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ABSTRACT
This study investigates the realm of machine learning for the classi-
fication of different fire types using NASA’s FIRMS MODIS satellite
data for the Mediterranean basin. Concentrating on the Mediter-
ranean basin and utilizing data spanning from 2019 to 2021 for
model training, XGBoost and Random Forest models were subse-
quently validated for the 2022 data. The findings distinctly illustrate
XGBoost’s superior predictive precision as compared to Random
Forest by showcasing an impressive overall F1 score surpassing
95% and 84% macro F1 score across various fire types. This study
emphasizes the prospect of machine learning to improve worldwide
wildfire monitoring and response by providing exact, real-time fire
type forecasts.
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1 INTRODUCTION
In the face of intensifying forest fire occurrences, the accurate mon-
itoring of these events has become critical. While forest fires are
integral to our ecosystems, their growing harmfulness poses seri-
ous threats to infrastructure, human settlements, and biodiversity.
Beyond immediate devastation, wildfires can disrupt water bodies
and have far-reaching consequences on the environment, as noted
in ’Wildfire’s Impact on Our Environment’ [1]. Furthermore, the
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hazardous pollutants in wildfire smoke, as underlined by WHO,
have a direct influence on public health [2]. NASA’s Doug Morton
anticipates a rise in forest fires across the US by 2050 [3], empha-
sizing the need for effective fire monitoring. Recently, due to the
aforementioned reasons, there has been a major upsurge in the
number of studies that are being conducted by the research commu-
nity to highlight this serious issue. Authors in [4, 5] have provided
a detailed review regarding forest fires and some machine learning
based algorithms that can be used for their detection. Similarly,
Gözde et al., [6] used a dataset1 that consists of fires in a national
park in northern Portugal between January 2000 and December
2003 to compare the performance of various machine learning al-
gorithms.

Amid severe challenges posed by forest fires, systems like
NASA’s Fire Information for ResourceManagement System (FIRMS)
have revolutionized disaster management. Yet, accurately predict-
ing fire types remains crucial for assessing threats and aiding res-
cue services. This paper highlights the importance of predicting
fire types observed by FIRMS MODIS satellites by using novel
machine-learning methods. By addressing gaps in fire type predic-
tion, we seek to enhance global disaster response. Through real-
world scenarios, including volcano-related and non-vegetation fires,
we showcase machine learning’s pivotal role in fire type predic-
tion. Notably, to the best of our knowledge, this dataset has never
been used to perform multiclass classification of different fire types,
therefore our work adds substantial novelty to this field of study.

2 REMOTE SENSING AND FIRE MONITORING
The Earth Observing System (EOS), a comprehensive program that
uses a range of methodologies to study the events on our planet,
is a component of NASA’s devotion to monitoring the planet. The
extraterrestrial Firewatch system, exemplified by the Moderate
Resolution Imaging Spectroradiometer (MODIS), is crucial to this
effort. As articulated by the Yale Center for Environmental Law
& Policy (2021), MODIS stands as an expansive program facili-
tated by sensors onboard two satellites, collectively ensuring com-
plete daily coverage of the Earth. This comprehensive coverage is
achieved by leveraging an array of resolutions—spectral, spatial,
and temporal—thus enabling a nuanced understanding of the envi-
ronment. Notably, the MODIS sensor operates on both the Terra
and Aqua satellites, affording the availability of imagery in both
morning (Terra) and afternoon (Aqua) timeslots for any specific
location. Even during nighttime, data remains accessible in the
thermal range of the electromagnetic spectrum [7].

1https://archive.ics.uci.edu/dataset/162/forest+fires
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Table 1: NASA FIRMS MCD14DL-NRT Attributes [8].

Attribute Short Description

Latitude Latitude
Longitude Longitude
Brightness Brightness temperature 21 (Kelvin)
Scan Along Scan pixel size
Track Along Track pixel size
Acq_Date Acquisition Date
Acq_Time Acquisition Time
Satellite Satellite
Confidence Confidence (0-100%)
Version Version (Collection and source)
Bright_T31 Brightness temperature 31 (Kelvin)
FRP Fire Radiative Power (MW - megawatts)
Type* Inferred hot spot type:

0 = presumed vegetation fire
1 = active volcano
2 = other static land source
3 = offshore

DayNight Day or Night

Figure 1: Map of the Mediterranean Basin as defined in this research.

Accessing the wealth of fire-related data collected by the MODIS
system is facilitated through NASA’s FIRMS API. This interface
provides a conduit for acquiring fire data in the form of comma-
separated values (CSV), including an array of features encompassing
crucial information. Some of the attributes included can be seen in
Table 1.

Unfortunately, the attribute ‘Type’, as seen in the table is un-
available through the Near Real Time (NRT) API service offered by
NASA FIRMS. This attribute, however, is included in the data from
the previous years. Researchers interested in accessing and utilizing
this observed dataset2 for different years can do so effortlessly. It is
worth mentioning here that as of late August 2023, users are now

required to create requests on the NASA FIRMS to access the data
used for this study.

