
VISOR, UO T Q , and RE3:[, subject to -the restriction 
REM < DIVISOR.  The value for QUOT ~as then 
divided by 2 ~, where lc was an integer chosen randomly 
in the interval 0 N lc N 31. The dividend was the:n corn- 
puted from equation (9), and the division of D[V[DEzVD 
by DIVISOR begun. The resulting quotient and remainder 
were compared to the known values, and diagnostic in- 
formation was printed in ease of any disagreement. Over 18 
million separate tests using several different random num- 
ber generators were made of the division algorithm at a rate 
of 100,000/rain. The bounds on the difference between the 
true and tentative quotients given in eqs. (18) and (19) 
were verified, and the algorithm is known to be correct. 

5. A System/360 Implementat ion of the Division 
Algorithm 

To illustrate the coding of the division scheme on an 
actual machine, a code sequence is given in Figure 3 which 
will perform ,the division algorithm on an IBM System/ 
360 computer. I t  contains one additional test not shown 

in Figure 2, if the divisor has a pos:itiw: ~r]thmegic t'epre- 
sentation; if D I V I D E N D  < M (theft is, the high. o~'der 
part of the dividend is zero), thet~ the division process 
may be skipped. Because all System/360 :fixed point addi- 
tion instructions (as well as the logical os~-instruetion) 
change the condition code [2], the quantity 42~ + A 
must be computed by :first forlning 4R and testing it for 
overflow, and later adding A, which cannot then cause an 
additional overflow. 
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Decimal arithmetic, ternary encoding of cubes, and topological 
considerations are used in an algorithm to obtain the extremals 
and prime implicants of Boolean functions. The algorithm, which 
has been programmed in the FORTRAN language, generally 
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Almost all of the machine oriented minimization algo- 
rithms proposed reduce to two disjoint parts:the first part 
is a process for generating information which includes the 
minimum expression of a Boolean function, while the 
second part analyzes that information and selects the 
minimum expression of the Boolean functions. There are 
two ways in which digital computer programs that are de- 
signed to execute the algorithms fail. First, most generation 
processes create large lists of intermediate information, and 
the finite high speed memory of the digital computer is not 
capable of storing these large lists. Second, the information 
may be in such a complex form that it is not practical to 
pay for the computer time needed to extract the mininmm 
solution. In the second case, the designer may have to be 
satisfied with a solution which is not absolutely minimal. 
However, when the computer fails during the generation 
process, the problem must be rejected before reaching the 
selection stage, a stage which might be completed with 
relative ease. 

This note attempts to alleviate this more serious prob- 
lem through a refined and generalized version of a pro- 
eedure pioneered by Urbano-Mueller [1], Harris [2], a n d  
Prather [3]. Tile algorithm presented partially integrates 
the problems of generation and selection, and is eonstrueted 
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to ~vroid Lh~ creation of very large ].isis of intermediate in- 
formL~Lio~o fhe  method does noL, in generM, produce a 

mi,umtm~ solution, 'out a minimum solution may be ex- 
trae{ed from the results using existing algorithms. In  
additiol~, the algorithm developed is a decimM procedure 
and uses arithmetic operations throughout  instead of the 
logical operations which are usually available only in the 
machine language of large binary machines. 

.... The algorithm is topological in nature and is based on the 
fo]lowing properties of the familiar Boolean n-cube which 
is used to express a Boolean function of n variables [5, 6]. 

Property 1. An n-cube contains 2 ~ vertices each of 
which has a unique position in the n-cube, 

Property 2. Every  vertex in an n-cube is adjacent to 
n vertices of the n-cube. 

Property 3. The distance between any two vertices in 
an n-cube must be less than or equal to n. 

Property 4. A j-cube that  contains vertex V °, may  be 
formed by  combining j ( j - -  1)-cubes which contain V ° with 
the proper vertex, Vt j. V ° and V~ j are distance j apart.  

