Check for
Updates

On the Development of a New Common
Computer Language

Key Words and Phrases: programming languages, language eri-
teria, standardization, PL/I
CR Categories: 4.22

EDITOR:

Congressman Brooks, in his letter of December 5th [Comm.
ACM 11,1 (Jan. 1968) 55, 56], states that ‘‘Independent criteria
identifying the characteristics of a new-generation common com-
puter language must be developed.” In commenting on this point
in a letter to Congressman Brooks [SIGPLAN Notices 2, 12 (Dec.
1967), 55, 56], I found it necessary to strip away his supporting
arguments and restate his proposal more briefly, but largely in
his own words, as follows:

Moved by the likelihood that “a less than the best” language,
PL/I, “could become by default, the de facto language of the
next generation,” you propose the setting up of a group of
“the best minds in the entire data processing community” to
develop “independent criteria identifying the characteristics
of a new generation common computer language.” Whereupon,
“under improved USASI procedures, ... changes in PL/I” (or
perhaps even a brand new language) would be proposed “to
meet the general criteria,” and “it would then be reasonable to ex-
pect IBM ... to adopt’ the results.

Certainly PL/I has many faults. It is poorly defined, it lacks a
certain parsimony of design, it does not always make full and ob-
vious use of many of the powerful concepts it employs, and it is
by no means as widely applicable as it could be. Yet it is a valuable
language, and who can tell if these faults detract greatly from its
practical utility as a programming tool?

Nevertheless, to develop a better language to eventually re-
place it is surely a worthwhile and, I believe, an important na-
tional goal. A Federal initiative toward this goal should be wel-
come—though I expect some will not welcome it. But the main
problem is not in establishing better criteria and designing an
improved language; in addition, a more valuable language must be
created. And the economic value of a language is determined not
so much by its technical excellence, or the lack of it, but by how
much time, money and intellectual effort people can be persuaded
to invest in developing and using it.

With the technical authority of a group of acknowledged ex-
perts behind it, and with the full economic authority of the major
computer user, the Federal Government, supporting it, success
in establishing an improved and more valuable language can no
doubt be achieved—as the history behind the current investment
in COBOL might seem to indicate, except that this very invest-
ment makes the present job harder. Yet it is an important job—too
important, I believe, to be decided by the commercial interests of
one manufacturer, and I wish Congressman Brooks success in
mobilizing the resources needed to achieve this vital goal of a
better, more valuable, computer programming language.

CHRISTOPHER J. SHAW

System Development Corporation
2500 Colorado Avenue

Santa Monica, California 90406

Volume 11 / Number 6 / June, 1968

Standardization of Hand-Coding Needed for
Man-to-Machine Communication

Eprtor:

At present, USAST Working Group X3.6.3 is developing a
standard for hand-coding for man-to-man communications. This
is a significant step forward.

But, the job ought not end here; the scope of the group must be
broadened. USASI X3.6 should include all hand-coding—specifi-
cally man-to-machine readers of hand-coded characters—in its
charge to X3.6.3. Anything less is shortsighted in this era of ex-
panding technology.

I therefore urge individual ACM’ers to contact Mr. R. W.
Bemer [see Comm. ACM, August 1967] on this matter. The time it
takes will be far less than the time to find and correct one mis-
coded input.

E. J. OrtH, JR., Chairman
ACM Birmingham Area Chapter
600 N. 18 Sireet

Birmingham, Alabama 35202

Proposed Abbreviation for 1024: bK

Key Words and Phrases: memory, thousand
CR Categories: 2.44, 6.34

EprTor:

Morrison’s suggestion [Letter to the Editor, Comm. ACM 11,
3 (Mar. 1968), 150] that kappa (x) be used as a symbol for 219 is a
good one. The argument for precision in terminology is compelling
as one deepens the scientific content of any field. Fortunately,
convenience and clarity coincide here with increased precision in
expression.

A Greek letter symbol has a disadvantage when used in connec-
tion with a computer. For some years I have been using and urging
others to use a different symbol for 219. The symbol is: bK. It may
be read as “binary thousand’’ or just “‘bee kay.”” Using a lowercase
b is almost as objectionable as a Greek letter since it too is not
available on most computer printers. We are, however, accustomed
to using uppercase equivalents in computer printing of more read-
able and more easily remembered typewritten symbols. The pro-
posed symbol is distinctive, easily remembered as a combination
of “b” for the ‘“‘small” number 2 and the conventional “K’’ for
“thousand” or “‘kilo.”” Writing bK or BK does not seem to me a
significant choice, but I prefer the former and either to « since it is
less distinctive and already has many mathematical and scientifie
uses. It appears unobjectionable to use the convention that (bK)?2
may be written as bK?, ete.

If Communications of the ACM and Computing Reviews were to
adopt as part of their style manual some symbol for 210, it would go
a long way toward assuring its acceptance.

WarLrace GIVENS

Applied Mathematics Division
Argonne National Laboratory
Argonne, Illinois 60439

Communications of the ACM 391


http://crossmark.crossref.org/dialog/?doi=10.1145%2F363347.363363&domain=pdf&date_stamp=1968-06-01

On the Evaluation of Multiplicative
Combinatorial Expressions

Key Words and Phrases:
CR Categories: 5.30

EpiTOR:

Evaluating multiplicative arithmetic expressions that arise in
combinatorial theory (multinomial coefficients, probabilities, and
coupling coefficients) by straightforward computation can lead to
difficulties with overflow even when the magnitude of the final
result is representable. The method suggested here is fast and does
not cause unnecessary overflow. It can be used in formulae in-
volving integer factors not greater than some given N (a typical
value of 52 occurs in problems concerning the distribution of
playing cards).

