
O n t h e D e v e l o p m e n t o f a N e w C o m m o n

C o m p u t e r L a n g u a g e

Key Words and Phrases : programming languages, language cri-
teria, s tandardiza t ion, P L / I

CR Categories: 4.22

EDITOR :
Congressman Brooks, in his le t ter of December 5th [Comm.

ACM 11, 1 (Jan. 1968) 55, 56], s ta tes t h a t " I n d e p e n d e n t cr i ter ia
ident i fy ing the character is t ics of a new-generat ion comnmn com-
puter language mus t be developed." In comment ing on this poin t
in a le t ter to Congressman Brooks [SIGPLAN Notices 2, 12 (Dec.
1967), 55, 56], I found i t necessary to s t r ip away his suppor t ing
arguments and res ta te his proposal more briefly, bu t largely in
his own words, as follows:

Moved by the likelihood t h a t '% less than the bes t" language,
PL / I , "could become by default , the de facto language of the
next generat ion," you propose the se t t ing up of a group of
" the bes t minds in the ent i re da ta processing communi ty" to
develop " independent cr i ter ia ident i fy ing the character is t ics
of a new generat ion common computer language." Whereupon,
" u n d e r improved USASI procedures, . . . changes in P L / I " (or
perhaps even a b rand new language) would be proposed "to
meet the general cr i ter ia ," and "it would then be reasonable to ex-
pect IBM . . . to a d o p t " the results.

Cer ta inly PL/I has many faults. I t is poorly defined, i t lacks a
cer tain pars imony of design, i t does not always make full and ob-
vious use of m a n y of the powerful concepts i t employs, and i t is
by no means as widely applicable as i t could be. Yet i t is a valuable
language, and who can tell if these faul ts de t rac t great ly from its
pract ical u t i l i ty as a programming tool?

Nevertheless , to develop a be t t e r language to even tua l ly re-
place i t is surely a worthwhile and, I believe, an impor t an t na-
t ional goal. A Federal in i t ia t ive toward this goal should be wel-
c o m e - t h o u g h I expect some will not welcome it. B u t the main
problem is not in establ ishing be t t e r cri teria and designing an
improved language; in addit ion, a more valuable language mus t be
created. And the economic value of a language is determined ne t
so much by its technical excellence, or the lack of it, bu t by how
much time, money and intel lectual effort people can be persuaded
to inves t in developing and using it.

Wi th the technical au thor i ty of a group of acknowledged ex-
perts behind it, and wi th the full economic au thor i ty of the major
computer user, the Federal Government , suppor t ing it, success
in es tabl ishing an improved and more valuable language can no
doubt be achieved--as the his tory behind the current inves tmen t
in COBOL might seem to indicate, except t ha t this very invest -
ment makes the present j ob harder . Yet i t is an impor t an t j ob- - too
impor tan t , I believe, to be decided by the commercial in teres ts of
one manufac turer , and I wish Congressman Brooks success in
mobil izing the resources needed to achieve th is v i ta l goM of a
bet ter , more valuable, computer programming language.

CIIRISTOPHER J. SHAW
System Development Corporation
2500 Colorado Avenue
Sanla Monlca, California 90~06

S t a n d a r d i z a t i o n o f H a n d - C o d i n g N e e d e d f o r

M a n - t o - M a c h i n e C o m m u n i c a t i o n

EDITOR :
At present , USASI Working Group X3.6.3 is developing a

s t anda rd for hand-coding for man- to -man communicat ions. This
is a significant s tep forward.

But , the job ought not end here; the scope of the group mus t be
broadened. USASI X3.6 should include all hand-coding--specif i -
cally man- to-machine readers of hand-coded charac te r s - - in i ts
charge to X3.6.3. Any th ing less is shor t s ighted in this era of ex-
panding technology.

I therefore urge individual ACM'ers to contac t Mr. R. W.
Bemer [see Comm. ACM, August 1967] on this mat te r . The t ime i t
takes will be far less than the t ime to find and correct one ntis-
coded input .

