

ALGORITHM 334 NORMAL RANDOM DEVIATES [G5]

JAMES R. BELL (Recd. 13 Dec. 1965, 29 Nov. 1967, and 23 Jan. 1968)

Stanford Research Institute, Menlo Park, Calif.

KEY WORDS AND PHRASES: normal deviates, normal distribution, random number, random number generator, simulation, probability distribution, frequency distribution, random CR CATEGORIES: 5.5, 5.13

procedure norm (D1, D2);

real D1, D2;

comment This procedure generates pairs of independent normal random deviates with mean zero and standard deviation one. The output parameters D1 and D2 are normally distributed on the interval $(-\infty, +\infty)$. The method is exact even in the tails.

This algorithm is one of a class of normal deviate generators, which we shall call "chi-squared projections" [1, 2]. An algorithm of this class has two stages. The first stage selects a random number L from a χ_2^2 -distribution. The second stage calculates the sine and cosine of a random angle θ . The generated normal deviates are given by $L \sin(\theta)$ and $L \cos(\theta)$.

The two stages can be altered independently. In particular, as better χ_2^2 random generators are developed, they can replace the first stage. (The negative exponential distribution is the same as that of χ_2^2 .)

The fastest exact method previously published is Algorithm 267 [4], which includes a comparison with earlier algorithms. It is a straight chi-squared projection. Our algorithm differs from it by using von Neumann rejection to generate $\sin (\phi)$ and $\cos (\phi)$, $[\phi = 2\theta]$, without generating ϕ explicitly [3]. This significantly enhances speed by eliminating the calls to the sin and \cos functions.

The author wishes to express his gratitude to Professor George Forsythe for his help in developing the algorithm. REFERENCES

- 1. BOX, G., AND MULLER, M. A note on the generation of normal deviates. Ann. Math. Stat. 28, (1958), 610.
- MULLER, M. E. A comparison of methods for generating normal deviates on digital computers. J. ACM, 6 (July 1959), 376-383.
- VON NEUMANN, J. Various techniques used in connection with random digits. In Nat. Bur. of Standards Appl. Math. Ser. 12, 1959, p. 36.
- 4. PIKE, M. C. Algorithm 267, Random Normal Deviate. Comm. ACM, 8 (Oct. 1965), 606.;
- **comment** R is any parameterless procedure returning a random number uniformly distributed on the interval from zero to one. A suitable procedure is given by Algorithm 266, Pseudo-Random Numbers [Comm. ACM, 8 (Oct. 1965), 605] if one chooses a = 0, b = 1, and initializes y to some large odd number, such as y = 13421773.;

begin

real X, Y, XX, YY, S, L;

comment von Neumann rejection for choosing a random angle $\phi = 2\theta$, $\theta = \tan^{-1} (Y/X)$;

 $A: X := R; Y := 2 \times R - 1;$

 $XX := X \uparrow 2; \quad YY := Y \uparrow 2;$

S := XX + YY;

if S > 1 then go to A;

comment chooses L randomly from a χ_2^2 -distribution and normalizes with S;

 $L := sqrt \ (-2 \times ln(R))/S;$ **comment** computes deviates as $L \times sin \ (\phi)$ and $L \times cos \ (\phi);$ $D1 := (XX - YY) \times L;$

 $D2 := 2 \times X \times Y \times L;$ end norm;

REMARK ON ALGORITHM 178 [E4]

- DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM 6 (June 1963), 313]
- [as revised by M. Bell and M. C. Pike, Comm. ACM 9 (Sept. 1966), 684]

R. DE VOGELAERE (Recd. 4 Dec. 1967)

Department of Mathematics and Computer Center, University of California, Berkeley, Calif. 94720

KEY WORDS AND PHRASES: function minimization, search, direct search

CR CATEGORIES: 5.19

The procedure does not exit, as specified, after maxeval (the maximum number of) function evaluations.

The 3 statements eval := eval + 1 should be interchanged with the immediately preceding statement and replaced by a call to the procedure *test eval* defined below. The statement labeled 2 should be deleted.

procedure test eval; if eval < maxeval then eval := eval +1 else begin converge := false; go to EXIT end test eval

REMARK ON ALGORITHM 272

PROCEDURE FOR THE NORMAL DISTRIBUTION FUNCTIONS [S15] [M. D. MacLaren, Comm. ACM 8 (Dec. 1965), 789]

M. D. MACLAREN (Recd. 26 Dec. 1967)

Argonne National Laboratory, Argonne, Ill. 60439

KEY WORDS AND PHRASES: normal distribution function, error function, normal function, normal curve integral CR CATEGORIES: 5.5, 5.12

In [1] Hill and Joyce report that the value produced by Algorithm 272 for the argument a = 0.8 is correct only to 5 decimal places, although the algorithm specifies an accuracy of 2×10^{-8} . Upon checking we have found that the source of this inaccuracy is a typographical error in the section beginning "hegin comment initialize own variables;" The statement initializing C[3] should be changed to "C[3] = .54674530." With this change the published algorithm is, as far as we know, accurate within the specified error limit of 2×10^{-8} .

In the first comment of the algorithm the lower limit of the first integral should be minus infinity and not merely a minus sign.

REFERENCE:

1. HILL, I. D., AND JOYCE, S. A. Remark on algorithm 123. Comm. ACM 10 (June 1967), 377.