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ABSTRACT
Internet of Things (IoT) devices are increasingly being treated as
disposable, becoming unsupported shortly after deployment and
ending up in landfills prematurely. IoT manufacturers lock devices
to their ecosystems and prioritize the development of new devices
over the support of legacy product lines. This paper argues that a
paradigm shift is needed to increase IoT device longevity. We review
the unique challenges that IoT manufacturers face in extending
device lifetimes, and identify software and security updates as a
key requirement for device longevity. We propose a new IoT device
software stack and lifecycle that allows devices to continue safe
operation even after the vendor disappears. While we recognize
that the sustainable design and management of IoT devices is a
complex sociotechnical problem, we hope that the ideas in this
paper helps guide future discussions on this important topic.

CCS CONCEPTS
•Computer systems organization→ Firmware; • Security and
privacy → Operating systems security; Software security engineer-
ing; • Software and its engineering→ Open source model.
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1 INTRODUCTION
Research papers discussing the Internet of Things (IoT) often begin
by citing IoT device deployment projections to highlight the current
pervasiveness and growth trajectory of the industry. “Double in
size within the next four years” [46], “75 billion by 2030” [58], “a
whooping trillion connected devices by year 2035” [42]. What these
papers fail to discuss is the proportion of these IoT devices that will
end up in landfills prematurely.

Our planet is facing a significant e-waste problem, exacerbated
by the rapid end-of-life and deprecation of IoT devices [33, 34].
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Consumers acquire these inexpensive devices and install them in
their homes, only to discover that the device is only supported by
the vendor for a short period (typically 1-2 years) [18, 54]. Once
this support period is over, devices no longer receive feature up-
dates and, more importantly, security updates. As a result, many of
these devices are perceived as no longer useful or functional after a
relatively short period of time, contributing to the growing global
e-waste crisis [28].

Does this mean that IoT devices cannot be designed and built to
last as long as their analog counterparts? In other words, is it even
possible to design an IoT device that remains in operation and useful
for over 25 years? A cursory look at the internals of some off-the-
shelf IoT devices reveals that the hardware is generally up to the task
of durability. Solid-state internal components are rated for several
decades, with flash storage being one of the main components that
wear out over time, followed by mechanical actuators that enable
the device to interact with the physical environment (e.g., relays,
servos, etc.). Broadly speaking, engineering embedded hardware
that lasts decades is feasible1, but what about the software?

Writing long-lasting software for embedded devices is also fea-
sible, and indeed the industry has been doing this for a long time.
Embedded systems have been integrated in consumer appliances
and electronics for several decades, well before the IoT revolution.
Embedded systems have also been heavily utilized in various sec-
tors, including automotive, manufacturing, and healthcare. The
challenge arises when developers are tasked with writing long-
lasting software for an embedded device that requires use of the
internet. A substantial increase in complexity occurs when internet
connectivity is brought into scope: evolving network protocols,
bugs in cryptographic algorithm implementations, and changes to
APIs of external services forces IoT devices to be updated [2], or
stop working and get thrown out.

This (sometimes unintentional) programmed obsolescence in
IoT software requires a new paradigm to solve. Users cannot be
expected to keep track of which critical network libraries are no
longer updated on their devices, and solder serial jumpers onto
their devices to flash unofficial fixes. Vendors cannot be expected
to maintain devices indefinitely as this fundamentally conflicts
with their business models. We cannot legislate permanently se-
cure code into existence. Open-source software and hardware does
not magically address this issue either; while access to the source
code helps third-party maintainers write new code for abandoned
devices, allowing a third party to overwrite the software on a device
is indistinguishable from an attack [36].

1We recognize that engineering hardware designed to withstand harsh environmental
conditions (e.g., weather, high-impact, military environments) is much more challeng-
ing. Our scope herein is focused on the gentler environment of a modern home.
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In this paper, we argue that the lack of long-term support for
IoT software directly contributes to the global e-waste crisis and
that a radically different approach is needed to keep functional IoT
devices out of landfills. Our position is that if a device requires in-
ternet connectivity, it will inevitably become non-functional and/or
vulnerable over time. While users may not immediately notice that
their device is vulnerable, they are more likely to notice the dis-
appearance of features and functionality. A unique challenge in
achieving long-term updates is that the IoT device may outlast the
manufacturer, and thus all technical means for designing, build-
ing, and distributing an update may be destroyed, or locked away
behind intellectual property protections [63].

This paper reviews the state-of-the-art in IoT software updates
to highlight why these approaches are independently unsuitable for
long-term device maintenance. We discuss why oft-cited alternative
solutions (e.g., software updates as a paid service, device leasing,
etc.) will also be insufficient moving forward. We draw parallels to
the plastics and automotive industries to showcase differences and
similarities across these vastly different domains.

With this context, our blueprint for long-term updates assumes
that the first-party vendor is a single point of failure, so we pro-
pose a new strategy for designing IoT software/firmware stacks
that explicitly presumes the first party will abandon development.
Then, security updates and patches can be taken over securely by
another trusted party. This decentralized approach has worked in
the personal computer domain, where systems may continue to
work for decades as long as the architecture and device drivers
are supported by the general-purpose operating system. We note,
however, that we are not proposing a general-purpose OS for IoT
devices, as IoT hardware is too heterogeneous. Instead, we propose
a more explicit demarcation between firmware (code unique to the
device, which may be proprietary in nature) and software (code
with no hardware-specific ties).

Next, we suggest a set of heuristics (e.g., heartbeat messages
to supporting cloud infrastructure, timestamps of last software
releases, etc.) that can be used for the IoT device to autonomously
determine whether its vendor is no longer providing updates, and
transition to a community supported update channel transparently,
if it exists. We discuss the technical challenges in selecting and
using these heuristics.

The final component in this new paradigm is securing the tran-
sition to the new update channel, potentially over several decades.
During this time, cryptographic keys may be leaked or compro-
mised due to insufficient bit length. Cryptographic protocols them-
selves may be found to be vulnerable. We discuss how the soft-
ware update literature has largely ignored longevity factors, and
we present an initial discussion of trade-offs between centralized,
distributed, and hybrid approaches for securing software updates.

2 ON IOT SOFTWARE AND FIRMWARE
UPDATES

IoT device manufacturers cannot predict the future: they do not
know what the next several years (or even decades) of security
vulnerabilities, bugs in existing code, and breaking API changes
will hold for them. Therefore, IoT device firmware requires the
ability to be updated such that manufacturers can fix, patch, or

add new features to deployed devices. The absence of firmware
updates leaves devices vulnerable to security threats and exploits [5,
69]. Hackers and malicious actors frequently target outdated and
unsupported devices, as these devices are often more susceptible to
attacks due to unpatched vulnerabilities. Unsupported devices may
become part of botnets which can be used to launch large-scale
cyberattacks [5, 69].

In the context of IoT devices, the term firmware refers to the
operating system image that contains the kernel, libraries, and ap-
plications. On resource-constrained IoT devices2, the firmware is
typically monolithic (sometimes referred to as a unikernel), consist-
ing of a single binary that provides all hardware abstractions and
application logic. Because of this monolith, there is no privilege
management, which means the impact of a vulnerability in any
component is catastrophic; the entire device’s code is the trusted
computing base (TCB).

On low-end IoT devices, firmware images are often purpose-built
due to the one-off nature of IoT device hardware. While more pow-
erful IoT devices will typically employ general purpose operating
systems such as Linux [67], these devices are out of scope; Linux’s
heavy focus on preserving user space application binary interface
(ABI) compatibility [61] and backward compatibility means that
many decades-old devices running Linux continue in operation.

Managing IoT devices requires keeping firmware up to date.
Firmware updates are crucial for addressing security issues, enhanc-
ing device performance, and introducing new features. However,
updating firmware on IoT devices can be difficult, particularly for
devices with limited resources [9]. Challenges like storage capacity
limitations, intermittent connectivity, and power constraints can
hinder the firmware update process [32].

2.1 Software Update Schemes for IoT
Several state-of-the-art firmware update systems have been devel-
oped to tackle the challenges faced by resource-constrained IoT
devices [50, 57, 62]. These frameworks offer solutions that address
the constraints of such devices and mitigate various threats. How-
ever, one significant limitation of current state-of-the-art designs
is their lack of consideration for the long-term deployment model
of IoT devices. There has been limited exploration of how these
schemes will operate several decades into the future.

Efforts have been made to broadly analyze the longevity of IoT
devices and the technical challenges associated with long-term
deployment models [7, 40, 72]. These analyses cover issues related
to longevity, but there is a lack of implementations that specifically
address these challenges. This gap exists because many of these
challenges extend beyond the scope of software update standards.
We believe that a comprehensive and holistic perspective on IoT
device security is required, along with potential architectural and
paradigm changes to effectively tackle these challenges.

Most existing update frameworks designed for IoT devices rely
on symmetric encryption, message authentication codes, and digital
signatures to protect firmware in transit and verify it on the target
device. However, these update schemes fail to consider how time
will impact the overall security of the cryptographic algorithms

2The IETF defines class 1 IoT devices as having ∼10 KiB of RAM and ∼100 KiB of
storage, and class 2 devices as having ∼50 KiB of RAM and ∼250 KiB of storage [10].
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Existence

Does an entity ex-
ist to develop and
distribute updates?

