
VISOR, UO T Q , and RE3:[, subject to -the restriction
REM < DIVISOR. The value for QUOT ~as then
divided by 2 ~, where lc was an integer chosen randomly
in the interval 0 N lc N 31. The dividend was the:n corn-
puted from equation (9), and the division of D[V[DEzVD
by DIVISOR begun. The resulting quotient and remainder
were compared to the known values, and diagnostic in-
formation was printed in ease of any disagreement. Over 18
million separate tests using several different random num-
ber generators were made of the division algorithm at a rate
of 100,000/rain. The bounds on the difference between the
true and tentative quotients given in eqs. (18) and (19)
were verified, and the algorithm is known to be correct.

5. A System/360 Implementat ion of the Division
Algorithm

To illustrate the coding of the division scheme on an
actual machine, a code sequence is given in Figure 3 which
will perform ,the division algorithm on an IBM System/
360 computer. I t contains one additional test not shown

in Figure 2, if the divisor has a pos:itiw: ~r]thmegic t'epre-
sentation; if D I V I D E N D < M (theft is, the high. o~'der
part of the dividend is zero), thet~ the division process
may be skipped. Because all System/360 :fixed point addi-
tion instructions (as well as the logical os~-instruetion)
change the condition code [2], the quantity 42~ + A
must be computed by :first forlning 4R and testing it for
overflow, and later adding A, which cannot then cause an
additional overflow.

Acknowledgments. The author thanks M. D. McIh'oy
and the referee for several helpful suggestions concern-
ing the presentation of the material.

RECEIVED APRIL, 1967; REVISED DECEMBER, 1967

REFERENCES

1. A multiple precision floating point subroutine package for
System/360. Tech. Memo. No. 18, Stanford Linear Accelerator
Center Comput. Group, Stanford U., Stanford, Cal.

2. IBM System/360 principles of operation. File No. $360-01,
Form A22 6821, IBM.

v

Generating Prime Implicants Via
Ternary Encoding and
Decimal Arithmetic

D. L. DIETMEYER AND J. :R. DULEY
University of Wisconsin, * Madison, Wisconsin

Decimal arithmetic, ternary encoding of cubes, and topological
considerations are used in an algorithm to obtain the extremals
and prime implicants of Boolean functions. The algorithm, which
has been programmed in the FORTRAN language, generally
requires less memory than other minimization procedures, and
treats DON'T CARE terms in an efficient manner.

KEY WORDS AND PHRASES: prime implicants, extremal, switching function,
minimization, cubical complexes, ternary encoding

CR CATEGORIES: 3.24, 6.1

* Department of Electrical Engineering.

~ 0 C o m m u n i c a t i o n s o f t h e ACC~][

Almost all of the machine oriented minimization algo-
rithms proposed reduce to two disjoint parts:the first part
is a process for generating information which includes the
minimum expression of a Boolean function, while the
second part analyzes that information and selects the
minimum expression of the Boolean functions. There are
two ways in which digital computer programs that are de-
signed to execute the algorithms fail. First, most generation
processes create large lists of intermediate information, and
the finite high speed memory of the digital computer is not
capable of storing these large lists. Second, the information
may be in such a complex form that it is not practical to
pay for the computer time needed to extract the mininmm
solution. In the second case, the designer may have to be
satisfied with a solution which is not absolutely minimal.
However, when the computer fails during the generation
process, the problem must be rejected before reaching the
selection stage, a stage which might be completed with
relative ease.

This note attempts to alleviate this more serious prob-
lem through a refined and generalized version of a pro-
eedure pioneered by Urbano-Mueller [1], Harris [2], a n d
Prather [3]. Tile algorithm presented partially integrates
the problems of generation and selection, and is eonstrueted

V o l u m e l I / Number 7 / Ju ly ,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363397.363565&domain=pdf&date_stamp=1968-07-01

to ~vroid Lh~ creation of very large].isis of intermediate in-
formL~Lio~o fhe method does noL, in generM, produce a

mi,umtm~ solution, 'out a minimum solution may be ex-
trae{ed from the results using existing algorithms. In
additiol~, the algorithm developed is a decimM procedure
and uses arithmetic operations throughout instead of the
logical operations which are usually available only in the
machine language of large binary machines.