Three arrays are declared—ex, hfac, lfac[2:N]. ex[n] contains
the exponent of n in the result. For all n, hfacln] contains the
largest prime factor of n and Ifac[n] contains n <+ hfacin).

To begin, zero the array ez and set up the factors in Ifac and
hfac. Evaluate the expression by modifying the exponents in ez.

For example, to divide by k!:

combinatorial expressions

for ¢ := 2 step 1 until & do ex(i] := ex[7] — 1;

When the result is complete, decompose the composite integer
factors in decreasing order of magnitude into their prime factors.
The final numerical result may then be obtained. The result is an
integer if the exponents are all nonnegative (and no division will
be required) otherwise the result is a rational fraction reduced to
primitive form.

comment if den i3 1 the result is num, otherwise the result is
a rational fraction = num/den;

num = 1;
den 1= 1;
for k := N step —1 until 2 do
begin
if hfaclk] > 0 then
begin

exlhfaclkl] := exlhfaclk]] + exlk];
ex[lfaclk]] 1= ex[lfaclk]] + exlk];
ex[k] := 0 :
end;
if ex[k] > 0 then num := num X zk T ex(k];
if ex[k] > 0 then den := den zk T (—ex[k])
end
I wish to thank the referee for his helpful suggestions and the
AvcoL example.
J. K. 8. McKay,
Atlas Computer Laboratory
Science Research Council, Chilion
Didcot, Berkshire, England

An Auxiliary Program to Analyze LISP 1.5 Programs

Key Words and Phrases: LISP, list processing language, debug-
ging, program analysis, cross references, program
CR Categories: 4.22,4.29,4.42, 4.49

Ebrtor:

We have had some difficulties in the past analyzing other peo-
ple’s LISP 1.5 programs and recognizing what their internal inter-
relationship was. We have now designed and tested a LISP pro-
gram which performs just this analysis and enables us to gain more
insight into other LISP programs.

Most, LISP programs lack comments and, of course, our program
cannot provide missing comments. (This might be a rather in-
teresting artificial intelligence problem!) However, we wished to
be able to split up a complex program into smaller subparts, that
are easy to understand apart, and therefore we were looking for
a detailed cross-reference table of the LISP functions used. This is

392 Communications of the ACM

of even more use than in, e.g. FORTRAN, because nearly all LISP
programming is done by means of functions.

Our program will give two cross-reference tables, one that is
characterized by the clause “z refers to 3’ and another charac-
terized by ‘‘z is referenced by y’’ with z standing for a function
name and y standing for a set of functions. We have included
references to quoted S-expressions. The program will produce a
listing of the top level functions and a listing of some APVAL
definitions. Of course this program can check a given program
merely statically but not dynamically. Thus functions whose
definitions will be set up at evaluation time, probably will not be
detected, but the functions for setting up probably will.

We have employed the program to find out: (1) where modifi-
cations had to be made; (2) where certain error comments origi-
nated from; (3) where references to input/output were located; and
(4) why certain expressions were handled erroneously. The pro-
gram appears to be a useful means of first aid and has been run-
ning successfully. The program is now undergoing a general revi-
sion and may be extended to cover some additional features.
Possibly we will give a more detailed report some time latar.

We would be interested to hear whether somebody else has
written a program of the type discussed, and we would greatly ap-
preciate any contact. Persons interested in obtaining the program
may address inquiries to the author.

Knur Bansr

Deutsches Rechenzentrum
Rhernstrasse 76

6100 Darmstadt

Germany

Generating Permutations by Nested Cycling

Key Words and Phrases:
CR Categories: 5.30

permutations

Epitor:

The purpose of this letter is two-fold: first to give due credit to
the Tompkins-Paige algorithm, and second to clarify a comment
by Hill, CR Review 13831 on ‘Programs for Permutations’
[Comput. Rev. 9, 3 (Mar. 1968), 165]. Hill states, “No references are
given in this paper, nor in a simultaneously published English
paper by Langdon [1], which outlines the nested eycle permutation
algorithm previously reported by Peck and Schrack [2], subse-
quently improved by Trotter, and formulated recursively by
Boothroyd.”

Hill is correct in the ‘‘no references’” portion of his statement,
but I should have referenced Tompkins (3], and not Peck and
Schrack. Langdon [1] and Algorithm 86 are implementations of
different versions of the Tompkins-Paige algorithm. However,
Langdon [1] is not a direct implementation because the bookkeep-
ing is considerably simplified by a “trick’’ which works only on its
version of the Tompkins-Paige algorithm.

Many authors, myself included, have discussed nested cyclic
permutations but have neglected to reference the Tompkins-Paige
algorithm. I hope I have clarified the interrelationship of Langdon
[1}, Algorithm 86, and the Tompkins-Paige algorithm.

References:

1. LanepoNn, G. G. An algorithm to generate permutations.
Comm. ACM 10,5 (May 1967), 298-299.

2. PEck,J.E.L., anD Scurack, G. F. Algorithm 88 PERMUTE.
Comm. ACM 5,4 (Apr. 1962), 208.

3. Towmpkins, C. Machine attacks on problems whose variables
are permutations. Sec. 3. Proc. Sixth Symp. Appl. Math.,
Numerical Anal. McGraw-Hill (for AMS), New York, 1956, pp.
198-211.

GrLEN G. LaNGDON, JR.

IBM SDD Laboratory, Dept. 156
P.O. Box 8

Endicoit, N. Y. 13760

Volume 11 / Number 6 / June, 1968