Motivation

Does the entity want to
support the device?

Capability

Does the entity have
the technical re-
sources and tools to
develop updates?

Unsupported;
Lacking technical
resources

Unsupported;
Lacking support,
motivation

Unsupported;
Lacking an
organization

Supported
Device

Figure 1: Whether a vendor can provide software updates
depends on their existence, motivation, and ability. Without
any one of these factors, a vendor’s ability to support devices
becomes hindered.

they rely upon [40]. Kiningham et al. [43] discuss this issue while
analyzing the potential for creating IoT devices with a 20-year
lifespan. Indeed, cryptographic algorithms have gone from state-
of-the-art to insecure in less than 20 years.

The Internet Engineering Task Force (IETF), acknowledges this
problem in their recent proposal for Software Updates for the In-
ternet of Things (SUIT). They emphasize that developers “must
carefully consider the service lifetime of their product and the time
horizon for quantum accelerated key extraction” [50] while imple-
menting their update scheme. One worst-case estimate for the time
horizon for quantum-accelerated key extraction is approximately
2030 [39]. Assuming this estimate holds true, IoT devices created
today may only have 7 years before they need to be updated to sup-
port stronger cryptographic algorithms. Otherwise, the underlying
communication channels they rely uponmay be compromised. Note
that SUIT appears to only consider issues related to asymmetric
key attacks enabled by quantum computing, but does not comment
on the plethora of non-quantum issues (e.g., inadvertent key leak-
age and revocation, implementation bugs, under-specification of
protocols, etc.) that impact cryptographic systems today.

2.2 Device Vendors as a Single (and Complex)
Point of Failure

Software update schemes for IoT devices tend to be designed under
the assumption of a single entity responsible for building and dis-
tributing device firmware. We refer to this vendor as the first-party
vendor, which is the original creator of an IoT device, and the entity
responsible for creating and distributing firmware updates for an
IoT device. Note that in more complex multi-stakeholder scenarios,

such as if an IoT device is created and developed by one vendor and
re-branded under another vendor, the original device vendor takes
precedence. While this simple centralized model facilitates the de-
velopment and suits the typical monolithic firmware design that is
commonly found on these devices, it does not consider any form of
device autonomy outside the walled garden it was designed within,
thus establishing a one-to-one relationship between a device and
its first-party vendor.

Under this one-to-one device-to-vendor model, the issue be-
comes evident: if the vendor disappears, IoT devices managed by
that vendor will no longer receive updates (see the bottom left circle
in Figure 1). Even if the vendor continues regular operations, they
must be motivated and retain the technical and human resources to
develop updates for specific devices. Only when these three depen-
dencies (existence, motivation, and capability) are met can a device
be considered supported by the vendor.

The remaining intersections in Figure 1 reveal a range of factors
that can prevent updates from being built. For example, if an organi-
zation is motivated but lacks the necessary developer resources, has
accumulated excessive technical debt, or has lost access to tooling,
they will be unable to distribute updates. Similarly, if a vendor may
have the capability but lack motivation to issue updates; the vendor
may not have sufficient financial incentives, or the business may
have decided to prioritize support for other product lines. Finally, if
a vendor has the motivation and resources to produce updates, but
ceases to exist (e.g., the company goes out of business), no further
updates will be produced.

Considering each of these factors as a point of failure, it becomes
apparent that the first-party vendor producing any software, let
alone updates for a legacy device is a colossal task. Each of these
factors becomes more of a concern with IoT: for devices that are
being deployed into permanent installation settings with long-term
lifespans, it is difficult to argue that this is not a exceedingly fragile
ecosystem.

Within this context, we propose a new way to think about IoT
software updates, which to our knowledge has not yet surfaced in
the IoT security literature:

The first-party vendor is a point of failure. To allow
long-term use and durability of IoT devices, their soft-
ware needs to be updated. Devices should not rely
exclusively on the first-party vendor for updates.

2.3 Software Updates within Walled Gardens
On personal computers (PC), users do not rely on the manufacturer
of a device’s hardware to build, distribute, and maintain all the
software they need to operate the device. Instead, the PC vendor
provides the hardware and maintains core pieces of firmware and
software as needed: the basic input/output system (BIOS), system
drivers, and controller drivers, among other things. The applications
and software are distributed by other sources.

Although the model of obtaining software from a variety of
sources is widely used in the world of general-purpose computing
devices, it is worth noting that this model is not universally adopted.
The converse model is most obviously apparent in smartphones,

3



NSPW ’23, September 18–21, 2023, Segovia, Spain Bradley and Barrera

which use a more heavily centralized software distribution model.
While applications for smartphones are developed by different inde-
pendent sources, they are distributed through centralized sources
that are controlled by the phone manufacturer or operating system
vendor. An example of this is the Apple App Store, which is used
by iPhone and iPad devices [37]. A contrast to this is the Android
model, which demonstrates that full centralization and lock-in is
not the only approach. Android does not lock users to a single cen-
tralized app store. Users are free to use third-party app stores, such
as F-Droid3, thus enabling an approach that favors user control.

The “walled gardens” offer higher levels of control that can be
beneficial for security reasons4, but it also raises concerns about
monopolistic practices and, more importantly, the single point of
failure it creates. If the entity maintaining a centralized “walled
garden” app store were to suddenly disappear, users would not
have any options for receiving software updates, or for installing
software at all. In an approach that favors user choice and autonomy,
the disappearance of the entity maintaining a centralized app store
would merely be an inconvenience, but not prevent users from
using a third-party software distribution network.

The ongoing debate regarding these app stores relates to IoT:
themes of centralized control versus individual autonomy under-
pin current events. It highlights the need for new paradigms that
can accommodate both the benefits of centralized control and the
benefits of individual autonomy.

3 NON-SOLUTIONS
In this section, we examine existing methods and measures that aim
to extend the lifespan of IoT devices. It is often suggested that these
methods can solve some problems discussed in Section 2; however,
we believe that the ideas listed below only shift technical burdens
onto other parties without addressing the underlying issue. It is
worth noting that some of these methods may still be useful for
improving vendor incentives (specifically 3.1 and 3.2), establishing
standardized mechanisms for secure firmware distribution (3.4), or
delegating legacy maintenance to third parties (3.3 and 3.5). The
non-solutions mentioned below are not an exhaustive list of all the
alternatives considered to date. Our focus is on notable suggestions
that highlight the shortcomings of current models.

3.1 Software Updates as a Paid Service
A potential solution for those wishing to have devices updated be-
yond themanufacturer-supported cost-free period is for the original
device manufacturer to offer software updates as a paid service [64].
This is a common practice in corporate and enterprise software (e.g.,
Red Hat Enterprise Linux). Users who pay for a license (that can
be paid e.g., monthly or yearly) receive software updates for their
devices. Microsoft famously continues to support the 22-year-old
Windows XP for enterprise customers who are willing to pay for
support [35].

The benefit of this approach is it provides an economically sus-
tainable way to prolong device updates from the device’s original
vendor. Many IoT device vendors currently provide device updates

3https://f-droid.org
4Centralized app stores can perform application vetting, including developer authenti-
cation, functionality checks, API tests, security tests, etc. [8]

at no cost to the user, but eventually, it stops making financial sense
for vendors to keep throwing development resources at products
that no longer generate income. Figure 1 highlights this in terms
of vendor motivation; an additional income stream can motivate
vendors to develop updates for long periods.

Unfortunately, while this general idea may address vendor mo-
tivation, it still requires the first-party vendor to be available and
to be technically capable of performing device updates. If the first
party ceases to exist, these “update subscriptions” will terminate
and the legacy devices will progressively age and fall out of date,
resulting in the original problem of vulnerable and unsupported
devices.

While updates as a paid service can be an effective solution to
extending the period a vendor is motivated to provide firmware up-
dates, it is not a solution that allows for delegation of responsibility.
The first-party vendor will remain the single point of failure. Man-
ufacturers need to ensure long-term support for their devices, so
there must be a contingency plan in place in case the manufacturer
is unable, unmotivated, or nonexistent.

3.2 Device Leasing Model
In enterprise and corporate settings, equipment leasing is a com-
mon practice where hardware is rented or leased under a service
agreement. At the end of the agreement, the vendor responsible for
the device will typically replace it with new hardware. This way,
the service provide ensures that the customer always has access to
the latest supported hardware covered under a service agreement.
After the device is decommissioned, it may be refurbished and re-
sold as a previous-generation device. The sale of used equipment is
a great opportunity to reuse a device instead of throwing it away to
be recycled; however, the re-sale is only possible if the device has
some value at the end of its lease. This is particularly applicable
to valuable enterprise-grade hardware such as servers, network
switches, and workstations.

Not all IoT devices can be leased, especially consumer devices
such as smart home gadgets and wearables. These devices are usu-
ally owned outright by the users. Leasing or renting IoT devices
may also be too expensive for some use cases, especially in con-
sumer and industrial markets. For devices that require professional
installation or are encased in homes, replacing them can be a hassle
for consumers and offer no significant improvement in longevity.

