

ve
 h

o
u

r

50 170

mostly unchangedCompletion unchanged

40

30

20
24

6.6

co
m

pl
et

io
n

op
po

rt
un

it
y

co
m

pl
et

io
n

sh
ow

n

co
m

pl
et

io
n

ac
ce

pt
ed

af
te

r
30

se
co

nd
s

af
te

r
2

m
in

ut
es

af
te

r
5

m
in

ut
es

af
te

r
10

m
in

ut
es

5.6

4.3

5.3 5.1 5

3.13.43.8

10

0

vey responses from developers using
GitHub Copilot and match their re-
sponses to measurements collected
from the IDE. We consider acceptance
counts and more detailed measures
of contribution, such as the amount
of code contributed by GitHub Copilot
and persistence of accepted comple-
tions in the code. We find that accep-
tance rate of shown suggestions is a
better predictor of perceived produc-
tivity than the alternative measures.
We also find that acceptance rate var-
ies significantly over our developer
population as well as over time, and
present a deeper dive into some of
these variations.

Our results support the principle
that acceptance rate can be used for
coarse-grained monitoring of the per-
formance of a neural code synthesis
system. This ratio of shown sugges-
tions being accepted correlates better
than more detailed measures of con-
tribution. However, other approaches
remain necessary for fine-grained
investigation due to the many human
factors involved.

Background
Offline evaluation of code completion
can have shortcomings even in tracta-
ble circumstances where completions
can be labeled for correctness. For ex-
ample, a study of 15,000 completions by
66 developers in Visual Studio found sig-
nificant differences between synthetic
benchmarks used for model evaluation
and real-world usage.7 The evaluation
of context-aware API completion for Vi-
sual Studio IntelliCode considered Re-
call@5—the proportion of completions
for which the correct method call was in
the top five suggestions. This metric fell
from 90% in offline evaluation to 70%
when used online.21

Due to the diversity of potential
solutions to a multi-line completion
task, researchers have used software
testing to evaluate the behavior of
completions. Competitive program-
ming sites have been used as a source
of such data8,11 as well as handwrit-
ten programming problems.5 Yet, it
is unclear how well performance on
programming competition data gen-
eralizes to interactive development in
an IDE.

In this work, we define acceptance
rate as the fraction of completions

56 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

research

shown to the developer that are subse-
quently accepted for inclusion in the
source file. The IntelliCode Compose
system uses the term click through rate
(CTR) for this and reports a value of
10% in online trials.20 An alternative
measure is that of daily completions
accepted per user (DCPU) for which a
value of around 20 has been report-
ed.3,29 To calculate acceptance rate
one must, of course, normalize DCPU
by the time spent coding each day. For
context, in our study, GitHub Copilot
has an acceptance rate of 27% and a
mean DCPU in excess of 312 (See Fig-
ure 1).b These differences are presum-
ably due to differences in the kinds
of completion offered, or perhaps to
user-interface choices. We discuss
later how developer objectives, choice
of programming language, and even
time of day seem to affect our data.
Such discrepancies highlight the dif-
ficulty in using acceptance rate to un-
derstand the value of a system.

There is some evidence that accep-
tance rate (and indeed correctness)
might not tell the whole story. One sur-
vey of developers considered the use
of AI to support translation between
programming languages and found
indications that developers tolerated,
and in some cases valued, erroneous
suggestions from the model.26

Measuring developer productiv-
ity through activity counts over time (a
typical definition of productivity bor-
rowed from economics) disregards the
complexity of software development,
as they account for only a subset of
developer outputs. A more holistic pic-
ture is formed by measuring perceived
productivity through self-reported
data across various dimensions6 and
supplementing it with automatically
measured data.4 We used the SPACE
framework6 to design a survey that
captures self-reported productivity
and paired the self-reported data with
usage telemetry.

To the best of our knowledge, this
is the first study of code suggestion
tools establishing a clear link between
usage measurements and developer
productivity or happiness. A previ-
ous study comparing GitHub Copilot
against IntelliCode with 25 partici-
pants found no significant correlation
between task completion times and
survey responses.22

Data and Methodology
Usage measurements. GitHub Copilot
provides code completions using Ope-
nAI language models. It runs within
the IDE and at appropriate points
sends a completion request to a cloud-
hosted instance of the neural model.
GitHub Copilot can generate comple-
tions at arbitrary points in code rath-
er than, for example, only being trig-
gered when a developer types a period
for invoking a method on an object. A
variety of rules determine when to re-
quest a completion, when to abandon
requests if the developer has moved
on before the model is ready with a
completion, and how much of the re-
sponse from the model to surface as a
completion.