From basic number system theory any ternary integer 
of n trits may  be represented as 

n--1 

[ = ~ d i 3  ~, d i =  0 , 1 o r 2 .  (1) 

Any Boolean term may be represented by the ternary 
integer obtained by replacing all variables in the term by 
l's, all complements by  O's, and missing variables by 2's. 
Evaluating the power series of eq. (1) by performing 
decimal arithmetic gives the decimal equivalent of any 
ternary integer. The subcube A - C D  is thus represented by 

(1201)a = (46)10.  

In brief, the algorithm of this note selects a vertex V ° 
from the ON-array and analyzes the surrounding cubical 
structure in the K-ar ray  (oN and DON' T CARE vertices) to 
find the prime implicants that  cover the selected vertex. 
This process is repeated as necessary until  each member of 
the oN-array has been covered. Let  U k denote the set of 
vertices tha t  are distance k from V °. Each member of U ~ is 
denoted by V~. 

THEOREM 1. All members of U ~ differ from V ° by a power 
of three, i.e. [ V° - V~I I = 3~ for n a positive integer. 

PROOF. All V~ * must be adjacent to V ° by the definition 
of U * and exactly one coordinate position must differ be- 
tween the binary representations of the two vertices. Let  
the difference occur in the i th  position. If  V ° =  
(dn . . .  d ~ " .  d~)a and V~ * = (d. . . .  d~ . . .  dr)a, then 

I V ° -- V : [  = ( 0 . . -  0 1 0 . . .  0)a = 3 e-*. Q.E.D. 

1, U ~ consists of all V~ s, the adjacent vertices that  form 
1-cube covers of V °, and U ~ is generated by searching the 
K-array for all vertices tha t  differ from V ° by a power of 
three. If U t contains d members, a d-cube is the largest 
possible cover of V ° (Proper ty  2). 
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A vector approach is useful in determining the vertices 
that  complete larger cubes. The d vertices of U ~ may be 
used to form d vectors AV~ by subtracting V ° from each 
VL 

AVe = V¢ ~ -  Vo or V~ ~ = V ° + A V ~ .  (2) 

THEOREM 2. A&ling j AVi's to V 0 complements j co- 
ordinates and locates a vertex V1 j which is distance j from V °. 

PROOF. AVe is a power of three as a consequence of 
eq. (2) and Theorem 1. Thus, adding AVi to V ° can change 
only one variable position. Adding one AV~ complements 
one variable since it locates an adjacent vertex, V~ ~. Each  
AV~ complements a unique variable position since each 
AV~ is unique. Thus, if another AV~ is added to the sum, 
another variable is complemented and the distance from 
V ° is increased by one. By finite induction the theorem 
results. Q . E . D .  

With the aid of the AV~:'s, all the vertices of the hypo- 
thetical d-cube cover of V ° may be located by adding each 
of the 2 d possible combinations of the AV~'s to V °. These 
vertices form sets U ~ to U '*. After the adjacent vertices are 
found by Theorem 1 and the AVi's are calculated, then the 
V~'s are placed side by side forming d columns (set U~). 
From then on U j+~ is found by applying the following 
Generation Rules to U j. 

Generation Rules: 

(1) The members of the first column of U i+~ are found by adding 
AV~ to each member of every column to the right of the first 
column in U i. 

(2) The members of the second column of Ui+I are found by adding 
&V2 to each member of every column to the right of the second 
column in U i. 

• • 

• • 

(k) The members of the kth column of Ui+t are found by adding 
AV~ to each member of every column to tile right of kth column 
in Ui. 

This iterative process is self-terminating since each set 
has one less column than  the last set. 