While this does provide the end-user with supported hardware
which will receive updates, this model does not address the IoT
longevity problem as it only pushes the burden of legacy device
maintenance to the new device owner. Once a service agreement
ends and devices are decommissioned, they may be recycled and
refurbished to be sold on a third-party market.

3.3 Release of Source Code and Tooling
Another potential approach is to require (perhaps through legal
means) the first-party vendor to release all the code and tooling
for the device such that a third party to continue maintenance and
development. This third party could be another company or an
open-source community that is willing to take on the development
responsibility. While this solution appears beneficial, it faces several
practical challenges. For example, some manufacturers may not
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have the legal right to release the source code for their devices due
to proprietary software or intellectual property issues. Additionally,
third-party developers may not have the expertise or resources to
effectively support older devices, which could lead to security and
compatibility issues.

While we strongly advocate for open implementations, this
method only shifts the maintenance burden to another entity. This
could result in a few maintainers being responsible for a vast num-
ber of diverse IoT device firmware codes. Over time, compilers and
build tools will become outdated, causing a decrease in the number
of developers who can maintain these codebases. As maintainers
shift their focus to newer devices, older ones will eventually become
outdated.

3.4 Unified IoT Protocols
Several protocol designs for IoT devices aim to provide a stan-
dard set of abstractions to IoT device functionality. Protocols such
as LWM2M [62] provide standard ways to provision IoT devices,
send/receive data, and more importantly perform software updates,
which is a comprehensive holistic protocol for an IoT device’s life-
cycle. Other protocols aim to provide unified solutions for only
firmware updates, such as IETF SUIT [50].

Unfortunately, these protocols deem the issue of device longevity
out of scope [50], or ignore it altogether [62]. Longevity is a crucial
issue for these unified protocols, which directly impacts the effec-
tiveness of the cryptographic primitives used to provide security
and integrity to firmware updates and ensure the device can oper-
ate securely [9, 50]. These protocols do not cover what should be
done with legacy devices that do not support current cryptographic
algorithms, leaving it up to the device manufacturer to make these
decisions. Without adequate training, context, and supporting in-
frastructure, leaving these critical decisions to manufacturers (or
more specifically, developers employed by the manufacturer) is
unlikely to result in more secure software [71].

Additionally, proposals that cover firmware updates only con-
sider firmware originating from a first-party vendor, which impacts
long-term security and trust. These proposals do not have provi-
sions for vendor agility, forcing first-party vendors to use unspec-
ified, ad-hoc out-of-band processes to hand off support to third
parties.

Unified IoT protocols are a non-solution for increasing device
longevity — they do not consider factors that ultimately impact long-
term device longevity [7, 40] as the various challenges impacting
device longevity are out of the scope of what these protocols aim
to achieve. Thus, protocols are certainly part of the solution to
long-term device updates. Creating consistent APIs for IoT devices
to conform to will greatly assist in creating a unified and consistent
way to distribute firmware to heterogeneous IoT devices.

3.5 Open-source IoT Frameworks
The open-source movement has influenced IoT hardware vendors,
leading to efforts to make their device development frameworks and
SDKs open-source. A notable example is Espressif, a vendor who
has embraced open-source as part of their development model. As a
result, open-source communities have emerged around their SDKs
and IoT development boards, leading to the creation of projects

like ESP Home5 and Tasmota6. Both of these projects allow IoT
enthusiasts to write custom firmware for Espressif devices.

Despite the benefits of this strategy, there are some disadvantages
to slowly adopting an open-source model. For instance, developers
must use Espressif’s fork of LLVM7 to utilize any of their SDKs on
Espressif boards that utilize the Xtensa architecture. If Espressif
fails to keep its LLVM fork up to date (it is currently approximately
10,000 commits behind upstream LLVM), its compiler infrastructure
for Xtensa boards may become stagnant. Nevertheless, Espressif has
actively worked on adding this LLVM backend to upstream LLVM
for approximately four years, suggesting that they may eventually
embrace open-source collaboration.

The concerns raised regarding tooling and dependencies high-
light several challenges in the software supply chains of IoT devices.
The firmware for such devices often relies on external dependencies,
which in turn creates intricate supply chains with interdependen-
cies between various vendors and organizations. Each participant
in this chain introduces a potential point of failure or vulnerability
that may impede the timely and secure delivery of software updates
to IoT devices. While the adoption of a fully open-source model for
IoT device development could help with some of these challenges,
the presence of closed-source or proprietary dependencies may
hinder the efforts of open-source communities.

While open-source communities cannot solve all the issues re-
lated to IoT device firmware, they still have an important role to
play. We believe that these communities can serve as a valuable
third party for intervention, helping to ensure that IoT devices re-
main secure and up-to-date in the face of rapidly evolving threats.
At the same time, we also acknowledge that some proprietary de-
pendencies may be necessary in certain cases. While we would
ideally prefer an entirely open-source model for IoT device develop-
ment, we recognize that this may not always be practical or feasible.
We believe that architectural changes to IoT device firmware are
needed to accommodate these dependencies and ensure that they
do not become a barrier to effective device management. These
changes are discussed in greater detail in Section 5.

3.6 IoT Recycling
A common pattern seen in other hardware industries such as general-
purpose computers and mobile phones is taking functional, yet
unsupported, hardware and recycling it responsibly, such that new
devices can be made sustainable with resources extracted from old
devices, thus creating a more sustainable circular economy [25].
With this in mind, a common suggestion is for IoT devices to adopt
a similar e-waste recycling strategy [64].

The issue of IoT recycling and e-waste recycling more broadly is
characterized by a significant global inefficiency in waste manage-
ment. According to the 2019 Global e-waste monitor, a staggering
53.6 metric tonnes of e-waste was generated worldwide, with only
9.3 metric tonnes (equivalent to approximately 17%) being ade-
quately recycled. The remaining 44.3 metric tonnes (equivalent to
approximately 82%) were either dumped, traded, or recycled in a
manner that is not environmentally sustainable [28].

5https://esphome.io
6https://tasmota.github.io
7https://github.com/espressif/llvm-project
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There are many reasons for the low utilization of e-waste re-
cycling systems, but the main driver is usually the high cost of
recycling these materials [28]. This challenge places significant
financial pressures on the recycling sector, which may limit its
capacity to properly recycle e-waste. Moreover, IoT devices are not
attractive targets for recycling. These devices are small, cheap to
mass-produce, and difficult to recycle. Separating recyclable from
non-recyclable materials in IoT devices is far from trivial, and due
to their small size, any valuable resources that can be extracted
is small [28]. Even when materials can be recovered and recycled,
the resulting product may not always be suitable for the same pur-
pose as the original device. For example, it’s more cost-effective to
use recycled plastics as insulation rather than the creation of new
plastics for the same original purpose.

Societal and cultural aspects of recycling must also be considered
here. Users spending a few dollars for an IoT device may not feel
motivated to drive to their nearest recycling facility to responsibly
dispose of the device8. Storing unsupported IoT devices in the home
for future disposal can also be dangerous; coin-cell batteries can be
deadly if ingested, and other batteries may leak and cause damage.
As discussed in Section 7.3, for recycling to work, IoT vendors need
to be held accountable not only for the production of long-lasting
devices but also for their proper disposal.

4 LONGEVITY AND DURABILITY IN IOT
DEVICE SOFTWARE

To make progress towards increasing IoT device longevity, we must
first understand where in the IoT device lifecycle longevity may be
unnecessarily limited. We begin by drawing a distinction between
longevity and durability [21, 25], and then review how obsolescence
plays a role in each of the stages of the IoT lifecycle.

Longevity refers to the period during which a device is useful
from the time it is sold until it is disposed of or replaced. Note
that “usefulness” is a largely subjective factor that is dependent on
the end-user of the device [22]. These subjective factors include
perceived product characteristics, situational influence, and con-
sumer characteristics. For example, consumers may purchase a new
smartphone every few years to benefit from the newest features
despite owning a fully functional device – these replacements can
occur while the product is well within its working lifetime [27].
Situational influence, such as the emergence of new technologies
or the changing economic landscape, can also impact a device’s
longevity. Lastly, consumer demographics, such as age, income,
and location, can influence how consumers perceive and use IoT
devices, which can impact the device’s lifespan.

Durability, on the other hand, is the intended period for which
the device was designed to be functional, as specified by the device’s
designers and engineers. Factors driving durability tend to be more
objective than those seen in longevity (e.g., type and quality of ma-
terials used, manufacturing process, expected wear and tear of the
device, etc.), and such factors are driven by consumer requirements
and expectations.

To summarize, longevity is largely impacted by consumer-oriented
subjective factors, while durability is impacted by product-oriented

8For cheap devices, fuel costs for transporting the device to a recycling facility may
exceed the production cost of the device.

objective factors. There is a significant overlap between subjective
and objective factors: for example, product requirements are ob-
jective factors; however, product requirements are derived from
the largely subjective needs of consumers. Furthermore, the ob-
jective factors that impact device durability directly impact device
longevity: if a device is not durable, the useful lifetime of a device
is significantly reduced.