E. J. ORTH, JR. , Chairman
ACM Birmingham Area Chapter
600 N. 18 Street
Birmingham, Alabama 35202

Proposed A b b r e v i a t i o n f o r 1 0 2 4 : b K

Key Words and Phrases : memory, thousand
CR Categories: 2.44, 6.34

EDITOR :
Morr ison ' s suggest ion [Let ter to the Edi tor , Comm. ACM 11,

3 (Mar. 1968), 150] t h a t kappa (K) be used as a symbo l for 2 ~° is a
good one. T h e a rgument for precision in terminology is compelling
as one deepens the scientific conten t of any field. For tuna te ly ,
convenience and c lar i ty coincide here wi th increased precision in
expression.

A Greek le t te r symbol has a d i sadvantage when used in connec-
t ion wi th a computer . For some years I have been using and urging
others to use a different symbol for 2*% The symbol is: bX. I t may
be read as "b ina ry t h o u s a n d " or jus t "bee kay . " Using a lowercase
b is almost as object ionable as a Greek le t t e r since i t too is no t
avai lable on most computer pr inters . We are, however, accustomed
to using uppercase equivalents in computer p r in t ing of more read-
able and more easily remembered typewr i t t en symbols. The pro-
posed symbol is dis t inct ive, easily remembered as a combinat ion
of " b " for the " sma l l " number 2 and the convent ional "K" for
" t h o u s a n d " or "k i lo . " Wr i t ing bK or B K does not seem to me a
significant choice, bu t I prefer the former and ei ther to K since it is
less d is t inc t ive and already has m a n y mathemat ica l and scientific
uses. I t appears unobjec t ionable to use the convent ion t h a t (bK) 2
may be wr i t t en as bK ~, etc.

If Communications of the ACM and Computing Reviews were to
adopt as pa r t of the i r s tyle manua l some symbol for 2 ~°, i t would go
a long way toward assuring its acceptance.

WALLACE GIVENS
Applied Mathematics Division
Argonne National Laboratory
Argonne, Illinois 60439

V o l u m e 11 / N u m b e r 6 / J u n e , 1968 C o n n n u n i c a t i o n s o f t h e ACM 391

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363347.363363&domain=pdf&date_stamp=1968-06-01

O n t h e E v a l u a t i o n o f M u h i p l i c a t i v e
C o m b i n a t o r i a l E x p r e s s i o n s

Key Words and Phrases: combinatorial expressions
CR Categories: 5.30

EDITOR:
Evaluat ing multiplicative arithmetic expressions tha t arise in

combinatorial theory (multinomial coefficients, probabilities, and
coupling coefficients) by straightforward computat ion can lead to
difficulties with overflow even when the magnitude of the final
result is representable. The method suggested here is fast and does
not cause unnecessary overflow. I t can be used in formulae in-
volving integer factors not greater than some given N (a typical
value of 52 occurs in problems concerning the distr ibution of
playing cards).

Three arrays are declared--ex, hfac, lfac[2:N], ex[n] contains
the exponent of n in the result. For all n, hfac[n] contains the
largest prime factor of n and lfae[n] contains n + hfac[n].

To begin, zero the array ex and set up the factors in lfac and
hfac. Evaluate the expression by modifying the exponents in ez.

For example, to divide by k!:

for i := 2 step 1 unt i l k do ex[i] := ex[i] -- 1;

When the result is complete, decompose the composite integer
factors in decreasing order of magnitude into their prime factors.
The final numerical result may then be obtained. The result is an
integer if the exponents are all nonnegative (and no division will
be required) otherwise the result is a rational fraction reduced to
primit ive form.

comment if den is 1 the result is num, otherwise the result is
a rational fraction = num/den;
hum := I ;
den := 1;
for k := N s t ep --1 unt i l 2 do

begin
i f hfae[k] > 0 t h e n

begin
ex[hfae[kll := ex[hfac[k]] + ex[k];
ez[lfac[ki] := ez[Ifac[k]] + ex[k];
ex[k] := 0

end ;
i f ex[k] > 0 then hum := num M xk T ex[k];
i f ex[k] > 0 t h e n den := den xk ~ (--ex[k])

end
I wish to thank the referee for his helpful suggestions and the

ALGOL example.
J. K. S. McKAY,
Atlas Computer Laboratory
Science Research Council, Chilton
Didcot, Berkshire, England

A n A u x i l i a r y P r o g r a m t o A n a l y z e L I S P 1.5 P r o g r a m s

:Key Words and Phrases: LISP, list processing language, debug-
ging, program analysis, cross references, program

CR Categories: 4.22, 4.29, 4.42, 4.49

EDITOR :
We have had some difficulties in the past analyzing other peo-

ple's LISP 1.5 programs and recognizing what their internal inter-
relationship was. We have now designed and tested a LISP pro-
gram which performs just this analysis and enables us to gain more
insight into other LISP programs.