.... The algorithm is topological in nature and is based on the
fo]lowing properties of the familiar Boolean n-cube which
is used to express a Boolean function of n variables [5, 6].

Property 1. An n-cube contains 2 ~ vertices each of
which has a unique position in the n-cube,

Property 2. Every vertex in an n-cube is adjacent to
n vertices of the n-cube.

Property 3. The distance between any two vertices in
an n-cube must be less than or equal to n.

Property 4. A j-cube that contains vertex V °, may be
formed by combining j (j - - 1)-cubes which contain V ° with
the proper vertex, Vt j. V ° and V~ j are distance j apart.

From basic number system theory any ternary integer
of n trits may be represented as

n--1

[= ~ d i 3 ~, d i = 0 , 1 o r 2 . (1)

Any Boolean term may be represented by the ternary
integer obtained by replacing all variables in the term by
l's, all complements by O's, and missing variables by 2's.
Evaluating the power series of eq. (1) by performing
decimal arithmetic gives the decimal equivalent of any
ternary integer. The subcube A - C D is thus represented by

(1201)a = (46)10.

In brief, the algorithm of this note selects a vertex V °
from the ON-array and analyzes the surrounding cubical
structure in the K-ar ray (oN and DON' T CARE vertices) to
find the prime implicants that cover the selected vertex.
This process is repeated as necessary until each member of
the oN-array has been covered. Let U k denote the set of
vertices tha t are distance k from V °. Each member of U ~ is
denoted by V~.

THEOREM 1. All members of U ~ differ from V ° by a power
of three, i.e. [V° - V~I I = 3~ for n a positive integer.

PROOF. All V~ * must be adjacent to V ° by the definition
of U * and exactly one coordinate position must differ be-
tween the binary representations of the two vertices. Let
the difference occur in the i th position. If V ° =
(dn . . . d ~ " . d~)a and V~ * = (d. . . . d~ . . . dr)a, then

I V ° -- V : [= (0 . . - 0 1 0 . . . 0)a = 3 e-*. Q.E.D.

1, U ~ consists of all V~ s, the adjacent vertices that form
1-cube covers of V °, and U ~ is generated by searching the
K-array for all vertices tha t differ from V ° by a power of
three. If U t contains d members, a d-cube is the largest
possible cover of V ° (Proper ty 2).

Volume 11 / Number 7 / July, 1968

A vector approach is useful in determining the vertices
that complete larger cubes. The d vertices of U ~ may be
used to form d vectors AV~ by subtracting V ° from each
VL

AVe = V¢ ~ - Vo or V~ ~ = V ° + A V ~ . (2)

THEOREM 2. A&ling j AVi's to V 0 complements j co-
ordinates and locates a vertex V1 j which is distance j from V °.

PROOF. AVe is a power of three as a consequence of
eq. (2) and Theorem 1. Thus, adding AVi to V ° can change
only one variable position. Adding one AV~ complements
one variable since it locates an adjacent vertex, V~ ~. Each
AV~ complements a unique variable position since each
AV~ is unique. Thus, if another AV~ is added to the sum,
another variable is complemented and the distance from
V ° is increased by one. By finite induction the theorem
results. Q . E . D .

With the aid of the AV~:'s, all the vertices of the hypo-
thetical d-cube cover of V ° may be located by adding each
of the 2 d possible combinations of the AV~'s to V °. These
vertices form sets U ~ to U '*. After the adjacent vertices are
found by Theorem 1 and the AVi's are calculated, then the
V~'s are placed side by side forming d columns (set U~).
From then on U j+~ is found by applying the following
Generation Rules to U j.