The literature uses the terms longevity and durability to describe
products holistically [22, 27]; however, in the context of device soft-
ware specifically, longevity, and durability also play a role. When
discussing software, longevity refers to the software’s usefulness,
which depends on the features it offers and how those features are
presented to the consumer. For instance, a printer compatible only
with the AirPrint protocol would be useful solely to users with
AirPrint-capable devices. Should users switch to devices lacking
AirPrint support, the subjective value of the printer would diminish
(despite the printer not changing whatsoever). Thus, we believe that
to ensure the product remains useful for an extended period, the
software for that product must be able to evolve to meet consumer
needs.

The durability of software relies on its correctness. In essence,
any software bugs undermine its correctness and, consequently, its
durability. A subset of these bugs would be security-related, such as
software vulnerabilities, thus making software security an objective
factor that directly impacts software durability.

4.1 Obsolescence and the IoT Lifecycle
This section presents the IoT device lifecycle, as shown in Figure 2,
with an emphasis on various degrees of obsolescence. We begin
by discussing device inception (Stage 0), and initial deployment
by a first-party vendor (Stage 1). Then, we consider the various
stages that occur after support has ended: programmed obsoles-
cence (Stage 2) which will eventually lead to software degradation
(Stage 3). Finally, we reach the end of life for an IoT device, when
the hardware can no longer sustain device functionality (Stage 4).

Stage 0: Design
The creation of an IoT device beginswith the first-party vendor. This
vendor is responsible for designing the device, including its intended
function and the hardware and software required tomake it perform
that function. At this stage, whether explicitly or implicitly, critical
decisions are made about the device’s longevity and durability.
For instance, a vendor may decide an IoT device should have a
lifetime of 5 years, and thus be engineered to have at least 5 years
of durability under normal usage [56]. These decisions directly
impact the overall durability of the device; however, just because a
device may be designed with durability in mind does not imply it
will be useful for the intended service lifetime.

A lack of consideration for long-term software updates impacts
device longevity. The vendor must therefore decide whether the
device will receive software updates, and if so, select or build their
own update infrastructure. The IoT industry to date has offered
many examples of software updates being an afterthought, leading
to insecure, incomplete, or ad-hoc choices for distributing updates.
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Stage 4:
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Stage 1: Supported Lifecycle
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Figure 2: An IoT device’s lifetime represented as an abstract timeline. From device inception, the first period 𝑡 represents the
end of software support from the first-party vendor, and 𝑟 represents the point in time when a lack of software updates causes
a degradation in device functionality. We propose adding a transition period where an IoT device can detect obsolescence, and
then transition to a third-party development model.

Empirically, the velocity with which new devices are shipped ap-
pears to take priority over the design of a sound software update
architecture [11].

Finally, a critical decision that the vendor must make is what
happens to the IoT device once it is no longer supported. Murakami
et al. [52] refer to this decision as planned or programmed obsoles-
cence. If the vendor has considered this scenario, they can inform
consumers of the device’s end-of-life date or provide a path for
continued use. We augment the terminology of Murakami et al. to
include negligent obsolescence: when a vendor avoids making this
decision entirely, leading to the inevitable reduction of the device’s
lifespan.

Stage 1: Deployment, Supported Lifecycle
The IoT device is designed and ready for release, at this point the
device will be deployed by an end-user and brought online. From
now until the end of support any bug fixes, patches, and features, are
delivered through the first-party vendor. This stage will continue
on for the supported lifespan of the device, or until the vendor
loses the ability, motivation, or ceases to exist. The vendor may
have a predetermined timespan for software support (e.g., 5 years),
or the vendor may have a paid model for receiving updates. The
service life from the previous stage should be how long the device
is supported before various types of obsolescence set in.

Throughout this supported lifecycle, various forms of relative
obsolescence may occur. Relative obsolescence refers to the disuse of
a functional product, which may occur due to several factors [22].
Subjective factors are going to determine if a device will enter
relative obsolescence. From a software perspective, this can be
seen as the integrations and software features supported by the
IoT device: if a consumer has an IoT device that does not support
Android integrations, and the consumer migrates to an Android-
only ecosystem, then the device will technically be functional but
not useful to the consumer.

Stage 2: Unsupported, Programmed Obsolescence
Eventually, the firmware that runs the device will become unsup-
ported. In Figure 2, this is shown as marker 𝑡 , which represents the
end of first-party support from the first-party vendor (e.g., through
the factors in Section 2.2). This is where choices made in Stage

0 become relevant: what will happen next for the device? If no
consideration of the device’s software afterlife was made during
the device’s initial design, there is a chance the device won’t make
it past stage 3 (i.e., due to negligent obsolescence). The device may
retain some of its original functionality; however, any lingering
vulnerabilities may be left unpatched for an undetermined amount
of time.

A recent example of this is monitor-io, an IoT device for monitor-
ing the quality of home Internet connections. When the monitor-io
device maker closed its doors it provided its users with a standalone
firmware image that will allow their devices to keep functioning in
the absence of the vendor’s hosted services [38]. While this option
will extend the lifespan of the device, it is unclear who (if any-
one) is now responsible for maintaining and supporting monitor-io
devices.

Another recent example is Amazon deciding in April 2023 to
remotely disable their line of Halo fitness trackers in July 2023,
encouraging users to recycle their devices [59]. Here, the fitness
trackers will not experience any software degradation as explained
below since they will no longer be functional in any way.

Note that the term “programmed obsolescence” can be used to de-
scribe multiple ways that software can lead to device obsolescence.
Programmed obsolescence is most commonly used to refer to inten-
tionally writing software that limits device functionality [24, 68].
Instances of this can be created by vendors by pushing a software
update that disables features, slows down device performance, or
by making the device unusable [51].

Another form of programmed obsolescence arises from external
factors. If an IoT device relies on external services for any function-
ality and the service introduces a disruptive change to its API or
stops working, this represents a distinct type of programmed obso-
lescence. To maintain clarity we refer to this type of programmed
obsolescence as software degradation. In these instances, it is not
the intentional inclusion of life-limiting features by the original
device vendor, but rather an external dependency that knowingly or
unknowingly impairs functionality. These environmental changes,
despite being external to a device and the device’s software, impact
software durability.
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Stage 3: Software Degradation
With the onset of time, the device will continue to work with the
latest firmware build that was installed. Depending on the evolu-
tion of the protocols and standards that the IoT device depends on,
the device may retain some level of functionality so long as the
various layers of the environment remain compatible. We show this
in Figure 2 as the period between 𝑡 and 𝑟 , and note that this period
may not be linear. An unsupported IoT device may continue to
work for several years after becoming unsupported. Several forms
of software degradation can occur during this stage, as we explain
in Section 5.2. For example, the IoT device may not support the
required cipher suites to connect to newer TLS endpoints [11], caus-
ing failures in remote data retrieval. Another example is the Y2K38
bug (expected on January 19, 2038) that will affect devices that still
use a 32-bit integer to track the number of elapsed seconds since the
epoch [29]. This will cause time-based errors and inconsistencies
on devices that have not migrated to a 64-bit integer for storing the
time. The devices that do not retain their original purpose (despite
having functional hardware) will likely be thrown out, contributing
to an ever-growing e-waste problem.

Stage 4: Hardware End of Life

Eventually, physical hardware will degrade to a point where the
device can no longer physically function. Flash memory will wear
out after too many write cycles, and electronic components will
degrade beyond their tolerances. At this point, the hardware can
no longer serve the end user, and at this point, the device will turn
into e-waste. Ideally, if the device was originally designed with
durability in mind, the hardware deterioration will occur after the
device’s expected service lifespan. Once the hardware has reached
this stage, it can be interpreted as absolute obsolescence [22].

Once device hardware no longer functions, the next path it takes
is dependent on the economicmodel it is created in. As we discuss in
Section 7.2, in a traditional linear economy once hardware reaches
its end of life it will be disposed of. This is the most common path
IoT devices take, a total loss scenario where none of the resources
inside the device are re-purposed (see the challenges outlined in
Section 3.6), and new devices are made from our planet’s finite
resources. This is contrasted by a circular economy, where efforts
will bemade to repair broken devices and recover preciousmaterials
to produce new devices. By embracing circular economy principles
for IoT devices, we can not only reduce waste and environmental
impact but also create a more sustainable and efficient system. The
end-of-life of one device can become the starting point for another,
creating a closed loop of resource use that benefits both consumers
and the planet.

5 TOWARDS IOT DEVICE LONGEVITY
In this section, we compare historical advances in computing with
IoT devices to better understand the unique challenges faced by the
IoT industry. We examine the factors that allow for long-lasting
systems in a general sense, taking examples from computing devices
that date back nearly half a century. We use these factors to identify
the main limiting factor of IoT device lifespans: the internet, along

with the inherent complexity and points of failure that internet-
connected devices have to contend with.