As stated in our terms of usage,b the
GitHub Copilot IDE extension records
the events shown in Table 1 for all us-
ers. We make usage measurements
for each developer by counting those
events.

Our measures of persistence go fur-
ther than existing work, which stops at
acceptance. The intuition here is that a
completion which is accepted into the
source file but then subsequently turns
out to be incorrect can be considered
to have wasted developer time both in
reviewing it and then having to go back
and delete it. We also record mostly un-
changed completions: A large comple-
tion requiring a few edits might still be
a positive contribution. It is not clear
how long after acceptance one should
confirm persistence, so we consider a
range of options.

The events pertaining to comple-
tions form a funnel which we show
quantitatively in Table 1. We include
a summary of all data in Appendix
A.c (All appendices for this article can
be found online at https://dl.acm.org/
doi/10.1145/3633453).

We normalize these measures
against each other and write X _
per _ Y to indicate we have normal-
ized metric X by metric Y. For example:
accepted _ per _ hour is calculat-
ed as the total number of accepted
events divided by the total number of
(active) hour events.

Table 2 defines the core set of met-

b See https://bit.ly/3S7oqZV
c Appendices can be found in the arXiv version

https://arxiv.org/pdf/2205.06537.pdf.

It is unclear how
well performance
on programming
competition
data generalizes
to interactive
development
in an IDE.

MARCH 2024 | VOL. 67 | NO. 3 | COMMUNICATIONS OF THE ACM 57

research

Table 2. The core set of measurements considered in this article.

Natural name Explanation

Shown rate Ratio of completion opportunities that resulted in a completion being
shown to the user

Acceptance rate Ratio of shown completions accepted by the user

Persistence rate Ratio of accepted completions unchanged after 30, 120, 300, and 600
seconds

Fuzzy persistence rate Ratio of accepted completions mostly unchanged after 30, 120, 300,
and 600 seconds

Efficiency Ratio of completion opportunities that resulted in a completion
accepted and unchanged after 30, 120, 300, and 600 seconds

Contribution speed Number of characters in accepted completions per distinct, active hour

Acceptance frequency Number of accepted completions per distinct, active hour

Persistence frequency Number of unchanged completions per distinct, active hour

Total volume Total number of completions shown to the user

Loquaciousness Number of shown completions per distinct, active hour

Eagerness Number of shown completions per opportunity

Table 1. Developer usage events collected by GitHub Copilot.

Opportunity A heuristic-based determination by the IDE and the plug-in that a completion
might be appropriate at this point in the code (for example, the cursor is not in
the middle of a word)

Shown Completion shown to the developer

Accepted Completion accepted by the developer for inclusion in the source file

Accepted char The number of characters in an accepted completion

Mostly
unchanged X

Completion persisting in source code with limited modifications (Levenshtein
distance less than 33%) after X seconds, where we consider a duration of 30,
120, 300, and 600 seconds

Unchanged X Completion persisting in source code unmodified after X seconds.

(Active) hour An hour during which the developer was using their IDE with the plug-in active

when using GitHub Copilot.” For each
self-reported productivity measure,
we encoded its five ordinal response
values to numeric labels (1 = Strongly
Disagree, ... , 5 = Strongly Agree). We
include the full list of questions and
their coding to the SPACE framework
in Appendix C. For more information
on the SPACE framework and how the
empirical software engineering com-
munity has been discussing developer
productivity, please see the following
section.

Early in our analysis, we found that
the usage metrics we describe in the
Usage Measurements section corre-
sponded similarly to each of the mea-
sured dimensions of productivity, and
in turn these dimensions were highly
correlated to each other (Figure 3). We
therefore added an aggregate produc-
tivity score calculated as the mean of
all 12 individual measures (excluding
skipped questions). This serves as a
rough proxy for the much more com-
plex concept of productivity, facili-
tating recognition of overall trends,
which may be less discernible on indi-
vidual variables due to higher statisti-
cal variation. The full dataset of these
aggregate productivity scores togeth-
er with the usage measurements con-
sidered in this article is available at
https://bit.ly/47HVjAM.