Generation Rules:

(1) The members of the first column of U i+~ are found by adding
AV~ to each member of every column to the right of the first
column in U i.

(2) The members of the second column of Ui+I are found by adding
&V2 to each member of every column to the right of the second
column in U i.

• •

• •

(k) The members of the kth column of Ui+t are found by adding
AV~ to each member of every column to tile right of kth column
in Ui.

This iterative process is self-terminating since each set
has one less column than the last set.

The foregoing vector approach shows only how each
vertex of a hypothetical d-cube may be calculated. When
a vertex in U 2 is calculated, it is known to be a vertex tha t
will complete a 2-cube, but it must be a member of the K-
array before it actually does complete a 2-cube cover of V °.
In general, one or more vertices of the hypothetical d-cube
cover of V ° are not a par t of the K-array and the hypo-
thetical d-cube is not an actual cover of V °. To distinguish
between vertices which complete hypothetical and actual
covers of V °, defined Uc i as the subset of U j which con-
sists of all V~'s tha t complete actual j-cube covers of V °.
U~c contains the remainder of U] or the V~¢'s tha t do not
complete actual j-cube covers of V ° because they them-
selves or other vertices are absent from the K-array.
Members of U~ ¢ are easily recognized by Theorem 3,

Communicat ions of the ACM 521

THEOREM 3. I f a vertex in U ~ is adjacent to j me~zbers o/'
U~ --~ and is a member of the K-array, it is a member of (7~ i,

PROOF. I f V~ j is to form a j -cube cover o[' V °, it mus t be
adjacent to j vertices of set U s-~ by Propert ies 2 and 3, I f
these j adjacent vertices are members of U j--*j ~ and if V / i s
a member of the K-ar ray , then by Proper ty 4, V~ j com-
pletes a j -cube cover of V ° and is a member of U~ ~. Q.E.D.

If, after generating set r; ~'-~ ,5-~ , 5.'~ is found to contain
less t h a n j members, Theorem 3 states t ha t no j -cube exists
and U i need not be generated.

An algorithm for generating the cube(s) tha t cover any
vertex of the o~r-array may be summarized:

Step 1. Select a V ° from the oN-array.
Step 2. Use Theorem 1 to generate U* by searching for vertices
in the K-array which differ from V ° by a power of three.
Step 3. Calculate the set of AVe vectors from eq. 1.
Step 4. Use the AV~ vectors to calculate the next set of vertices
from the known set using the Generation Rules. Those members
of this new set which are contained in the K-array and comply
with Theorem 3 complete and represent cubes that cover V °.
Step 5. If U~ -1 contains less than j vertices, stop generation. If
not, return to Step 4.

One or more of the cubes which cover V ° (implicants)
mus t be included in the min imum expression of the Boolean
function. As a first step in the selection of the cubes which
make up the ul t imate min imum cover, prime implicants
mus t be recognized where a prime implicant is a cube of the
K - a r r a y not included in any other cube of the K-ar ray .
The determinat ion of prime implicants reduces to detect-
ing all uncovered cubes. Proper ty 4 indirectly states tha t
t h e j (j - - 1)-cubes tha t cover V ° are a par t of a hypothet ical
j -cube cover of V °. I f t ha t j -cube actual ly exists as a cover
of V °, then all j (j - 1) -cubes are not pr ime implicants since
they are covered b y the j-cube. I f all cubes so covered are
eliminated from a set of cubes, the cubes remaining when
the generation procedure terminates are prime implicants.
The set of AV~ vectors provides a means of separat ing the
undesirable cubes from the prime implicants. These vectors
were used in building the cubes during cube generation, and
they m a y be employed to determine which cubes are con-
tained in larger cubes. I f a j -cube is a pr ime implicant, the
vertices which complete the j (j - 1)-cubes are covered by
the prime implicant and may be found by subtract ing in
turn the AV~'s f rom the vertex tha t completes the j-cube,
V~ i. Theorem 4 reduces the calculations in determining
these subcubes.