5.1 What Makes a Long-lasting System?
The problem of longevity may stand directly in the face of IoT;
however, there are several past examples of computer hardware that
have withstood the test of time. Some of the first home computers
from 40+ years ago such as the VIC-20, Apple II, and Amiga (among
many others) still function today. Many collectors and enthusiasts
keep these older machines running. We believe it is valuable to
unpack some of the objective aspects that have contributed to their
long lifespan.

Starting at the lowest level, these older devices have simple
and modular hardware made from commodity parts. Replacing a
faulty chip with a working one is straightforward, as the internal
hardware of these older systems relies heavily on socket-mounted
integrated circuits. While hardware is not the primary concern of
our IoT solution, we concur that hardware repairability is crucial
for the durability of any device [25].

At higher levels, another key difference is that these devices were
not heavily reliant on the Internet for bootstrapping the operating
system, or for installing applications. The norm for these machines
was physical copies of the software, not ephemeral software dis-
tribution via app store. These machines were largely standalone
in functionality with any internet functionality being a secondary
feature.

5.2 The “I” in IoT Stands for Impermanence
Device complexity is a limiting factor of device longevity. Simple
and minimal designs for both software and hardware are favorable
when it comes to building reliable and long-lasting devices. One of
the major limiting factors to IoT device longevity is the fundamental
feature that sets IoT apart: the Internet.

Software has become progressively more network-dependent
with the advent of external vendor APIs and services, and this ex-
ternal dependency poses a problem; as external services roll out
new changes and features, breaking changes become a common
occurrence. Even following all the best practices regarding han-
dling backward compatibility, at some point, legacy APIs will be
deprecated and removed from production deployments. This even-
tual deprecation of APIs has become part of the standard software
development lifecycle and tends to not be disruptive as long as the
consumers of these APIs keep their client code up-to-date.

The “I” in IoT is therefore a problem: we can create physically-
durable things, but dependence on the internet inherently reduces
software durability. Consider the following hypothetical IoT sprin-
kler: it supports programmable irrigation schedules and can retrieve
precipitation forecasts from a public weather API. The sprinkler
communicates with a client application on a smartphone through
the vendor’s cloud infrastructure. Over time:

• The vendor can no longer afford to run their cloud infras-
tructure, so they shut it down. App access to the sprinkler
ceases to function, but users can still program the sprinkler
by using the touchscreen interface on the device.

• The weather API updates their endpoints to be TLS-only.
The sprinkler’s limited TLS support does not have the root
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CA certificate for the weather API, so connections to the
API cannot be authenticated (but data can still be retrieved
insecurely).

• The weather API updates to version 2 and deprecates version
1’s endpoint. The sprinkler, unaware of the change, is no
longer able to determine if it will rain in the near future.

• The hard-coded network time protocol (NTP) service used by
the sprinkler to determine the current time goes offline. The
sprinkler’s internal clock slowly drifts, causing irrigation to
begin at the wrong time. The user can manually reset the
time but needs to do so every month.

Note that the failure modes listed above were all caused by ex-
ternal, internet-based dependencies changing or going away. The
example highlights how even well-intended changes (i.e., support-
ing a secure TLS transport) are difficult to anticipate and support
perpetually9 without software updates.

To cope with the ever-changing nature of the internet and all the
building blocks needed securely interact with it, firmware updates
are a requirement for these devices. A firmware update infras-
tructure inherently adds new points of failure on all the external
internet-connected dependencies, and if any building block in the
stack has a breaking change, the entire stack can fail, hinting at the
need for a robust, fault-tolerant update infrastructure.

5.3 Inspiration from Previous Paradigm Shifts
Considering the unique challenges of IoT, no existing research tool
or industrial effort offers a direct solution to the longevity problem.
However, the longevity challenges faced by IoT are not unique. A
similar set of challenges plagued early personal computers10 in the
1970s and 1980s. During this period, computers did not have general-
purpose operating systems, instead using hardware-specific operat-
ing systems created by the manufacturer. For instance, computers
made by Commodore could not run Apple’s operating system, and
IBM computers could not run Commodore’s. The heterogeneity
was mainly due to a lack of standardization between computers,
operating systems, and hardware. In the following decades, general-
purpose computers emerged, and operating systems became usable
as long as they had support from the underlying hardware archi-
tecture. This transition led to a clear separation of responsibilities
between the hardware creator and the operating system developer,
which is something that IoT should aspire to.

We believe a general-purpose operating system for IoT is un-
likely to see the same degree of adoption as e.g., MicrosoftWindows
or Linux due to the massive hardware heterogeneity in IoT. Existing
IoT operating systems such as Contiki [26], RIOT [6], Tock [47],
among many others tend to support a narrow range of micro-
controllers and hardware, with no cross-compatibility between
OSes [31]. Applications built for any one of these IoT operating
systems need to be largely rewritten to run on another OS.

Another paradigm shift occurred more recently with Android,
the open-source smartphone operating system. Android was de-
signed to allow smartphone manufacturers to include their propri-
etary components and hardware support while offering a virtual

9Consider that not only is the root CA certificate required, but it also needs to be
replaced when it expires.
10The early days of personal computers that included operating systems.

machine runtime environment for user-space applications. Develop-
ers can target one of Android’s SDK versions and have confidence
that their app will run on any Android phone (with heterogeneous
hardware) that supports that version. This separation enables the
creation of Android applications in a write-once-run-everywhere
model.

The paradigm shift with Android is a partially attractive solution
for IoT. Namely, the architectural movement that abstracts away
hardware-specific details enables developers to write applications
that target a standardized runtime. Android partially mitigates our
concern with the first-party vendor being a point of failure: the
OS for specific devices is built and distributed by the first-party
vendor11, but applications for Android can come from Google’s
play store or any third-party app store the user wishes to use. If the
first-party vendor of an Android device stops updating the OS, this
does not prevent applications from being updated so long as the
applications remain compatible with the SDK compatibility level
of the Android runtime on the device.

The concept of longevity in the context of Android extends be-
yond the domain of first-party vendors. Community-driven projects,
such as LineageOS [20], have emerged within the Android commu-
nity with the objective of extending software support to Android
devices that are no longer officially maintained. This is achieved
through the collaborative efforts of open-source developers who
create customized versions of Android, allowing users to install
them on unsupported devices via an over-the-wire (OTW) update,
thereby revitalizing their functionality. The ability for users to un-
lock their Android devices and replace the operating system is a
key factor facilitating this project’s success. For example, releases
of Android 11 have been ported to many phones from 2014 by the
LineageOS community [20].

Onemajor obstacle in applying this approach to IoT devices is the
lack of standardization for flashing firmware; no universal approach
currently exists for users to connect and install the firmware using
traditional OTW methods. Indeed, some IoT vendors conceal, make
inaccessible, or disable hardware serial interfaces to prevent unoffi-
cial firmware flashing. While Android phones require some type of
USB port, IoT devices do not have such a requirement. For these
IoT devices, the only firmware re-flashing option is an over-the-air
(OTA) updates, which, as previously mentioned in Section 2.1, does
not allow for end-users to control device software, and is limited to
the first-party vendor.

Additionally, even if a standard technical mechanism for flash-
ing IoT firmware in an over-the-wire fashion emerged, there are
practical challenges with having users access to the IoT device to
perform an OTW update. This is especially important when IoT
devices are installed inside appliances or walls, making it difficult
for users to access the device to perform the update. Therefore, it
becomes imperative to explore alternative solutions that do not rely
exclusively on user involvement for re-flashing the device firmware.
Giving users such an option is beneficial, but it should not be the
only solution.

11The first-party vendor of the Android device itself, e.g., Samsung.
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6 A NEW PARADIGM FOR IOT DEVICE
LONGEVITY

The only way the Internet of Things can continue to evolve and be
maintainable for long periods of time is to eliminate the long-term
maintenance burden on a single entity, allowing for the respon-
sibility of maintenance to be securely delegated to new entities.
Specifically, our proposal involves clearly denoting the components
and software that the first-party vendor is responsible, for and ex-
pecting that vendor to eventually disappear. If architected correctly,
we believe an IoT device built with these principles can remain
operational for the designed lifetime of the hardware.

6.1 Addressing the Maintenance Burden
Under our model, the first-party vendor is initially responsible
for all layers of the device, as shown in Figure 3. The first-party
vendor needs to develop the hardware along with some primitives
that would be implemented for most firmware designs: a hardware
abstraction layer (HAL), any proprietary firmware needed to enable
hardware functionality, and some basic primitives for a microkernel-
inspired OS [6, 44]. As shown in Figure 3, this would correspond to
the middle portions of the operating system stack shown in blue.
These layers can effectively contain all the first-party vendor’s
IP, any proprietary components and/or components that require
proprietary tooling will be contained within the microkernel.