Given it has been impossible to pro-
duce a unified definition or metric(s)
for developer productivity, there have
been attempts to synthesize the fac-
tors that impact productivity to de-
scribe it holistically, include various
relevant factors, and treat developer
productivity as a composite mea-
sure17,19,24 In addition, organizations
often use their own multidimensional
frameworks to operationalize produc-
tivity, which reflects their engineering
goals—for example, Google uses the
QUANTS framework, with five compo-
nents of productivity.27 In this article,
we use the SPACE framework,6 which
builds on synthesis of extensive and
diverse literature by expert research-
ers and practitioners in the area of de-
veloper productivity.

SPACE is an acronym of the five di-
mensions of productivity:

 ˲ S (Satisfaction and well being):
This dimension is meant to reflect
developers’ fulfillment with the work
they do and the tools they use, as well

on Mar. 6, 2022.
The survey contained multiple-

choice questions regarding demo-
graphic information (see Figure 2)
and Likert-style questions about dif-
ferent aspects of productivity, which
were randomized in their order of ap-
pearance to the user. Figure 2 shows
the demographic composition of our
respondents. We note the significant
proportion of professional program-
mers who responded.

The SPACE framework6 defines five
dimensions of productivity: Satisfac-
tion and well-being, Performance, Ac-
tivity, Communication and collabora-
tion, and Efficiency and flow. We use
four of these (S,P,C,E), since self re-
porting on (A) is generally considered
inferior to direct measurement. We
included 11 statements covering these
four dimensions in addition to a sin-
gle statement: “I am more productive

rics we feel have a natural interpreta-
tion in this context. We note there are
alternatives, and we incorporate these
in our discussion where relevant.

Productivity survey. To understand
users’ experience with GitHub Co-
pilot, we emailed a link to an online
survey to 17, 420 users. These were
participants of the unpaid technical
preview using GitHub Copilot with
their everyday programming tasks.
The only selection criterion was hav-
ing previously opted in to receive com-
munications. A vast majority of survey
users (more than 80%) filled out the
survey within the first two days, on or
before February 12, 2022. We there-
fore focus on data from the four-week
period leading up to this point ("the
study period"). We received a total of
2,047 responses we could match to
usage data from the study period, the
earliest on Feb. 10, 2022 and the latest

58 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

research

documentation or the speed of an-
swering questions, or the onboard-
ing time and processing of new team
members.

 ˲ E (Efficiency and flow): This di-
mension reflects the ability to com-
plete work or make progress with little
interruption or delay. It is important
to note that delays and interruptions
can be caused either by systems or hu-
mans, and it is best to monitor both
self-reported and observed measure-
ments—for example, use self-reports
of the ability to do uninterrupted work,
as well as measure wait time in engi-
neering systems).

 ˲ A (Activity): This is the count of
outputs—for example, the number of
pull requests closed by a developer. As
a result, this dimension is best quanti-
fied via system data. Given the variety
of developers’ activities as part of their
work, it is important that the activ-
ity dimension accounts for more than
coding activity—for instance, writing
documentation, creating design specs,
and so on.

 ˲ C (Communication and collabora-
tion): This dimension aims to capture
that modern software development
happens in teams and is, therefore,
impacted by the discoverability of

as how healthy and happy they are
with the work they do. This dimension
reflects some of the easy-to-overlook
trade-offs involved when looking ex-
clusively at velocity acceleration—for
example, when we target faster turn-
around of code reviews without con-
sidering workload impact or burnout
for developers.

 ˲ P (Performance): This dimension
aims to quantify outcomes rather than
output. Example metrics that capture
performance relate to quality and re-
liability, as well as further-removed
metrics such as customer adoption or
satisfaction.

Figure 3. Correlation between metrics. Metrics are ordered by similarity based on distance in the correlation matrix, except for manu-
ally fixing the aggregate productivity and acceptance rate at the end for visibility.

Spearman
Correlation

1.00

0.75

0.50

0.25

0.00

accepted_per_shown

unchanged_600_per_active_hour

shown
shown_per_opportunity

mostly_unchanged_120_per_accepted
unchanged_600_per_accepted

unchanged_30_per_accepted
unchanged_300_per_accepted

learn_from
less_time_searching
unfamiliar_progress

repetitive_faster
less_effort_repetitive

better_code
less_frustrated

focus_satisfying

more_fulfilled
stay_in_flow
tasks_faster

aggregate_productivity

mostly_unchanged_300_per_accepted

mostly_unchanged_30_per_accepted
mostly_unchanged_600_per_accepted

unchanged_120_per_accepted

shown_per_active_hour
accepted_char_per_active_hour

accepted_per_active_hour
unchanged_30_per_active_hour

unchanged_120_per_active_hour

accepted_per_opportunity
unchanged_600_per_opportunity
unchanged_300_per_opportunity

