
A Generalized. Partial Pass
Block Sort

A. BAYES
IBM Australia Limited, St. Kilda, Victoria, Australia

The design of a partial pass block sort with arbitrary range
of key and number of work files is described. The design is a
generalization of the Partial Pass Column Sort by Ashenhurst
and the Amphisbaenic Sort by Nagler. The power of the sort is
tabulated for various sizes of input file and number of work
files. Consideration is given to the problem of combining a
block sort with internal sorts, and to the best use of direct
access storage devices.

KEY WORDS AND PHRASES: block sort, partial pass sort, direct access de-
vices, column sorb chaining, reverse chaining, sort, amphisbaenlc

CR CATEGORIES: 5.31

Background and Def in i t i ons

In this paper the word file is used to mean a serial file
such as a magnetic tape file or a sequential file on disk.

The range r of a key is defined to be the number of dis-
tinct values tha t the key can take. The definition does not
preclude character keys, though for ease of presentation
further discussion will be restricted to contiguous numeric
keys.

A block sort is a classification of records according to the
value of a key associated with each record. A column sort
is a particular form of block sort in which an r-way classifi-
cation depends on the r possible values of a character (or
column) in the key.

The amphisbaenic sort is a particular arrangement of a
repeated column sort employing partial passes. Given
b + 1 files the key is converted to a base b number. The
sort proceeds as a sequence of classifications on a digit
position, allocating digits to the available output files
according to the rank of the file index. A simple merge of
the last b subblocks occurs after a sort on the lowest
column. The files are written forward and read backward
without intervening rewind. The block chosen at each step
is the one with the lowest numbered keys. Appendix 2
shows an amphisbaenic sort. Regarding the key as a base 4
nmnber, there is a classification on the high order digit
fi'om file 0, followed by a classification on the low order

I1, !
J. E M E R Y , Editor

digit and a merge to file 0 for each of the subblocks. The
amphisbaenic sort is described in more detail in Nagler
[3] and in Iverson [2 p. 195].

The Ashenhurst partial pass column sort gives the effect
of a base b key with fewer than the b + 1 files required by
an amphisbaenic sort. An example, shown in Appendix 1,
is identical in structure to the example in Iverson [2 p. 191]
but differs in key values because it assumes backward
reading of files.

A Generalized Block Sort

I n the above sorts, a pass of any block classifies the
keys into b subblocks by, as far as possible, dividing the
range of the keys in the block into b equal parts. We m a y
take this as the prime principle to design a sort of keys in
any range. A PL/1 program has been written to design a
sort on this principle. I t has as input data the key range for
the file and the total number of working files. The files
and keys are identified by O-origin integers. File 0 is the
input and output file. I f the classification of a block not on
file 0 produces at least one subblock containing only one
key, then one such subblock is writ ten to file O. This re-

TABLE I

(1) (2) (3) (4) (~) (6) (7)
Files Keys Pile Passes Theory Power Revised

b ~- 1 r Reversals p Passes Power

3 10 15 4.00 3.82 1.78 1.97
100 149 7.22 7.16 1.89 1.99

1000 1661 1 0 . 6 4 10.45 1.91 2.00
10000 15461 1 3 . 9 1 13.80 1.94 1.99

4 10 11 2.80 2.77 2.28 2.84
100 119 4.98 4.87 2.52 2.86

1000 1181 7.09 6.95 2.65 2.87
10000 11639 9.18 9.05 2.72 2.89

5 10 11 2.60 2.41 2.43 3.16
100 109 4.24 4.07 2.95 3.40

1000 1137 5.80 5.74 3.28 3.97
10000 12185 7.67 7.40 3.32 3.71

6 10 11 2.50 2.23 2.51 3.16
100 111 3.80 3.66 , 3.35 4.62

1000 1051 5.27 5.10 3.70 4.26
10000 11301 6.74 6.52 3.91 4.62

10 100 101 3.10 3.00 4.40 6.9
1000 1019 4.20 4.03 5.16 7.0

10000 10163 5.28 5.07 5.68 7.1
20 100 101 2.81 2.51 5.14 10.0

1000 1039 3.66 3.30 6.58 10.0
10000 10039 4.28 4.08 8.55 12.6

Volume 11 / Number 7 / July, 1968 Communications of the ACM 491

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363397.363494&domain=pdf&date_stamp=1968-07-01

duces superfluous movement of subblocks. Appendixes
1 and 2 show typical output. The program designs an
amphisbaenie sort when r is a power of b.