2.1 Mediterranean Basin
Upon an initial survey of the global distribution of fires on the
world map, one promptly observes the prevalence of numerous fire
outbreaks spanning the planet, thus yielding extensive data for pre-
dictive purposes. Researchers have conducted studies of wildfires
and human behavior in regions such as Australia and the USA. Re-
gions in Europe have received less attention, despite facing the same
issues, according to the study "Island Vulnerability and Resilience

2https://firms.modaps.eosdis.nasa.gov/country
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Table 2: gives provides descriptive statistics on the Mediterranean Basin dataset we filtered earlier from the NASA FIMRS
MODIS dataset for the years 2019 to 2021.

latitude longitude scan track acq_time bright_t31 frp

Min 27.647 -18.133 1.000 1.000 0.000 265.100 0.000
Mean 38.518 17.990 1.555 1.193 1182.082 300.348 54.061
Std 3.544 16.076 0.783 0.240 509.545 11.042 179.534
Q1 36.690 5.460 1.000 1.000 953.000 292.500 9.100

Median 37.484 17.150 1.200 1.100 1113.000 299.000 16.700
Q3 41.348 34.987 1.700 1.300 1257.000 308.100 38.700
Max 46.760 43.580 4.800 2.000 2359.000 400.100 11275.800

to Wildfires: A Case Study of Corsica" [9]. Consequently, a strategic
decision was made to confine our research to a specific geographic
area—the Mediterranean basin. This region exhibits a multitude of
fire incidents attributed to its diverse biomes and the consistent
fluctuations in temperature and overall climate. It’s worth noting
that the Mediterranean basin holds various definitions, and for
the purpose of this study, we adopted the description provided
on Wikipedia3. Subsequently, we proceeded to cartographically
represent this area by using MapBox.

Considering the worrisome shifts in climate patterns observed in
recent times, such as the escalation of global temperatures and an
upsurge in severe wildfires, we acknowledged the necessity to ori-
ent our research toward contemporary climate information. Given
the swiftly evolving nature of these developments, we confined our
dataset to encompass solely the data from the preceding four years,
excluding the ongoing year of 2023. The time span of 2019 to 2021
served as the foundational training dataset for the construction of
our predictive framework, enabling it to derive insights from the
most up-to-date trends in temperature oscillations. Subsequently,
the complete data from the year 2022 was employed to evaluate and
validate the models’ performance in generating precise projections
concerning forthcoming wildfire risks based on the latest climate
tendencies.

2.2 Descriptive Statistics
As the attributes ’brightness’ and ’bright-t31’ captured the identical
variable using distinct methodologies and presented data in uniform
units (Kelvin), we opted to evaluate the correlation between these at-
tributes within the dataset to prevent the use of redundant features
during model training. The assessment of correlation was executed
using the ’Pearson’ technique, and the corresponding outcomes are
provided in Figure 2 via a heatmap. The visual representation illus-
trates a moderate positive correlation between the two attributes.
Additionally, it becomes apparent that the attribute ’brightness’ dis-
plays a more pronounced correlation with the ’frp’ attribute (Fire
Radiation Power, mw). Consequently, to eliminate redundancy, the
’brightness’ attribute is excluded from consideration. Furthermore,
attributes such as ’confidence’, ’acq_date’, ’acq_time’, ’satellite’,
’version’, and ’daynight’ were also omitted from the dataset due to
either missing values or their dependency on other columns, thus
rendering them redundant.

3https://en.wikipedia.org/wiki/Mediterranean_Basin

The Pearson coefficient, also called the Pearson correlation coef-
ficient, measures the strength of a linear relationship between two
variables (X and Y) plotted on a scatter plot. With values ranging
from -1 to +1, it gauges resemblance to a straight line: +1 signi-
fies a perfect positive relationship, -1 indicates a perfect negative
relationship, and 0 means no correlation between the variables [10].

Conversely, the attributes ’scan’ and ’track’ exhibit a significant
correlation with a coefficient of 0.98. This observation prompted us
to delve deeper into the possibility of redundancy between these
attributes. Upon closer examination, however, it becomes evident
that these attributes do not represent the same variables. According
to information provided on the NASA Earthdata website, the ’scan’
value signifies the spatial resolution in the East-West direction of
the scan, while the ’track’ value signifies the North-South spatial
resolution of the scan. Notably, the pixel size is not uniformly 1
km across the scan track; it is larger than 1 km at the "Eastern"
and "Western" edges of the scan, being 1 km only along the nadir,
or the exact vertical from the satellite. Consequently, the reported
values for ’scan’ and ’track’ accurately depict the genuine spatial
resolution of the scanned pixel. This clarifies that the ’track’ and
’scan’ attributes encapsulate distinct facets of spatial resolution and
do not possess redundancy. In the next section, we provide details
about model training.

3 MACHINE LEARNING SOLUTIONS
Random forest is an extremely popular decision trees based ma-
chine learning algorithm trademarked by Leo Breiman [11] which
it known for its ease of use and flexibility and can handles both
classification and regression problems. Given that our aim involves
executing multiclass classification across our four fire types (0 =
presumed vegetation fire, 1 = active volcano, 2 = other static land
sources, and 3 = offshore), this algorithm aligns well with our objec-
tives. Another machine learning algorithm that also harnesses the
ability of decision trees is eXtreme Gradient Boosting (XGBoost)
algorithm [12]. It leverages distributed gradient-boosted decision
trees (GBDT) and finds common applications in solving regression,
classification, and ranking problems.