unchanged_30_per_opportunity
unchanged_120_per_opportunity
unchanged_300_per_active_hour

accepted_per_show
n

unchanged_600_per_active_hour

show
n

show
n_per_opportunity

m
ostly_unchanged_120_per_accepted

unchanged_600_per_accepted

unchanged_30_per_accepted
unchanged_300_per_accepted

learn_from
less_tim

e_searching
unfam

iliar_progress
repetitive_faster
less_effort_repetitive
better_code
less_frustrated
focus_satisfying

m
ore_fulfilled

stay_in_fl
ow

tasks_faster
aggregate_productivity

m
ostly_unchanged_300_per_accepted

m
ostly_unchanged_30_per_accepted

m
ostly_unchanged_600_per_accepted

unchanged_120_per_accepted

show
n_per_active_hour

accepted_char_per_active_hour
accepted_per_active_hour
unchanged_30_per_active_hour
unchanged_120_per_active_hour

accepted_per_opportunity
unchanged_600_per_opportunity
unchanged_300_per_opportunity
unchanged_30_per_opportunity
unchanged_120_per_opportunity
unchanged_300_per_active_hour

MARCH 2024 | VOL. 67 | NO. 3 | COMMUNICATIONS OF THE ACM 59

research

Table 3. Effects of experience on facets of productivity where result of linear regression
was a statistically significant covariate.

Productivity measure coeff

Proficiency Better code −0.061*

Proficiency Stay in flow 0.069*

Proficiency Focus satisfying 0.067*

Proficiency Less effort repetitive 0.072**

Proficiency Repetitive faster 0.055***

Years Better code −0.087*

Years Less frustrated −0.103**

Years Repetitive faster −0.054*

Years Unfamiliar progress 0.081*

(*: p ¡ 0.05, **: p ¡ 0.01, ***: p ¡ 0.001.)

is intuitive in the sense that shorter
periods move the measure closer to
acceptance rate. We also expect that
at some point after accepting the com-
pletion it becomes simply part of the
code, so any changes (or not) after that
point will not be attributed to GitHub
Copilot. All persistence measures
were less well correlated than accep-
tance rate.

To assess the different metrics in
a single model, we ran a regression
using projection on latent structures
(PLS). The choice of PLS, which cap-
tures the common variation of these
variables as is linearly connected to
the aggregate productivity,28 is due to
the high collinearity of the single met-
rics. The first component, to which
every metric under consideration con-
tributes positively, explains 43 . 2% of
the variance. The second component
captures the acceptance rate/change
rate dichotomy; it explains a further
13 . 1% . Both draw most strongly from
acceptance rate.

This strongly points to acceptance
rate being the most immediate indica-
tor of perceived productivity, although
it is beneficial to combine with others
to get a fuller picture.

Experience
To understand how different types of
developers interact with Copilot, our
survey asked respondents to self-report
their level of experience in two ways:

 ˲ "Think of the language you have
used the most with Copilot. How pro-
ficient are you in that language?" with

What Drives Perceived Productivity?
To examine the relationship between
objective measurements of user be-
havior and self-reported perceptions of
productivity, we used our set of core us-
age measurements (Table 2). We then
calculated Pearson’s R correlation co-
efficient and the corresponding p-val-
ue of the F-statistic between each pair
of usage measurement and perceived
productivity metric. We also computed
a PLS regression from all usage mea-
surements jointly.

We summarize these results in
Figure 3, showing the correlation co-
efficients between all measures and
survey questions. The full table of
all results is included in Appendix B,
available online.

We find acceptance rate (accept-
ed _ per _ shown) most positively
predicts users’ perception of produc-
tivity, although, given the confound-
ing and human factors, there is still
notable unexplained variance.

Of all usage measurements, accep-
tance rate correlates best with aggregate
productivity (ρ = 0 . 24 , P < 0 . 0001).
This measurement is also the best per-
forming for at least one survey ques-
tion in each of the SPACE dimensions.
This correlation is high confidence but
leaves considerable unexplained vari-
ance. Later, we explore improvements
from combining multiple usage mea-
surements together.