THEOREM 4. I f U i is equal to U~ j, then for all k less than
j , each implicant completed by a member of U¢ ~ is covered by
a j-cube.

PROOF. Each smaller cube was used to build a larger
cube since U j ~ Uo j. Q . E . D .

A very special feature of this alogri thm is demonst ra ted
when all 2 d vertices are members of the K-ar ray . By
Theorem 4 the d-cube is the only pr ime implicant tha t
covers V °. This sole cover of V ° is called an extzv,mal and
must be a par t of the min imum expression of the Boolean
hmction.

Assume V ° is covered by an extremal a]~d consider all
vertices other than V ° tha t are also eo~d~ained in that
extremat. Each such vertex is covered by ~ cube which
mus t be included in the min imum expression of the Booleati
function and has exactly the same properties as tlhe pox%
CARE vertices,

I t should be noted tha t the procedure only finds prime
implieants tha t covet' at least one vertex, V °, of the o >
array. This is not t rue in competi t ive procedures which do
not differentiate between oN and ItO~'"r CAICE vertices
during prime implicant generation and, in turn, generate
m a n y prime implicants tha t only cover vertices in the
DON'T CaRE-array and are therefore useless. The follm~4ng
set of sequential steps are listed to summarize prime impli-
cant and extremal extraction.
Step. 6 If a d-cube cover or extremal exists, cast all 2 d vertices
into the DON'T cARE-array; prime implicant extraction is com-
pleted. If not, the largest cubes are prime implicants; go to Step. 7.
Step 7. Use the AV~ vectors to determine if each implicant of the
next smaller size is covered. Any implicant not covered becomes a
prime implicant.
Step 8. Use Theorem 4 to determine whether prime implicant
extraction is completed or whether to return to Step 7.

Example:

3

12 0

I / \ \

l &V =-I

V ° U 1 = Uc t U 2 U~ 2 = {12}

10/ 139 1 / 120 U~ = 10,4}
4

U a is not generated since UJ has less than 3 members.
12 - 3 = 9 \ show that 1-cubes represented by vertices 9 and
12 - (-1) = 13J 13 are covered by the 2-cube.

Therefore, the 2-cube and 1-cube represented by vertices

5 2 2 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 11 / N u m b e r 7 / J u l y , 1968 %!

that :~ extt 'emal will be found wh(,:~ V ° -- 12.

o~ aRRaY = {10(~C), LZ (aBe) t

To develop a general procedure for determining the
decimal representat ion of any cube, consider two adjacent
vertices tha t form a 1-cube.

THEOREM 55. The decimal representation of a 1-cube of
two adjacent vertices is given by twice the la~er vertex repre-
sentationn minus the smaller vertex representation.

PRoos. I f two vertices V, and V2 are adjacent, they
differ in one variable position, the larger containing a one
and the smaller containing a zero or

V~ = (d , . . . 1 . - . &)3 and V~ = (d, . . . 0 - . . d~)3.

Then

2 V ~ - V ~ = (d l " " 2 " . G) 3 .

From the tr i t assignments it follows tha t the operation
2V~ - V2 effectively eliminates the variable tha t differs.

Q.E.D.
Theorem 5 establishes the decimal representation for any

1-cube, C~ ~, which covers V °. To find larger cubes which
cover V °, the vector approach m a y be used again. Define d
vectors, ACi, as:

C) = V ° + LXC~ (3)

These ACt vectors may be described as the decimal num-
bers which, when added to V °, eliminate the variable in the
position of adjacency between V ° and Vi 1.

A relationship exists between the AV/s and the AC~'s.
THEOREM 6. I f A V i < O, then ACi = - A V ~ ; and i f

AV~ > O, then ACi = 2(AVi).
PROOF. I f A V i = V~ 1 - V ° < 0 o r V~ 1 < V °, then by

Theorem 5,

C~ 1 = 2V ° - Vi 1

A C i = C~ ~ - V ° = (2V ° - V~ I) - V °

= V ° - Vi 1 = - A V i .

