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The design of a partial  pass block sort with arbitrary range 
of key and number of work files is described. The design is a 
generalization of the Partial Pass Column Sort by Ashenhurst 
and the Amphisbaenic Sort by Nagler. The power of the sort is 
tabulated for various sizes of input file and number of work 
files. Consideration is given to the problem of combining a 
block sort with internal sorts, and to the best use of direct 
access storage devices. 
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Background and Def in i t i ons  

In  this paper  the word file is used to mean a serial file 
such as a magnetic  tape file or a sequential file on disk. 

The range r of a key is defined to be the number  of dis- 
tinct values tha t  the key can take. The definition does not 
preclude character  keys, though for ease of presentation 
further discussion will be restricted to contiguous numeric 
keys. 

A block sort is a classification of records according to the 
value of a key  associated with each record. A column sort 
is a particular form of block sort in which an r-way classifi- 
cation depends on the r possible values of a character (or 
column) in the key. 

The amphisbaenic sort is a particular arrangement  of a 
repeated column sort employing partial passes. Given 
b + 1 files the key  is converted to a base b number.  The 
sort proceeds as a sequence of classifications on a digit 
position, allocating digits to the available output  files 
according to the rank of the file index. A simple merge of 
the last b subblocks occurs after a sort on the lowest 
column. The files are written forward and read backward 
without intervening rewind. The block chosen at each step 
is the one with the lowest numbered keys. Appendix 2 
shows an amphisbaenic sort. Regarding the key as a base 4 
nmnber, there is a classification on the high order digit 
fi'om file 0, followed by  a classification on the low order 

I1, ! 
J. E M E R Y ,  Editor 

digit and a merge to file 0 for each of the subblocks. The 
amphisbaenic sort is described in more detail in Nagler 
[3] and in Iverson [2 p. 195]. 

The Ashenhurst  partial pass column sort gives the effect 
of a base b key with fewer than the b + 1 files required by 
an amphisbaenic sort. An example, shown in Appendix 1, 
is identical in structure to the example in Iverson [2 p. 191] 
but  differs in key values because it assumes backward 
reading of files. 

A Generalized Block Sort 

I n  the above sorts, a pass of any block classifies the 
keys into b subblocks by, as far as possible, dividing the 
range of the keys in the block into b equal parts.  We m a y  
take this as the prime principle to design a sort of keys in 
any  range. A PL/1 program has been written to design a 
sort  on this principle. I t  has as input  data  the key  range for 
the file and the total  number  of working files. The files 
and keys are identified by  O-origin integers. File 0 is the 
input  and output  file. I f  the classification of a block not on 
file 0 produces at least one subblock containing only one 
key, then one such subblock is writ ten to file O. This re- 

TABLE I 

(1) (2) (3) (4) (~) (6) (7) 
Files Keys Pile Passes Theory Power Revised 

b ~- 1 r Reversals p Passes Power 

3 10 15 4.00 3.82 1.78 1.97 
100 149 7.22 7.16 1.89 1.99 

1000 1661 1 0 . 6 4  10.45 1.91 2.00 
10000 15461 1 3 . 9 1  13.80 1.94 1.99 

4 10 11 2.80 2.77 2.28 2.84 
100 119 4.98 4.87 2.52 2.86 

1000 1181 7.09 6.95 2.65 2.87 
10000 11639 9.18 9.05 2.72 2.89 

5 10 11 2.60 2.41 2.43 3.16 
100 109 4.24 4.07 2.95 3.40 

1000 1137 5.80 5.74 3.28 3.97 
10000 12185 7.67 7.40 3.32 3.71 

6 10 11 2.50 2.23 2.51 3.16 
100 111 3.80 3.66 , 3.35 4.62 

1000 1051 5.27 5.10 3.70 4.26 
10000 11301 6.74 6.52 3.91 4.62 

10 100 101 3.10 3.00 4.40 6.9 
1000 1019 4.20 4.03 5.16 7.0 

10000 10163 5.28 5.07 5.68 7.1 
20 100 101 2.81 2.51 5.14 10.0 

1000 1039 3.66 3.30 6.58 10.0 
10000 10039 4.28 4.08 8.55 12.6 
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duces superfluous movement of subblocks. Appendixes 
1 and 2 show typical output.  The program designs an 
amphisbaenie sort when r is a power of b. 