The confusion matrix map was used to evaluate the performance
of the employed model using values of TP, TN, FP, and FN metrics.
Accuracy, recall, precision, and F1 scores are computed according
to eqs. 1–7. All the results are tabulated in Tables 3 to 5. In this
study, the F1 Score is assessed using three methods: Micro, Macro,
and Weighted. The micro method involves calculating metrics on
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Figure 2: Correlation matrix for the Mediterranean Basin dataset from 2019 - 2021.

a global scale by tallying total TP, FN, and FP. The macro method
calculates metrics for each label and determines their unweighted
mean. Meanwhile, the weighted method computes metrics for each
label and derives their weighted average based on support values
[13].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(4)

𝑀𝑖𝑐𝑟𝑜 𝐹1 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 0.5 (𝐹𝑃 + 𝐹𝑁 ) (5)

𝑀𝑎𝑐𝑟𝑜 𝐹1 𝑆𝑐𝑜𝑟𝑒 =
∑𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑖=1 𝐹1 𝑆𝑐𝑜𝑟𝑒𝑖
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

(6)

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠∑︁

𝑖=1
𝑤𝑖𝐹1 𝑆𝑐𝑜𝑟𝑒𝑖 (7)

Embarking with Random Forest, the training process was exe-
cuted using Python within a Google Colab4 session, utilizing the
training dataset (comprising 98% of the original dataset’s size). Un-
fortunately, the validation dataset (constituting 2% of the original
dataset’s size) could not be used for Random Forest in order to im-
plement early stopping, as the library does not support this feature.

The results show high accuracy of themodel with a global (micro)
and weighted F1 score of more than 94%. These metrics show the
model remains accurate when considering the dataset as a whole.
However, the F1 score of above 67% across the classes (Macro) is
not very exciting. Even though, it is a reasonable good result, we
can see that the model has a small problem with recall at 57% (Table
3).

As you can see in Table 3, the Random Forest model seems to
be struggling with class 3. This is due to the imbalanced nature of

4https://colab.google/
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Table 3: XGBoost and Random Forest various performance score.

Metrics Random Forest XGBoost

Accuracy 0.946 0.956
Micro F1 Score 0.946 0.956
Macro F1 Score 0.667 0.771
Weighted F1 Score 0.942 0.954
Precision 1.000 1.000
Recall 0.571 0.714
Class 0 0.969 0.974
Class 1 0.727 0.833
Class 2 0.801 0.842
Class 3 0.169 0.435

the dataset. Class 3 contributes to a much smaller proportion of
the dataset than the other classes. Though model inaccuracies may
seem minor, it’s vital to remember our study’s ultimate goal i.e.,
we can’t afford to make errors as they could impact lives. Hence,
we must prioritize improving our outcomes to the fullest extent
possible. To address this, we consider the potential of gradient
boosting as stated by Chamandeep et al. [14].

The results for the XGBoost model not only demonstrate signifi-
cantly higher overall accuracy but also illustrate impressive perfor-
mance across individual classes. The Macro F1 score surpasses 77%,
indicating excellent accuracy across the classes. Furthermore, the
F1 scores for each class, as depicted in Table 3, reveal nearly perfect
accuracy for class 0, excellent accuracy for classes 1 and 2, and satis-
factory accuracy for class 3, respectively. As observed in the work of
Abdualgalil et al., [15], where they successfully employed XGBoost
for COVID-19 infection prediction using clinical data, XGBoost
continues to demonstrate its excellent performance in comparison
to other machine learning algorithms. The test results clearly show
that XGBoost greatly outperforms the Random Forest model, no-
tably in class 3. It surpasses Random Forest’s Macro F1 Score by
an impressive 16%, illustrating outstanding overall performance on
the Mediterranean Basin dataset.

4 CONCLUSION
This study demonstrates the remarkable efficacy of machine learn-
ing algorithms for the classification of different wildfire types by
using satellite data to bolster global disaster response capabilities.
Through the evaluation of XGBoost and Random Forest models on
NASA FIRMS MODIS data for the Mediterranean basin, our results
highlight the exceptional performance of XGBoost — achieving an
overall F1 score exceeding 95% and a macro F1 score of 84% across
various fire types. This research underscores the potential of ma-
chine learning techniques to extract valuable insights from Earth
observation data, enabling a more proactive approach to fire mon-
itoring and intervention. While this study showcases significant
achievements, our future endeavors, including the experimentation
with state-of-the-art technologies like BERT, to explore the realm of
deep learning models to enhance predictive accuracy even further.
By extending these accomplishments, our ongoing work involves
the development of deep neural networks to improve performance
on varied and imbalanced wildfire data. By improving real-time fire

prediction, the goal is to enhance early warnings and protect at-risk
communities globally, investigate the potential of more advanced
and complex machine learning algorithms for proactive wildfire
monitoring, henceforth, increasing life-saving efforts.
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