IfAV~ = V~ ~ - V ° > 0 o r V ~ ~ > V °, by Theorem 5,

Ci 1 = 2Vi 1 - V °

A C i = C~ ~ - V ° = (2 V) - V °) -- V °

= 2(V~ l - V °) = 2(AV,). Q.E.D.

The effect of adding j AC/s to V ° is to eliminate j
variables and form a j-cube since each AC~ eliminates a
unique variable. The vertex V / i s found by adding j AV~'s
to V ° and represents a cube. The AV~ vectors define the j
dimensions of the cube. I f the set of respective AC~ vectors
are added to V °, the j literals are eliminated, producing the
encoded cube. Computa t ion of cubes may parallel the pro-
cedures for locating the vertices which complete those
cubes. The foregoing is summarized by the following algo-

r i thm for finding the decimal representation of prime
implicants.

Step 9. Use Theorem 5 to calculate the AC~'s from the AVi's.
Step 10. Use eq. 3 to calculate all d members of the set of C~'s.
Step 11. With the ACi's replacing the AVe's, use the Generation
Rules to calculate the decimal representation of each prime im-
plicant.

Example (continued):

ACi = 2.3 = 6 C11 = 2 . 1 3 - 10 = 16

AC2 = - - (- 1) = 1 C2 ~ = 2 . 1 0 - 9 = 11

AC3 = - - (- 9) = 9 C31 = 2 . 1 0 - 1 = 19

10/16.11 19/17 20
25

Therefore, 19(2013 = /~C) and 17(1223 = A) are the two
prime implicants tha t cover vertex 10. Steps 1-11 consti-
tu te a means of finding every prime implicant tha t covers a
single vertex V ° in the ON-array. To cover the Boolean
function, every member of the ON-array tha t is not cast
into the DON'T CAnE-array by step 6 must be covered.
Therefore steps 1-11 must be repeated until this is com-
pleted.

This algorithm was programmed in FORTRAN. The pro-
g ram was extremely efficient when applied to the class of
Boolean functions tha t are covered predominant ly by
extremals and could be very efficient applied to the class of
functions with m a n y DON'T CARE vertices. In addition, the
algorithm inherently requires significantly less memory
since the method only analyzes the portion of the function
containing V ° to find the prime implications covering V °. In
a problem containing n variables, there are only (:.) pos-
s ib le / -cubes containing vertex V °. in contrast, there are
(~). 2 ~--1 possible/-cubes within the n-cube and such pro-
cedures as Quine-McCluskey [6] may generate lists of this
size in the process of finding the same prime implicants. As
a last observation, the method is not as efficient using
decimal ari thmetic as it is capable of being using binary
coding and set operations. Decimal arithmetic and
FORTRAN were chosen for versati l i ty and convenience in
programming.

RECEIVED SEPTEMBER, 1966; REVISED SEPTEMBER, 1967

REFERENCES

1. URBANO, R. H., AND MUELLER, R.K. A topological method
for the determination of the minimal forms of a Boolean
function. IRE TEC 5, 3 (Sept. 1956), 126-132.

2. HARRIS, B. An algorithm for determining minimal representa-
tions of a logic function. IRE TEC 6, 2 (June 1957), 103-108.

3. PRATHER, R. Computational aids for determining the minimal
form of a truth function. J. A CM 7, 4 (Oct. 1960), 299-310.

4. DULEY, JAMES R. A decimal algorithm for minimizing Boolean
functions. M. S. Thesis, U. of Wisconsin, 1963.

5. ROTH, J.P. Algebraic topological methods for the synthesis of
switching systems I, Trans. Amer. Math. Soc. 88, (July
1958), 301-326.

6. MILLER, R.E . Switching Theory, Vol. 1, Combinational Cir-
cuits. Wiley, New York, 1965.

Volume 11 / Number 7 / July, 1968 Communicat ions of the ACM 523