Table I summarizes I~sults obtained by running the 
program for various values of r and b. Columns 1--4 are 
taken directly from the program output.  Colulnn 5 tabu- 
lates ]ogb (r) --1- (b - 1) /b .  This function represents an 
ideal minimum number of passes, since the first, term is the 
minimum number of passes required to classify the keys, 
as defined by information theory, and the second term is 
the minimum number of passes to merge the subbloeks 
onto the output  file. A comparison of columns 4 and 5 
gives a measure of the efficiency of the sort. Column 6 is 
the power of the sort r**(1/p) where p is the number of 
passes in column 4. 

Tables are available [5, p. 76] showing the power of 
various merge sorting techniques. The best merge sort for 
six files or less is the polyphase sort, which is about equal 
to the block sort with r = 1000. With more than six files 
the cascade sort is usually better  than the block sort for 
practical values of r. 

Using a Block Sort 

In a conventional merge sort the first pass of the data  is a 
succession of internal sorts to produce strings of sorted 
keys. In succeeding passes the strings are repeatedly 
merged to produce a single string on the output  file. When 
using a block sort the internal sort is performed last. The 
subblocks produced by the block sort must be small 
enough for an internal sort. Within this restriction they 
should, for maximum efficiency, be as large as possible. For 
files of nearly uniform density over the range of the key, 
the size of the subblocks is almost constant and can be 
chosen appropriately. 

A variation is to perform the internal sort during the last 
pass to the output  file. This last pass is now combined with 
the internal sort pass and may be ignored when calculating 
the power of the block sort. The  revised power is shown in 
column 7 of Table I. For six or fewer files it is higher than 
any of the merge sorts, and this must make the block sort 
competitive in some situations. A disadvantage is tha t  the 
coding for the internal sort and the block sort must be in 
core simultaneously, or repeatedly overlaid. 

A modification of the technique will handle files whose 
density is not uniform. Repeated b-way block sorts are 
performed on the data, and a count is kept of the keys in 
each subblock. Whenever a sufficiently small subblock is 
produced, it is internally sorted and written to the output  
file. 

The block sort can make good use of direct access storage 

devices. During a block sort, all the keys from a block are 
written to a DASD in sequence. For  each subblock, we 

keep in core the address of the last member to be written 
and a count of the members. Each member as it is classi- 
fied and added to the file contains the address of the pre- 
vious member of its subblock. This reverse chaining will 

permit each subblock to be read independently for further 
classification or internal sorting. I t  is possible tha t  by using 
a large number of subblocks per classification, many  sorts 
would be completed after one classification pass. However, 
too m~my subblocks pet' classification increases the total 
seek time of the read-write head. [['he opt imum number 
will depend on the file to be sorted and on the physical 
eharaetcristies of the storage device. 

In comparing the block sort with merge sorts generally, 
it will be noticed that  whereas a merge sort uses a replace- 
ment type internal sort which can generate an average 
string length of nearly twice the storage area, in a block 
sort the blocks must be no larger than  the storage area. 
This disadvantage to the block sort is more important  for 
small files of data. In addition, a merge sort will preserve 
a sequence of any large portions of the file tha t  might al- 
ready be in sequence, whereas a column sort would break 
these existing sequences down. However, a column sort is 
bet ter  for sorting a file that  has already been sorted on a 
minor key, providing this is known in advance by the 
program, because the minor key sequences are preserved 
while further classifying the data  on a major key. 
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APPENDIX 1. 
N U M B E R  O F  F I L E S  4 
N U ~ I B E R  O F  K E Y S  10 