Looking at the more detailed met-
rics around persistence, we see that it
is generally better over shorter time
periods than over longer periods. This

Developer productivity has been
a controversial topic in software
engineering research over the
years. We point readers to excellent
presentations of the existing discourse
in the community in Meyer et al.12
and Murphy-Hill et al.;15 however
we summarize the key points of
discussion below:

 ˲ Inspired by economics
definitions of productivity as output
per unit of input, some research has
defined developer productivity in the
same terms—for example, numbers of
lines of code per day, function points
per sprint, and so on. However, such
measures are not connected to goals
(for instance, it is not the goal of a
developer to write the most lines of
code), they may motivate developers to
game the system, they do not account
for the quality of the output, and they
are in tension with other metrics (for
example, a higher number of commits
or PRs will create a higher need for
code reviews).

 ˲ Observational studies of
developers reveal that developers
spent more than half their working
day on activities other than coding.13
Given this, the view of developer
productivity as inputs and outputs,
or using metrics that strictly focus on
coding, ignores the reality of the work
developers do.

 ˲ In addition, developers’
perspective on what affects their
productivity12 and what metrics might
reflect it14 differs from the inputs/
outputs view. When asked when they
are productive and how they measure
productivity, developers do not cite
lines of code or function points per
sprint, but rather completing tasks,
being free of interruptions, usefulness
of their work, success of the feature
they worked on, and more.

 ˲ To sum up, after many studies
and many definitions, measurements,
and approaches to productivity,
the empirical software engineering
research community has concluded
that developer productivity is a
multidimensional topic that cannot
be summarized by a single metric.10
Both objective and subjective
approaches to measurement have
been tried, leading to the conclusion
that they both have advantages and
disadvantages.

Developer
Productivity
and the
SPACE
Framework

60 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

research

Figure 5. Linear regressions between acceptance rate and aggregate productivity by
subgroup defined through years of professional experience or programming language
use. Dashed lines denote averages. The x-axis is clipped at (0, 0.5), and 95% of respon-
dents fall into that range.

0.0 0.1

4.25

none
experience

experience

≤ 2 y
3–5 y

6–10 y
11–15 y
≥ 16 y

4.00

3.75

3.50

0.2 0.3 0.4 0.5 0.0

acceptance rate

ag
g

re
g

at
e

p
ro

d
u

ct
iv

it
y

0.1 0.2 0.3 0.4 0.5

language

language

JavaScript
TypeScript

Python
other

Figure 4. Different metrics clustering in latent structures predicting perceived pro-
ductivity. We color the following groups: flawless suggestions (counting the number of
unchanged suggestions), persistence rate (ratio of accepted suggestions that are un-
changed), and fuzzy persistence rate (accepted suggestions that are mostly unchanged).

Metric

0.03

0.02

0.01

0.00

–0.01

0.000 0.005

Projection on first latent structure

P
ro

je
ct

io
n

 o
n

 s
ec

on
d

 la
te

n
t

st
ru

ct
u

re

0.010

acceptance rate
acceptance frequency
amount contribution (char)
flawless suggestion frequency

persistence rate
fuzzy persistence rate
shown overall
shown rate

Table 4. Correlations of acceptance rate
with aggregate productivity broken down
by subgroup.

options ‘Beginner’, ‘Intermediate’, and
‘Advanced’.

 ˲ "Which best describes your pro-
gramming experience?" with options
starting with "Student" and ranging
from "0–2 years" to "16+ years" in two-
year intervals.

We compute correlations with pro-
ductivity metrics for both experience
variables and include these two vari-
ables as covariates in a multivariate re-
gression analysis. We find that both are
negatively correlated with our aggre-
gate productivity measure (proficien-
cy: ρ = − 0 . 095 , P = 0 . 0001 ; years of
experience: ρ = − 0 . 161 , P < 0 . 0001).
However, in multivariate regressions
predicting productivity from usage
metrics while controlling for demo-
graphics, proficiency had a non-sig-
nificant positive effect (coeff = 0 . 021 ,
P = 0 . 213), while years of experience
had a non-significant negative effect
(coeff = − 0 . 032 , P = 0 . 122).