Table I summarizes I~sults obtained by running the
program for various values of r and b. Columns 1--4 are
taken directly from the program output. Colulnn 5 tabu-
lates]ogb (r) --1- (b - 1) /b . This function represents an
ideal minimum number of passes, since the first, term is the
minimum number of passes required to classify the keys,
as defined by information theory, and the second term is
the minimum number of passes to merge the subbloeks
onto the output file. A comparison of columns 4 and 5
gives a measure of the efficiency of the sort. Column 6 is
the power of the sort r**(1/p) where p is the number of
passes in column 4.

Tables are available [5, p. 76] showing the power of
various merge sorting techniques. The best merge sort for
six files or less is the polyphase sort, which is about equal
to the block sort with r = 1000. With more than six files
the cascade sort is usually better than the block sort for
practical values of r.

Using a Block Sort

In a conventional merge sort the first pass of the data is a
succession of internal sorts to produce strings of sorted
keys. In succeeding passes the strings are repeatedly
merged to produce a single string on the output file. When
using a block sort the internal sort is performed last. The
subblocks produced by the block sort must be small
enough for an internal sort. Within this restriction they
should, for maximum efficiency, be as large as possible. For
files of nearly uniform density over the range of the key,
the size of the subblocks is almost constant and can be
chosen appropriately.

A variation is to perform the internal sort during the last
pass to the output file. This last pass is now combined with
the internal sort pass and may be ignored when calculating
the power of the block sort. The revised power is shown in
column 7 of Table I. For six or fewer files it is higher than
any of the merge sorts, and this must make the block sort
competitive in some situations. A disadvantage is tha t the
coding for the internal sort and the block sort must be in
core simultaneously, or repeatedly overlaid.

A modification of the technique will handle files whose
density is not uniform. Repeated b-way block sorts are
performed on the data, and a count is kept of the keys in
each subblock. Whenever a sufficiently small subblock is
produced, it is internally sorted and written to the output
file.

The block sort can make good use of direct access storage

devices. During a block sort, all the keys from a block are
written to a DASD in sequence. For each subblock, we

keep in core the address of the last member to be written
and a count of the members. Each member as it is classi-
fied and added to the file contains the address of the pre-
vious member of its subblock. This reverse chaining will

permit each subblock to be read independently for further
classification or internal sorting. I t is possible tha t by using
a large number of subblocks per classification, many sorts
would be completed after one classification pass. However,
too m~my subblocks pet' classification increases the total
seek time of the read-write head. [['he opt imum number
will depend on the file to be sorted and on the physical
eharaetcristies of the storage device.

In comparing the block sort with merge sorts generally,
it will be noticed that whereas a merge sort uses a replace-
ment type internal sort which can generate an average
string length of nearly twice the storage area, in a block
sort the blocks must be no larger than the storage area.
This disadvantage to the block sort is more important for
small files of data. In addition, a merge sort will preserve
a sequence of any large portions of the file tha t might al-
ready be in sequence, whereas a column sort would break
these existing sequences down. However, a column sort is
bet ter for sorting a file that has already been sorted on a
minor key, providing this is known in advance by the
program, because the minor key sequences are preserved
while further classifying the data on a major key.

Acknowledgments . I am grateful to the referees for
their comments and suggestions.