Building application logic using natively-compiled code nega-
tively impacts modularity as discussed in Section 3.5, therefore,
we propose a shift towards a generic execution environment that
is agnostic of the underlying device architecture. IoT devices that
require special compilers and tooling will ultimately mean that
future maintainers have an additional burden to build and distrib-
ute binaries for these devices. Therefore, we envision a platform-
independent runtime for all application logic, libraries, and abstrac-
tions beyond the microkernel. Additionally, we propose that the
platform-independent runtime expose a standard set of APIs for
interacting with the underlying device hardware. This is somewhat
similar to the Android model discussed in Section 5.3, with one
major change being a microkernel design. Android uses the mono-
lithic Linux kernel, which not only increases the trusted computing
base (TCB) but also increases the likelihood of bugs in the kernel.
By reducing the size of the software provided by the vendor, we are
effectively minimizing the need for any first-party updates beyond
the first-party support period.

One shortcoming of this approach is the exclusive reliance on
the first-party vendor’s capability to provide updates to natively
compiled code, represented by the blue components in Figure 3.
Unfortunately, potential solutions to address this issue appear im-
practical and non-viable. For example, it seems unlikely that a
vendor (even if compelled to) would release their kernel and other
intellectual property publicly for other maintainers, as discussed in
Section 3.3. To overcome this challenge, we suggest a compromise
by implementing a microkernel architecture, reducing the amount
of first-party code in the TCB. This minimizes complexity and the
kernel’s attack surface while abstracting functionality into platform-
independent components. During the period of first-party vendor
support, any bugs in the microkernel or proprietary firmware can

Heterogeneous Hardware

App 1 App 2 ... App N

Peripheral Access Control Update Monitor

Peripheral Abstraction Layer

Platform Independent Runtime

Microkernel Primitives Proprietary Firmware

HAL

nth party

1st party

Figure 3: Our proposed development model splits respon-
sibility between multiple parties. The creator of the device
is responsible for creating the device’s hardware and imple-
menting a minimal OS and runtime. Platform-independent
code can be created for multiple devices without proprietary
tooling.

be addressed, but we cannot assume that all vendors will engage in
providing consistent initial support for all IoT devices.

Our envisioned platform-independent runtime would expose a
set of standard APIs for peripheral access such as universal asyn-
chronous receiver / transmitter (UART), serial peripheral interface
(SPI), and flash storage. For the networking stack, we propose any
proprietary firmware to be included in the microkernel, and stan-
dard abstractions for interacting with network devices be exposed
to applications via the platform-independent runtime.

Microkernel. In our model, the first-party vendor is accountable
for the microkernel and runtime components of the operating sys-
tem. We deliberately select a microkernel design to keep the trusted
computing base (TCB) of the OS small and minimize complexity. A
common drawback of microkernel designs is additional overhead
due to a large amount of message passing and context switching
compared to monolithic kernels [44]; however, IoT deployment
verticals are typically not high-performance, therefore this appears
to be a reasonable trade-off.

Even though the microkernel design can reduce the number of
bugs and their impact on the rest of the device, it is important to
note that bugs can (and will) still occur. To address this, we propose
that during the typical deployment timeline of IoT devices, when
the first-party vendor actively maintains the device (e.g., Stage 1,
Section 4.1), any major bugs in the microkernel or runtime should
be resolved within the period when the first-party vendor solely
maintains the device. Ideally, only a few lingering bugs would exist
in the device after the first-party support period ends, and these
bugs will not be high severity. If a high-severity bug is found in
the kernel after the vendor support period has ended — which
we believe to be less likely due to the microkernel’s reduced size,
responsibility, and complexity — the first-party vendor will need
to fix and update the kernel. If the first-party vendor is no longer
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available, the device will need to be reverse engineered so that
a new microkernel/HAL can be written from scratch for it, and
flashed over the wire directly to the device.

Platform Independent Runtime. The platform-independent run-
time enables applications, libraries, and device abstractions to exe-
cute in a user-space environment, without relying on any platform-
specific code. This design choice solves the issues highlighted in
Section 3.5: future developers will no longer be restricted by the
custom compiler and tooling infrastructure or proprietary compil-
ers that require licensing. While developers must still understand
the underlying hardware, the runtime abstraction allows critical
libraries to follow a write-once-run-anywhere model. This is espe-
cially important for third-party maintainers.

Regarding the choice of runtime, we have not yet settled on the
ideal candidate; however, there is one particular runtime that stands
out as an attractive option; WebAssembly is a portable binary-code
format originally designed for execution within web browsers using
a virtual machine. Over time, WebAssembly has expanded beyond
the browser, especially with the introduction of the WebAssembly
System Interface [3] (WASI), which enables access to lower-level
OS and hardware features. The emergence of the lightweight We-
bAssembly Micro Runtime (WAMR) [4], optimized for embedded
devices further supports the viability of WebAssembly for our pur-
poses.

By leveragingWebAssembly (and by extensionWASI andWAMR),
we can explore the potential advantages this runtime in our overall
architecture. However, it is essential to conduct further research to
determine the feasibility and compatibility of this approach in prac-
tice. For example, while there have been some feasibility studies on
the use of WebAssembly on embedded devices [48, 53, 70], larger
scale studies covering more heterogeneous hardware are needed to
identify any shortcomings with the platform-independent runtime,
the standardized API for interacting with device peripherals, and
with the separation and modularity of our OS design. Ensuring
that this design is feasible on different classes of IoT devices [10] is
crucial for its success.

One limitation of the platform-independent runtime as envi-
sioned is its complexity. While our approach reduces the amount
of complexity in the TCB through the use of a microkernel, some
of that complexity cannot be avoided, and must be moved else-
where on the stack; in this case, that complexity is moved to the
platform-independent runtime. If any severe vulnerabilities are
found in the runtime, in most cases only a first-party vendor will
be able to provide a patch. However, in cases where manufacturers
have an open-source development system and tooling as described
in Sections 3.3 and 3.5, an open-source community could provide
updates to the platform-independent runtime. To support this, ven-
dors should be encouraged to adopt proven open-source runtime
implementations. In the case of WebAssembly, WAMR appears to
be a good candidate as it is one of the main open-source reference
implementations of an embedded WebAssembly runtime.

6.2 Detecting First-Party Vendor Failure
We now discuss strategies for enabling IoT devices to autonomously
decide if their first-party vendor no longer provides support. This

Table 1: Proposed vendor-liveliness heuristics that can be
autonomously evaluated by an IoT device to test if a first-
party vendor is still supporting a device. A static heuristic
has no external dependency, a dynamic heuristic depends on
a dynamic check on an external dependency, and a hybrid
heuristic uses a combination of static and dynamic checks.

Heuristic Name Type Example

Relative time Static 5 years from deployment
Fixed time Static On January 1, 2030
Heartbeat Dynamic Check first-party API
DNS Dynamic Check first-party DNS record
Open collective Dynamic Check central device authority
Relative SLA Hybrid If 3 years since last update

is particularly useful as it does not require the device owner to ac-
tively check if their (potentially dozens of) IoT devices are actively
supported. IoT devices can use this knowledge to determine when
they can transition to another support channel as described in Sec-
tion 6.3. This connects to Stage 2 and Stage 3 of our model: instead
of an unsupported device running progressively more outdated
software, it can decide when to transition and switch to actively
maintained software to avoid suffering from software degradation.

In our model, the vendor in charge sets liveliness metrics for the
IoT device to detect if it is currently being supported by the vendor
without any explicit notification or manual checking required from
the user. Thesemetrics ensure that the device canmake independent
decisions about ongoing support.

The specific vendor-liveliness heuristics will depend on the use
case of the IoT device. A list of potential heuristics and examples
is given in Table 1. For example, if a vendor expects to support
the device for 2 years, they can use a static heuristic such as a
timestamp stating the last day of support, allowing a device with a
reasonably accurate clock to determine if it is within the support
period.

For checks that depend on external resources, dynamic heuris-
tics can be used. Dynamic heuristics rely on the device’s inherent
connectivity. For example, the device can check for a DNS record
belonging to the first-party vendor, if the vendor no longer exists,
these DNS records may no longer be available.

When considered individually, each heuristic may not provide
accurate results, thereby resulting in false positives (i.e., the conclu-
sion that a support channel is no longer available). To address this
limitation, we propose the combination of multiple heuristics, em-
ploying both static and dynamic checks, to enhance their reliability.
By utilizing redundant sets of heuristics that draw from different
sources, we can mitigate potential false positives that arise with any
given heuristic. For instance, while a static temporal-based heuris-
tic can be undermined by an error in or by spoofing the device’s
internal clock, the addition of a dynamic heuristic, such as periodic
checks to a first-party service, can counteract this risk by ensuring
both heuristics evaluate simultaneously. The layering of multiple
heuristics enhances the overall reliability of the heuristic system.

Finally, we also suggest a fail-safe manual intervention mech-
anism for end users. Ultimately, users should have the ability to
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control the firmware that runs on their devices, allowing a secure
mechanism for users to control what firmware repositories a device
can access is another type of transition method that we suggest.

6.3 Vendor Agility
Once a device has identified through some heuristic or measure
that it is no longer supported by its current maintainer, a secure
transition to a different support channel must take place. Fortu-
nately, there already exist technical mechanisms to accomplish this,
so there is no need to reinvent the wheel. The transition can be
done through the use of software update repositories, as is common
on modern operating systems. The OS maintains a list of the cur-
rent update sources, which serve metadata including timestamps
and version numbers, and when new versions of the software are
available, they are downloaded and verified through the provided
download sources. Later, users can switch to a different repository
(e.g., one serving beta versions of software, or the same software
hosted elsewhere) by modifying the repository URIs.