Looking further at individual mea-
sures of productivity, (Table 3) we find
that both language proficiency and
years of experience negatively predict
developers agreeing that Copilot helps
them write better code. However, pro-
ficiency positively predicts developers
agreeing that Copilot helps them stay
in the flow, focus on more satisfying
work, spend less effort on repetitive
tasks, and perform repetitive tasks
faster. Years of experience negatively
predicts developers feeling less frus-
trated in coding sessions and per-
forming repetitive tasks faster while
using Copilot, but positively predicts

subgroup coeff n

none 0.135* 344

≤ 2y 0.178** 451

3 – 5 y 0.255*** 358

6 – 10 y 0.265*** 251

11 – 15 y 0.171* 162

≥ 16 y 0.153* 214

JavaScript 0.227*** 1184

TypeScript 0.165*** 654

Python 0.172*** 716

other 0.178*** 1829

MARCH 2024 | VOL. 67 | NO. 3 | COMMUNICATIONS OF THE ACM 61

research

until mornings 7:00 am PST, where the
average acceptance rate is also rather
high at 23% .

 ˲ Typical working hours during the
week from 7:00 am PST to 4:00 pm PST,
where the average acceptance rate is
much lower at 21 . 2% .

Conclusions
When we set out to connect the pro-
ductivity benefit of GitHub Copilot to
usage measurements from developer
activity, we collected measurements
about acceptance of completions in
line with prior work, but also devel-
oped persistence metrics, which ar-
guably capture sustained and direct
impact on the resulting code. We
were surprised to find acceptance rate
(number of acceptances normalized
by the number of shown completions)
to be better correlated with reported
productivity than our measures of
persistence.

In hindsight, this makes sense.
Coding is not typing, and GitHub Co-
pilot’s central value lies not in being
the way users enter most of their code.
Instead, it lies in helping users to make
the best progress toward their goals. A
suggestion that serves as a useful tem-
plate to tinker with may be as good or
better than a perfectly correct (but ob-
vious) line of code that only saves the
user a few keystrokes.

This suggests that a narrow focus
on the correctness of suggestions
would not tell the whole story for these
kinds of tooling. Instead, one could
view code suggestions inside an IDE to
be more akin to a conversation. While
chatbots such as ChatGPT are already
used for programming tasks, they are
explicitly structured as conversations.
Here, we hypothesize that interactions
with Copilot, which is not a chatbot,
share many characteristics with natu-
ral-language conversations.

We see anecdotal evidence of this
in comments posted about GitHub
Copilot online (see Appendix E for
examples), in which users talk about
sequences of interactions. A conver-
sation turn in this context consists of
the prompt in the completion request
and the reply as the completion itself.
The developer’s response to the com-
pletion arises from the subsequent
changes incorporated in the next
prompt to the model. There are clear

developers making
progress faster when
working in an unfa-
miliar language. These
findings suggest that
experienced developers
who are already highly
skilled are less likely

to write better code with Copilot, but
Copilot can assist their productivity in
other ways, particularly when engag-
ing with new areas and automating
routine work.

Junior developers not only report
higher productivity gains; they also
tend to accept more suggestions. How-
ever, the connection observed in the
section "What Drives Perceived Pro-
ductivity" is not solely due to differing
experience levels. In fact, the connec-
tion persists in every single experience
group, as shown in Figure 5.

Variation over Time
Its connection to perceived productiv-
ity motivates a closer look at the accep-
tance rate and what factors influence
it. Acceptance rate typically increases
over the board when the model or un-
derlying prompt-crafting techniques
are improved. But even if these con-
ditions are held constant (the study
period did not see changes to either),
there are more fine-grained temporal
patterns emerging.

For coherence of the cultural impli-
cations of time of day and weekdays,
all data in this section was restricted
to users from the U.S. (whether in
the survey or not). We used the same
time frame as for the investigation in
the previous section. In the absence
of more fine-grained geolocation, we
used the same time zone to interpret
timestamps and for day boundaries
(PST), recognizing this will introduce
some level of noise due to the inhomo-
geneity of U.S. time zones.

Nevertheless, we observe strong
regular patterns in overall acceptance
rate (Figure 6). These lead us to distin-
guish three different time regimes, all
of which are statistically significantly
distinct at p < 0 . 001% (using boot-
strap resampling):

 ˲ The weekend: Saturdays and Sun-
days, where the average acceptance
rate is comparatively high at 23 . 5% .

 ˲ Typical non-working hours during
the week: evenings after 4:00 pm PST

Experienced
developers who
are already highly
skilled are less
likely to write
better code with
Copilot, but Copilot
can assist their
productivity in other
ways.

• more online

All appendices
for this article
can be found
in the online
supplemental
file at https://
dl.acm.org/
doi/10.1145/
3633453.