KEYS 0 TO 9 FROIff FILE 

K E Y S  0 T O  2 F R O ~ I  F I L E  

K E Y  1 F R O ~ [  F I L E  

K E Y  2 F R O M  F I L E  

K E Y S  3 T O  5 F R O M  F I L E  

K E Y  4 F R O ~ I  F I L E  

K E Y  5 FRO~I  F I L E  

K E Y S  6 T O  9 FROM: F I L E  

K E Y  7 F R O M  F I L E  

K E Y S  8 T O  9 F R O M  F I L E  

K E Y  9 F R O M  F I L E  

N U M B E R  O F  P A S S E S  2.80 
F I L E  R E V E R S A L S  l I  

A s h e n h u r s t  Sort 

0 0 T O  2 TO F I L E  1 
3 T O  5 T O  F I L E  2 
6 T O  9 TO F I L E  3 

1 0 TO F I L E  0 
! TO F I L E  2 
2 TO F I L E  3 

2 TO F I L E  0 

3 TO F I L E  0 

2 3 TO F I L E  0 
4 T O  F I L E  1 
5 T O  F I L E  3 

1 TO F I L E  0 

3 T O  F I L E  0 

3 6 TO F I L E  0 
7 TO F I L E  l 
8 TO 9 TO F I L E  2 

1 TO FILh] 0 

2 8 TO F I L E  0 
9 TO FH,  E 1 

1 TO H L E  0 
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APPENDIX 2. Amphisbaenic  Sort 

NUMBER OF FILES 5 
NUMBER OF KEYS 16 

KEYS 0 TO 15 F R O M  F I L E  

KEYS 0 TO 3 FROM FILE 

KEY ] F R O M  F I L E  

KEY 2 F R O M  F I L E  

KEY 3 F R O M  F I L E  

KEYS 4 TO 7 FRO/ i f  F I L E  

KEY 5 FROM FILE 

KEY 6 FROM FILE 3 

K E Y  7 F R O M  F I L E  4 

0 0 TO 3 TO F I L E  1 K E Y S  8 TO n F R O M  F I L E  3 
4 TO 7 TO F I L E  2 
8 TO 11 TO F I L E  3 

12 T O  15 TO F I L E  4 

1 0 TO FILE 0 KEY 9 FROM FILE 1 

1 TO FILE 2 KEY l0 . FROM FILE 2 
2 TO FILE 3 
3 TO F i L E  4 K E Y  11 F R O M  F I L E  4 

2 TO FILE 0 KEYS 12 TO 15 FROM FILE 4 

3 TO F] LE  0 

4 TO FILE 0 
KEY 13 FROM FILE 1 

2 4 TO F I L E  0 
5 TO F I L E  1 K E Y  14 F R O M  F I L E  2 

6 TO FILE 3 KEY 15 FROM FILE 3 
7 TO F I L E  4 

NUMBER OF PASSES 2.75 
1 TO FILE 0 FILE REVERSALS 17 

8 
9 

I0 
11 

T O  F I L E  

T O  F I L E  

T O  F I L E  
T O  F I L E  
T O  F I L E  
T O  F I L E  

TO F I L E  

T O  F I L E  

T O  F I L E  

T O  F I L E  
T O  F I L E  
T O  F I L E  
TO F I L E  

TO F I L E  

T O  F I L E  

T O  F I L E  

A v 

Computer Construction of 
Project Networks 

..... A.C. FISHER, J. S. LIEBMAN, AND G. L. N'EMHAUSER 
The Johns Hopkins University,* Baltimore, Maryland 

Project networks are used in PERT and CPM. An algorithm is 
given for constructing project networks directly from the project 
precedence relations. The algorithm creates "dummy" activities 
and topologically orders the arcs and nodes. The number of 
nodes created is minimal for the given precedence relations. 
It has been experimentally programmed in FORTRAN II for the 
IBM 7094. 

KEY WORDS AND PHRASES: project networks, PERT, CPM, topological 
ordering, network construction by computer 
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I n t r o d u c t i o n  

Networks are used in P E R T  (Program Evaluation 
Review Technique) and CPM (Critical Pa th  Method) to 
represent precedence relations among various activities in 
a project) The directed arcs of the network correspond to 

* Department of Operations Research and Industrial Engineering. 
10ur discussion of CPM and PERT will, of necessity, be very 
brief. A survey with many references is given in [8]. 

the activities of the project and the nodes to points at 
which one or more activities are completed and others 
are begun. The network representation of a project satis- 
fies the property that :  there is a path in the network with 
the arc representation (a, . . .  , b) if and only if activity a 
must be completed before activity b can be begun. The 
network does not contain loops since, if activity a precedes 
activity b, then activity b cannot precede activity a. 

An example of typical precedence relations for a very 
small project is shown in Table I. The corresponding proj- 
ect network is given in Figure 1. An algebraic representa- 
tion of the network in the form of an incidence matrix is 
given in Table II .  

T A B L E  I .  PRECEDENCE RELATIONS 

Activity Immedlate 
Successors 

a c , d  
b d 
C 

d 

The rows of the incidence matrix correspond to the 
nodes and the columns to the arcs. The entries in the 
matrix are 0, ::t:: 1; + 1  implies a directed arc from the 
node, - 1  a directed arc to the node, an d  0 no connection 
between the arc and node. 
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