Repository-based update schemes with multiple stakeholders
have been previously proposed for the automotive sector (c.f., Up-
tane [41]). Uptane relies on a central metadata repository that is
responsible for tracking and verifying the authenticity of firmware
updates. Metadata for firmware updates is signed by the first-party
vendor, or a trusted third-party vendor. While Uptane was not
originally designed for our proposed model where we assume the
first-party vendor is a point of failure, it provides a promising start-
ing point for implementation.

We are effectively envisioning a model where IoT devices no
longer permanently belong to the walled gardens of their manu-
facturers. Instead, software update sources, including security core
functionality are distributed from one of many possible sources,
enabling a more robust protection against single points of failure.
Once the first-party vendor is no longer available, the device can
switch (ideally seamlessly) to another source and extend its software
support period. One advantage here is that it should be possible for
new software update sources to be added through software updates,
ensuring a long-lasting product support period.

Note that not all third-partymaintainers are open-source providers.
When it comes to securing IoT devices, transitioning to an open-
source third party may not align with the specific goals of the device
deployment. Our model provides the flexibility to switch to a new
third-party vendor, whether they offer company-based support or
come from the open-source community, depending on the threat
model and intended use case of the IoT device.

6.4 Transition Security
In our design, addressing the challenge of long-term deployment
models necessitates consideration of both transition security and
the longevity of cryptographic algorithms. As mentioned in Sec-
tion 2.1, the use of cryptography plays a key role in ensuring the
integrity and confidentiality of software updates. However, many
state-of-the-art cryptographic algorithms have not demonstrated
longevity beyond a 20-year lifespan [43]. For this new paradigm to
be effective for long-term IoT deployments, addressing this issue is
critical.

One of the primary solutions to overcoming outdated and/or vul-
nerable cryptographic implementations is through cryptographic
agility. In our proposed design, cryptographic agility would be sup-
ported through updates to librarieswithin the platform-independent
runtime, separated from the microkernel. This approach ensures
that these libraries are not limited to a specific vendor’s implemen-
tation. By decoupling the cryptographic libraries from the firmware
and encapsulating them as modular packages we can enable inde-
pendent updates to be made to these libraries — the entire device
firmware does not need to be rebuilt solely to incorporate a fix for
a single package. This modular approach empowers IoT devices to
automatically and when needed update the cryptographic libraries,
eliminating the dependency on vendors to release patched versions
and preventing devices from becoming stagnant while awaiting
such updates.

Stagnant device firmware. Another security concern is that sev-
eral issues can prevent IoT devices from performing updates, thus
causing devices to miss critical firmware updates that are needed to
retain compatibility. Perhaps they are deployed within a network
that blocks all outbound communications, or they were shut down
and set aside for a decade. These devices, with the onset of time,
will likely end up with some degree of software degradation due to
the lack of rolling updates. If and when these devices re-connect to
the internet, there may be enough breaking changes and software
degradation that prevents these devices from performing updates,
as the levels of software degradation would prevent the underly-
ing protocols responsible for ensuring confidentiality and integrity
would no longer function.

In such scenarios, the inclusion of a fail-safe manual intervention
mechanism becomes essential to ensure their protection. End users
will likely always need a secure method to directly connect to an
IoT device, granting them control over the enabled software reposi-
tories within the device. Moreover, they should have the ability to
manually update the device to the latest available firmware, thereby
enabling it to operate on newer software versions that remain com-
patible with the surrounding environment. While the design and
implementation of this fail-safe mechanism lie beyond the scope
of this paper, it is worth considering firmware update schemes for
IoT that leverage the partial offloading of resource-intensive tasks
to a trusted local device, such as a smartphone. Notably, UpKit [45]
presents a promising candidate that aligns with this model and
merits further exploration.

Trusting third-parties. Additionally, there are other security con-
siderations to take into account involving where transitioned soft-
ware originates from. Pre-transition IoT devices (Stage 1) have a
centralized source of firmware that is trusted as it originates from
the first-party vendor. Once a device transitions to third-party sup-
port repositories (Stage 2) the root of trust becomes more difficult
to establish. It is unclear whether there should now be two roots of
trust, a single one for the new vendor, or a new root constructed
from some cryptographic signature over both entity’s signing keys.
In any case, the device must always be able to detect whether an
update originates from an untrusted party. Determining whether
an update from a trusted party is malicious (e.g., due to insider
threat compromise of signing keys) is out of scope.
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One potential solution is a centralized third-party firmware dis-
tribution service specifically created for IoT devices. This service
will be trusted by IoT devices and will need a trust anchor to be
maintained on the devices from inception. However, this design has
some drawbacks, such as the need for static trust anchors and the
risk of key compromise [57]. Ultimately, a third-party centralized
authority will allow for the better overall security of IoT devices12.
This centralized model shares similarities with how UEFI-based
systems distribute and install firmware updates, such as using the
Linux Vendor Firmware Service for distribution and UEFI firmware
capsules for installation [49, 65]. Nevertheless, this approach also
introduces new points of failure.

An alternative solution to the challenges posed by the centralized
third party is full decentralization. IoT devices can be configured
with an arbitrary number of repositories that are not managed or
governed by a single organization, thereby mitigating the risk of a
single point of failure. Additionally, a decentralized approach could
provide more flexibility and autonomy to IoT device manufacturers
and users, as they would have greater control over the firmware
update process and could choose to fetch updates from a variety of
sources. However, decentralization on its own is not a panacea.

Transitioning from a first-party to a third-party source for model
updates introduces the potential for new security vulnerabilities,
such as those arising from open-source supply chains. Historical
cases have shown malicious code being injected into open-source
packages and contributions [17, 23], leading to significant security
breaches. To address these risks, strict code vetting, authentication
mechanisms, and continuous monitoring are essential to ensure
the integrity and security of third-party contributions.

Trusted computing. Including trusted hardware like TrustZone or
SGX can serve as a hardware root of trust for an IoT device. Depend-
ing on an IoT device’s threat model, leveraging trusted computing
technologies would be useful for isolating critical pieces of func-
tionality to ensure confidentiality and integrity. However, trusted
computing technologies have thus far been unable to demonstrate
long-term resistance to vulnerabilities [14, 16, 30], making them
unsuitable for our longevity goals. Without a hardware root of trust,
devices may have to rely on software-only solutions, possibly with
human confirmation of signature or key validation.

Additionally, first-party vendors could employ trusted comput-
ing technologies in a pervasive manner, which runs counter to
the goal of our design. Trusted computing technology and other
technology protection mechanisms have been employed to ensure
vendor lock-in, which negatively affects consumers’ right to repair.
We discuss this issue further in Section 7.1.

User choice. To ensure a positive user experience, we propose
granting users the ability to make choices regarding their device’s
software sources. In a post-transition state, the device would be
initially configured to trust a predefined set of central known third-
party sources. This configuration allows the device to maintain the
security and integrity of its software. However, we recognize the
importance of user freedom and acknowledge that some users may

12Assuming the authority has the policies, resources, and procedures to prevent mali-
cious actors from distributing firmware

prefer to change and configure the software sources according to
their preferences.

7 DISCUSSION
Wenow switch our focus to discussing how the effort to increase IoT
device longevity through software updates fits within the broader
conversations related to the right to repair and environmental ac-
tivism.

7.1 Right to Repair
The Right to Repairmovement aims to create legislation that enables
consumers to repair andmodify their products by removing barriers
imposed by manufacturers to prevent unauthorized repairs [56, 63].
These barriers force consumers to seek repairs from the first-party
manufacturer or a subsidiary (authorized by the manufacturer).
Examples include manufacturers restricting access to tools and
methods required to perform repairs, adding software locks (e.g.,
through encryption, trusted platform modules, remote attestation)
that prevent unauthorized repairs, or hindering device functionality
if an unauthorized repair has occurred.

While the broad scope of the right-to-repair movement cap-
tures many practices across many industries, we are focused on
the unique challenges IoT devices pose for its success: IoT devices
use one-off firmware, running on one-off hardware, and as a result,
there is typically little support outside the manufacturer’s walled
garden. In turn, this results in devices that are nearly impossible
to modify/repair by consumers, instead requiring a community of
highly-specialized enthusiasts.

The reasoning for this turns out to be simple: the IoT devices are
created in response to consumer demand, and consumers are not de-
manding. Instead, the demands are low-cost, small, and easy-to-use
devices that connect to the internet and perform some convenient
tasks. To create small and convenient IoT devices, hardware is de-
signed specifically for the use case of a particular device. Chips,
flash, and other peripherals are soldered directly to a printed cir-
cuit board. Adding modularity (e.g., replaceable chips installed in
sockets) increases overall device size.

In addition, the devices’ enclosure can be difficult to open —
impeding access to the device internals — as there was no intention
of allowing repairability. Compromises need to be made during the
design process to fit a product to consumer demands, and in IoT,
these compromises are repairability and vendor dependence. We
believe addressing these concerns is possible through hardware
that is engineered to be repairable which we discuss further in
Section 7.3, but it would likely drive up prices.