62 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

research

20. Svyatkovskiy, A., Deng, S.K., Fu, S., and Sundaresan,
N. Intellicode compose: Code generation using
transformer. In Proceedings of the 28th ACM Joint
European Software Eng. Conf. and Symp. on the
Foundations of Software Eng., P. Devanbu, M.B.
Cohen, and T. Zimmermann (eds). ACM, (Nov. 2020),
1433–1443; 10.1145/3368089.3417058

21. Svyatkovskiy, A. et al. Fast and memory-efficient
neural code completion. In Proceedings of the
18th IEEE/ACM Intern. Conf. on Mining Software
Repositories, (May 2021, 329–340; 10.1109/
MSR52588.2021.00045

22. Vaithilingam, P., Zhang, T., and Glassman, E.
Expectation vs. experience: Evaluating the usability
of code generation tools powered by large language
models. In Proceedings of the 2022 Conf. on Human
Factors in Computing Systems.

23. Vaithilingam, P., Zhang, T., and Glassman, E.L.
Expectation vs. experience: Evaluating the usability
of code generation tools powered by large language
models. In Proceedings of the CHI Conf. on
Human Factors in Computing Systems, Association
for Computing Machinery, Article 332 (2022), 7;
10.1145/3491101.3519665

24. Wagner, S. and Ruhe, M. A systematic review of
productivity factors in software development. arXiv
preprint arXiv:1801.06475 (2018).

25. Wang, D. et al. From human-human collaboration to
human-AI collaboration: Designing AI systems that
can work together with people. In Proceedings of
the 2020 CHI Conf. on Human Factors in Computing
Systems (2020), 1–6.

26. Weisz, J.D. et al. Perfection not required? Human-AI
partnerships in code translation. In Proceedings of
the 26th Intern. Conf. on Intelligent User Interfaces, T.
Hammond et al (eds). ACM, (April 2021), 402–412;
10.1145/3397481.3450656

27. Winters, T., Manshreck, T., and Wright, H. Software
Engineering at Google: Lessons Learned from
Programming Over Time. O’Reilly Media (2020).

28. Wold, S., Sjöström, M., and Eriksson, L. PLS-regression:
A basic tool of chemometrics. Chemometrics and
Intelligent Laboratory Systems 58, 2 (2001), 109–130;
10.1016/S0169-7439(01)00155-1.

29. Zhou, W., Kim, S., Murali, V., and Ari Aye, G. Improving
code autocompletion with transfer learning.
CoRR abs/2105.05991 (2021); https://arxiv.org/
abs/2105.05991

Albert Ziegler (wunderalbert@github.com) is a principal
researcher at GitHub, Inc., San Francisco, CA, USA.

Eirini Kalliamvakou is a staff researcher at GitHub, Inc.,
San Francisco, CA, USA.

X. Alice Li is a staff researcher for Machine Learning at
GitHub, San Francisco, CA, USA.

Andrew Rice is a principal researcher at GitHub, Inc., San
Francisco, CA, USA.

Devon Rifkin is a principal research engineer at GitHub,
Inc., San Francisco, CA, USA.

Shawn Simister is a staff software engineer at GitHub,
Inc., San Francisco, CA, USA.

Ganesh Sittampalam is a principal software engineer at
GitHub, Inc., San Francisco, CA, USA.

Edward Aftandilian is a principal researcher at GitHub,
Inc., San Francisco, CA, USA.

Figure 6. Average acceptance rate during the week. Each point represents the average
for a one-hour period, whereas the shaded ribbon shows the min-max variation during
the observed four-week period.

Saturday
12:00

26%

off hours

Daily and weekly patterns in acceptance rate in the US
(all users between 2022-01-15 and 2022-02-12)

weekend working hours

24%

22%

20%

Sunday
12:00

Monday
12:00

Tuesday
12:00

weekday and time (PST)

ac
ce

p
ta

n
ce

 r
at

e

Wednesday
12:00

Thursday
12:00

Friday
12:00

960–970; 10.1109/ICSE.2019.00101
8. Hendrycks, D. et al. Measuring coding challenge

competence with APPS. CoRR abs/2105.09938,
(2021); https://arxiv.org/abs/2105.09938

9. Hindle, A. et al. On the naturalness of software. In 34th
Intern. Conf. on Software Engineering, M. Glinz, G.C.
Murphy, and M. Pezzè (eds). IEEE Computer Society,
June 2012, 837–847; 10.1109/ICSE.2012.6227135

10. Jaspan, C. and Sadowski, C. No single metric captures
productivity. Rethinking Productivity in Software
Engineering, (2019), 13–20.