R E C E I V E D J A N U A R Y , 1967 ; R E V I S E D I) E C E M B E R , 1967

REFERENCES

1. ASHENHURST, R.L. Sorting and arranging. Theory of switch-
ing, Rep. No. BL/7. Harvard Comput. Lab., Sect. 1, 1953.

2. IVERSON, K. E. A Programming Language. Wiley, New York,
1962.

3. NAGLER, H. Amphisbaenic sorting. J. ACM 6 (Oct. 1959),
459-468.

4. PL/1 : Language specifications. IBM Form No. C28-6571.
5. Sorting techniques. IBS~[Form No. C20-1639.

APPENDIX 1.
N U M B E R O F F I L E S 4
N U ~ I B E R O F K E Y S 10

KEYS 0 TO 9 FROIff FILE

K E Y S 0 T O 2 F R O ~ I F I L E

K E Y 1 F R O ~ [F I L E

K E Y 2 F R O M F I L E

K E Y S 3 T O 5 F R O M F I L E

K E Y 4 F R O ~ I F I L E

K E Y 5 FRO~I F I L E

K E Y S 6 T O 9 FROM: F I L E

K E Y 7 F R O M F I L E

K E Y S 8 T O 9 F R O M F I L E

K E Y 9 F R O M F I L E

N U M B E R O F P A S S E S 2.80
F I L E R E V E R S A L S l I

A s h e n h u r s t Sort

0 0 T O 2 TO F I L E 1
3 T O 5 T O F I L E 2
6 T O 9 TO F I L E 3

1 0 TO F I L E 0
! TO F I L E 2
2 TO F I L E 3

2 TO F I L E 0

3 TO F I L E 0

2 3 TO F I L E 0
4 T O F I L E 1
5 T O F I L E 3

1 TO F I L E 0

3 T O F I L E 0

3 6 TO F I L E 0
7 TO F I L E l
8 TO 9 TO F I L E 2

1 TO FILh] 0

2 8 TO F I L E 0
9 TO FH, E 1

1 TO H L E 0

492 Communica t i ons of the ACM Volume 11 / Number 7 / July , 1968

APPENDIX 2. Amphisbaenic Sort

NUMBER OF FILES 5
NUMBER OF KEYS 16

KEYS 0 TO 15 F R O M F I L E

KEYS 0 TO 3 FROM FILE

KEY] F R O M F I L E

KEY 2 F R O M F I L E

KEY 3 F R O M F I L E

KEYS 4 TO 7 FRO/ i f F I L E

KEY 5 FROM FILE

KEY 6 FROM FILE 3

K E Y 7 F R O M F I L E 4

0 0 TO 3 TO F I L E 1 K E Y S 8 TO n F R O M F I L E 3
4 TO 7 TO F I L E 2
8 TO 11 TO F I L E 3

12 T O 15 TO F I L E 4

1 0 TO FILE 0 KEY 9 FROM FILE 1

1 TO FILE 2 KEY l0 . FROM FILE 2
2 TO FILE 3
3 TO F i L E 4 K E Y 11 F R O M F I L E 4

2 TO FILE 0 KEYS 12 TO 15 FROM FILE 4

3 TO F] LE 0

4 TO FILE 0
KEY 13 FROM FILE 1

2 4 TO F I L E 0
5 TO F I L E 1 K E Y 14 F R O M F I L E 2

6 TO FILE 3 KEY 15 FROM FILE 3
7 TO F I L E 4

NUMBER OF PASSES 2.75
1 TO FILE 0 FILE REVERSALS 17

8
9

I0
11

T O F I L E

T O F I L E

T O F I L E
T O F I L E
T O F I L E
T O F I L E

TO F I L E

T O F I L E

T O F I L E

T O F I L E
T O F I L E
T O F I L E
TO F I L E

TO F I L E

T O F I L E

T O F I L E

A v

Computer Construction of
Project Networks

..... A.C. FISHER, J. S. LIEBMAN, AND G. L. N'EMHAUSER
The Johns Hopkins University,* Baltimore, Maryland

Project networks are used in PERT and CPM. An algorithm is
given for constructing project networks directly from the project
precedence relations. The algorithm creates "dummy" activities
and topologically orders the arcs and nodes. The number of
nodes created is minimal for the given precedence relations.
It has been experimentally programmed in FORTRAN II for the
IBM 7094.

KEY WORDS AND PHRASES: project networks, PERT, CPM, topological
ordering, network construction by computer

CR CATEGORIES: 5.32

I n t r o d u c t i o n

Networks are used in P E R T (Program Evaluation
Review Technique) and CPM (Critical Pa th Method) to
represent precedence relations among various activities in
a project) The directed arcs of the network correspond to

* Department of Operations Research and Industrial Engineering.
10ur discussion of CPM and PERT will, of necessity, be very
brief. A survey with many references is given in [8].

the activities of the project and the nodes to points at
which one or more activities are completed and others
are begun. The network representation of a project satis-
fies the property that : there is a path in the network with
the arc representation (a, . . . , b) if and only if activity a
must be completed before activity b can be begun. The
network does not contain loops since, if activity a precedes
activity b, then activity b cannot precede activity a.

An example of typical precedence relations for a very
small project is shown in Table I. The corresponding proj-
ect network is given in Figure 1. An algebraic representa-
tion of the network in the form of an incidence matrix is
given in Table II .

T A B L E I . PRECEDENCE RELATIONS

Activity Immedlate
Successors

a c , d
b d
C

d

The rows of the incidence matrix correspond to the
nodes and the columns to the arcs. The entries in the
matrix are 0, ::t:: 1; + 1 implies a directed arc from the
node, - 1 a directed arc to the node, an d 0 no connection
between the arc and node.

V o l u m e 11 / N u m b e r 7 / J u l y , 1968 C o m m u n i c a t i o n s o f t h e A C M 493