Manufacturers of products with embedded firmware rely on
copyright law to prevent their code from being reverse-engineered
and copied [63]. They tend to oppose the right-to-repair legisla-
tion arguing that if such consumer protections were in place, they
would be unable to protect the intellectual property stored inside
the devices. Despite this, a report on the right to repair from the
Federal Trade Commission (FTC) noted that current copyright law
already allows the owner of a device to copy a computer program
for maintenance or repair. Additionally, consumers are permitted
to circumvent technological protection measures to diagnose, main-
tain, or repair certain products [15, 19, 66]. Certain very specific
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situations permit the circumvention of technological protection
measures (TPMs) to restore functionality, as demonstrated in legally
acquired software for medical devices, video games, network de-
vices, and various other specific contexts. These instances allow
consumers, end users, and other authorized individuals to bypass
TPMs, as outlined in the relevant sections of the United States Code
of Federal Regulations [15, 66].

From a legal perspective, this issue presents considerable am-
biguity. In the past, when devices did not incorporate embedded
firmware that necessitated users to agree to a license for the device
to operate (commonly known as a “shrink wrap license” [63]), the
concept of device ownership was relatively straightforward. Either
a consumer-owned a device, or they did not. However, with the ad-
vent of IoT devices, the question of what precisely a consumer owns
becomes uncertain. Although a consumer may purchase an IoT de-
vice and physically possess its hardware, the extent of ownership
in relation to the device remains unclear.

While it may be argued that individuals have purchased the
physical hardware of the device, the extent to which they are able
to control and use the device is limited. This limitation arises due
to the fact that, unlike general-purpose computers, IoT devices
are not designed to enable users to run any software they choose.
Rather, IoT devices are typically equipped with disposable software
that is required for the device to function. Unlike general-purpose
computers, IoT devices are designed to run specific software and
are reliant on first-party vendors for functionality and security.

One common counterargument to this view is that individu-
als could hypothetically flash their own software onto the device,
thereby taking full control of it. As previously discussed, achieving
this level of control is not a simple task. This process typically
involves specialized equipment and technical expertise, as well as a
significant investment of time and effort. The bar to entry to make
this hypothetical scenario possible is far too high.

The limitations on control over IoT devices are intentional, not
accidental. Manufacturers aim to create walled garden ecosystems
to maintain dominance and profitability. In terms of ownership,
possessing the physical device grants physical access but does not
provide control over the firmware, unlike general-purpose comput-
ers.

7.2 Towards a Circular IoT Economy
A circular economy is an economic model that seeks to maximize
the use of resources and minimize waste by keeping materials in
use for as long as possible. In a circular economy, resources are
used in a closed loop, where waste is minimized through recycling,
reusing, and remanufacturing, rather than disposing of them af-
ter a single use [13]. The Internet of Things is far from a circular
economy, it is instead a linear economy. In a linear economy, raw
materials are extracted from the environment, processed into prod-
ucts, and eventually disposed of as waste after their use is no longer
needed [13]. This approach assumes that resources are unlimited
and the resulting waste from the process can be easily absorbed by
the environment. The linear economy operates on a throwaway
culture where products are designed to be used once (and for a
short period) and then discarded, resulting in a constant need for
new resources and a growing amount of waste. This system leads

to the depletion of natural resources, pollution, and other negative
environmental impacts.

The manufacturing industry has been criticized for promoting
the illusion of environmentally conscious decisions rather than
implementing solutions that would actually help the environment.
Companies like Coca-Cola, for instance, have been accused of green-
washing, which is when an organization spends more time and
money on marketing itself as environmentally friendly than on
actually minimizing its environmental impact [12, 55]. In fact, as of
2021, the Coca-Cola company ranked as the top global polluter of
plastics for four consecutive years, emphasizing the significant con-
tribution of its products to the plastic pollution crisis [12]. Instead of
taking responsibility and implementing changes (e.g., moving away
from plastic bottles) Coca-Cola’s “green” marketing campaigns try
to push the responsibility toward consumers and municipalities,
arguing that the company can’t be held responsible for what people
do with their product after purchase.

In the face of the challenge of ensuring the longevity of IoT
devices, vendors may resort to greenwashing, and, similar to Coca-
Cola [12, 55], attempt to blame consumers and municipalities for
the lack of high device recovery and recycling success. To avoid
this, a paradigm shift is needed. While some vendors may initially
struggle with the proposed changes, a legislative intervention that
takes into account all stakeholders is likely necessary to achieve
meaningful change. This shift must address the entire lifecycle of
IoT devices, including their manufacture, usage, and disposal. In
this way, vendors can be held accountable for their environmental
impact, and consumers will have access to accurate information
that allows them to make informed purchasing decisions. Compre-
hensive legislation can level the playing field for all stakeholders,
promoting sustainable practices and ensuring the longevity of the
IoT industry.

7.3 Sustainable Design
Designing for sustainability can help IoT devices last longer, even
after they become obsolete. Stead et al. [60] propose a sustainable
design philosophy for IoT devices that aims to create devices that
last a lifetime by being modular and repairable. According to this
philosophy, if any part of the device breaks, it should be easily
repairable by the end user, with minimal waste generated from the
repair process. This philosophy applies to the embedded hardware
board inside the device, meaning that the device (e.g., a toaster)
should still function even if the microcontroller responsible for IoT
functionality fails. To achieve this, the design should be modular,
and a standard interface between the microcontroller board and the
underlying device hardware should be established, eliminating the
need for one-off implementations of IoT boards for heterogeneous
products. This approach ensures that end-users can easily replace
the microcontroller board, thus extending the life of the device.

Sustainable designs align with our proposed model, as it pro-
motes the development of modular and sustainable firmware for
embedded controllers over a long period. This would allow for the
creation of standardized boards that can enable IoT functionality in
various devices. For instance, the smart toaster [60] developed by
Stead et al. could be sold without the embedded board responsible
for enabling its IoT features. Consumers could then upgrade their
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toasters easily by purchasing the board separately if they desire
the functionality. The boards could be designed to be generic, with
the ability to recognize the type of device they are controlling and
subsequently identify the appropriate firmware packages required
for the device.

By designing IoT devices to make them sustainable, manufac-
turers can reduce electronic waste, reduce the need for frequent
upgrades, and ultimately provide greater value to their customers.
However, for this to become a widespread practice, manufacturers
must adopt a comprehensive approach to sustainable design, with
consideration given to all stages of the product lifecycle, from de-
sign to end-of-life disposal. Such an approach can only be achieved
through a concerted effort by all stakeholders, including manufac-
turers, policymakers, and consumers.

7.4 Motivating Vendor Adoption
Perhaps one of the largest drawbacks of our proposed design is
the challenge of motivating vendor adoption. From a revenue per-
spective, vendors may be hesitant to spend time and resources on
keeping legacy devices up to date. Moreover, if these legacy devices
do not generate any direct revenue stream (e.g., subscription-based
devices, see Section 3.1), there may be little motivation for vendors
to implement a long-term support system. Instead, vendors prefer
to deprecate old devices, forcing consumers to purchase new re-
placements that have all the latest features and security patches.
The idea of extending the lifespan of devices may conflict with a
vendor’s profits, so it is unclear what motivation there would be
for vendors to take this new paradigm seriously.

Vendor image and public perception are potential driving fac-
tors for this: consumers are increasingly concerned regarding the
sustainability and longevity of IoT ecosystems, especially given
that more and more devices are internet-connected and supposedly
designed for long-term deployments [1]. For IoT devices to last long
term, they should be usable long term. A vendor’s overall image
may be tarnished if they continually deprecate old products, which
may not inspire confidence from future buyers [54].

To address the growing issue of e-waste from IoT devices [34], an
idea has been proposed to implement e-waste recycling taxes on all
electronic devices that require recycling [28]. This would increase
product costs and generate funding for proper recycling, while also
encouraging consumers to invest in longer-lasting products. If these
recycling taxes increase substantially, more consumers will become
more conscious about the longevity of the electronic devices that
they depend on.

In summary, vendors are unlikely to adopt this design voluntarily.
Rather, incentives in the form of policies need to be implemented
to make it more cost-effective for them to comply or to provide
other benefits for doing so.

8 CONCLUSION
Keeping IoT devices secure and functional over multiple decades is
undoubtedly difficult. The reliance on Internet-based dependencies
makes IoT device software degrade over time. Without proper long-
term vendor support, these devices are likely to end up in landfills
even if the hardware remains functional. This paper has argued
that security plays an important role in the IoT device lifecycle and

that the evolution of security protocols and algorithms necessitates
a robust and decentralized software update infrastructure for IoT.
We’ve proposed an initial software stack for future devices as well as
a set of technical mechanisms through which devices can securely
switch to a new support channel once their current vendor becomes
unavailable. We hope this paper serves as an initial step toward
the goal of long-lasting IoT devices, and ultimately toward the
sustainable use of the Internet of Things.
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