11. Kulal, S. et al. Spoc: Search-based pseudocode to code.
In Proceedings of Advances in Neural Information
Processing Systems 32, H.M. Wallach et al (eds), Dec.
2019, 11883–11894; https://bit.ly/3H7YLtF

12. Meyer, A.N., Barr, E.T., Bird, C., and Zimmermann,
T. Today was a good day: The daily life of software
developers. IEEE Transactions on Software
Engineering 47, 5 (2019), 863–880.

13. Meyer, A.N. et al. The work life of developers: Activities,
switches and perceived productivity. IEEE Transactions
on Software Engineering 43, 12 (2017), 1178–1193.

14. Meyer, A.N., Fritz, T., Murphy, G.C., and Zimmermann,
T. Software developers’ perceptions of productivity. In
Proceedings of the 22nd ACM SIGSOFT Intern. Symp.
on Foundations of Software Engineering (2014), 19–29.

15. Murphy-Hill, E. et al. What predicts software
developers’ productivity? IEEE Transactions on
Software Engineering 47, 3 (2019), 582–594.

16. Peng, S., Kalliamvakou, E., Cihon, P., and Demirer, M.
The impact of AI on developer productivity: Evidence
from GitHub Copilot. arXiv:2302.06590 [cs.SE] (2014)

17. Ramírez, Y.W. and Nembhard, D.A. Measuring
knowledge worker productivity: A taxonomy. J. of
Intellectual Capital 5, 4 (2004), 602–628.

18. See, A., Roller, S., Kiela, D., and Weston, J. What makes
a good conversation? How controllable attributes
affect human judgments. In Proceedings of the 2019
Conf. of the North American Chapter of the Assoc.
for Computational Linguistics: Human Language
Technologies 1, J. Burstein, C. Doran, and T. Solorio
(eds). Assoc. for Computational Linguistics, (June
2019), 1702–1723; 10.18653/v1/n19-1170

19. Storey, M. et al. Towards a theory of software
developer job satisfaction and perceived productivity.
In Proceedings of the IEEE Trans. on Software
Engineering 47, 10 (2019), 2125–2142.

programming parallels to factors
such as specificity and repetition that
have been identified to affect human
judgements of conversation quality.18
Researchers have already investigated
the benefits of natural-language feed-
back to guide program synthesis,2 so
the conversational framing of coding
completions is not a radical proposal.
But neither is it one we have seen fol-
lowed yet.

References
1. Amann, S., Proksch, S., Nadi, S., and Mezini, M. A

study of visual studio usage in practice. In IEEE 23rd
Intern. Conf. on Software Analysis, Evolution, and
Reengineering 1. IEEE Computer Society, (March
2016), 124–134; 10.1109/SANER.2016.39

2. Austin, J. et al. Program synthesis with large language
models. CoRR abs/2108.07732 (2021); https://arxiv.
org/abs/2108.07732

3. Ari Aye, G., Kim, S., and Li, H. Learning autocompletion
from real-world datasets. In Proceedings of the 43rd
IEEE/ACM Intern. Conf. on Software Engineering:
Software Engineering in Practice, (May 2021),
131–139; 10.1109/ICSE-SEIP52600.2021.00022

4. Beller, M., Orgovan, V., Buja, S., and Zimmermann,
T. Mind the gap: On the relationship between
automatically measured and self-reported
productivity. IEEE Software 38, 5 (2020), 24–31.

5. Chen, M. et al. Evaluating large language models
trained on code. CoRR abs/2107.03374 (2021);
https://arxiv.org/abs/2107.03374

6. Forsgren, N. et al. The SPACE of developer
productivity: There’s more to it than you think. Queue
19, 1 (2021), 20–48.

7. Hellendoorn, V.J., Proksch, S., Gall, H.C., and Bacchelli,
A. When code completion fails: A case study on
real-world completions. In Proceedings of the 41st
Intern. Conf. on Software Engineering, J.M. Atlee, T.
Bultan, and J. Whittle (eds). IEEE/ACM, (May 2019),

This work is licensed under a
http://creativecommons.org/licenses/by/4.0/

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
measuring-github-copilot

MARCH 2024 | VOL. 67 | NO. 3 | COMMUNICATIONS OF THE ACM 63