Most LISP programs lack comments and, of course, our program
cannot provide missing comments. (This might be a rather in-
teresting artificial intelligence problem!) However, we wished to
be able to split up a complex program into smaller subparts, tha t
are easy to understand apart, and therefore we were looking for
a detailed cross-reference table of the LISP functions used. This is

of even more use than in, e.g. FORTRAN, because nearly all LISP
programming is done by means of functions.

Our program will give two cross-reference tables, one tha t is
characterized by the clause "x refers to y " and another charac-
terized by "x is referenced by y" with x standing for a function
name and y standing for a set of functions. We have included
references to quoted S-expressions. The program will produce a
listing of the top level functions and a listing of some APVAL
definitions. Of course this program can check a given program
merely statically but not dynamically. Thus functions whose
definitions will be set up at evaluat ion time, probably will not be
detected, but the functions for set t ing up probably will.

We have employed the program to find out: (1) where modifi-
cations had to be made; (2) where certain error comments origi-
nated from; (3) where references to input /ou tpu t were located; and
(4) why certain expressions were handled erroneously. The pro-
gram appears to be a useful means of first aid and has been run-
ning successfully. The program is now undergoing a general revi-
sion and may be extended to cover some additional features.
Possibly we will give a more detailed report some t ime later.

We would be interested to hear whether somebody else has
writ ten a program of the type discussed, and we would greatly ap-
preciate any contact. Persons interested in obtaining the program
may address inquiries to the author.

KNUT BAHR
Deutsches Rechenzentrum
Rheinstrasse 75
6100 Darmstadt
Germany

G e n e r a t i n g P e r m u t a t i o n s b y N e s t e d C y c l i n g

Key Words and Phrases: permutations
CR Categories: 5.39

EDITOR:
The purpose of this letter is two-fold: first to give due credit to

the Tompkins-Paige algorithm, and second to clarify a comment
by Hill, CR Review 13891 on "Programs for Permuta t ions"
[CompuL l?ev. 9, 3 (Mar. 1968), 165]. Hill states, "No references are
given in this paper, nor in a simultaneously published English
paper by Langdon [1], which outlines the nested cycle permutat ion
algorithm previously reported by Peck and Schrack [2], subse-
quently improved by Trot ter , and formulated recursively by
Boothroyd."

Hill is correct in the "no references" portion of his s ta tement ,
but I should have referenced Tompkins [3], and not Peck and
Schrack. Langdon [1] and Algorithm 86 are implementat ions of
different versions of the Tompkins-Paige algorithm. However,
Langdon [1] is not a direct implementation because the bookkeep-
ing is considerably simplified by a " t r i ck" which works only on its
version of the Tompkins-Paige algorithm.

Many authors, myself included, have discussed nested cyclic
permutations but have neglected to reference the Tompkins-Paige
algorithm. I hope I have clarified the interrelationship of Langdon
[1], Algori thm 86, and the Tompkins-Paige algorithm.

References :
1. LANGDO~, G. G. Art algorithm to generate permutations.

Comm. ACM 10, 5 (May 1967), 298-299.
2. PECK, J. E. L., AND SCIIIRACK, G . F . Algori thm 88 P E R M U T E .

Comm. ACM 5, 4 (Apr. 1962), 208.
3. TOMPKINS, C. Machine attacks on problems whose variables

are permutations. Sec. 3. Proc. Sixth Symp. Appl. Math. ,
Numerie~d Anal. McGraw-Hil l (for AMS), New York, 1956, pp.
198-211.

GLEN G. LANGDON, JR.
IBM SDD Laboratory, Dept. 156
P.O. Box G
Endicott, h r. Y. 18760

392 Communicat ions of the ACM V o l u m e 11 / N u m b e r 6 / J u n e , 1968