The foregoing vector approach shows only how each 
vertex of a hypothetical  d-cube may be calculated. When 
a vertex in U 2 is calculated, it  is known to be a vertex tha t  
will complete a 2-cube, but  it must be a member of the K- 
array before it actually does complete a 2-cube cover of V °. 
In  general, one or more vertices of the hypothetical d-cube 
cover of V ° are not a par t  of the K-array and the hypo- 
thetical d-cube is not an actual cover of V °. To distinguish 
between vertices which complete hypothetical and actual 
covers of V °, defined Uc i as the subset of U j which con- 
sists of all V~'s tha t  complete actual j-cube covers of V °. 
U~c contains the remainder of U ] or the V~¢'s tha t  do not  
complete actual j-cube covers of V ° because they them- 
selves or other vertices are absent from the K-array.  
Members of U~ ¢ are easily recognized by  Theorem 3, 
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THEOREM 3. I f  a vertex in U ~ is adjacent to j me~zbers o/' 
U~ --~ and is a member of the K-array, it is a member of (7~ i, 

PROOF. I f  V~ j is to form a j -cube cover o[' V °, it mus t  be 
adjacent  to j vertices of set U s-~ by Propert ies  2 and 3, I f  
these j adjacent  vertices are members  of U j--*j ~ and if V / i s  
a member  of the K-ar ray ,  then by Proper ty  4, V~ j com- 
pletes a j -cube cover of V ° and is a member  of U~ ~. Q.E.D.  

If, after generating set r; ~'-~ ,5-~ , 5.'~ is found to contain 
less t h a n j  members,  Theorem 3 states t ha t  no j -cube exists 
and U i need not be generated. 

An algorithm for generating the cube(s)  tha t  cover any  
vertex of the o~r-array may  be summarized:  

Step 1. Select a V ° from the oN-array. 
Step 2. Use Theorem 1 to generate U* by searching for vertices 
in the K-array which differ from V ° by a power of three. 
Step 3. Calculate the set of AVe vectors from eq. 1. 
Step 4. Use the AV~ vectors to calculate the next set of vertices 
from the known set using the Generation Rules. Those members 
of this new set which are contained in the K-array and comply 
with Theorem 3 complete and represent cubes that cover V °. 
Step 5. If U~ -1 contains less than j vertices, stop generation. If 
not, return to Step 4. 

One or more of the cubes which cover V ° ( implicants)  
mus t  be included in the min imum expression of the Boolean 
function. As a first step in the selection of the cubes which 
make  up the ul t imate  min imum cover, prime implicants 
mus t  be recognized where a prime implicant is a cube of the  
K - a r r a y  not  included in any other  cube of the K-ar ray .  
The  determinat ion of prime implicants reduces to detect-  
ing all uncovered cubes. Proper ty  4 indirectly states tha t  
t h e j  ( j - -  1)-cubes tha t  cover V ° are a par t  of a hypothet ical  
j -cube cover of V °. I f  t ha t  j -cube actual ly exists as a cover 
of V °, then all j ( j -  1 ) -cubes are not  pr ime implicants since 
they  are covered b y  the j-cube. I f  all cubes so covered are 
eliminated from a set of cubes, the cubes remaining when 
the generation procedure terminates  are prime implicants.  
The  set of AV~ vectors provides a means of separat ing the 
undesirable cubes from the prime implicants. These vectors 
were used in building the cubes during cube generation, and 
they  m a y  be employed to determine which cubes are con- 
tained in larger cubes. I f  a j -cube is a pr ime implicant,  the 
vertices which complete the j ( j -  1 )-cubes are covered by  
the prime implicant and may  be found by  subtract ing in 
turn  the AV~'s f rom the vertex tha t  completes the j-cube,  
V~ i. Theorem 4 reduces the calculations in determining 
these subcubes. 

THEOREM 4. I f  U i is equal to U~ j, then for all k less than 
j ,  each implicant completed by a member of U¢ ~ is covered by 
a j-cube. 

PROOF. Each smaller cube was used to build a larger 
cube since U j ~ Uo j. Q . E . D .  

A very special feature of this alogri thm is demonst ra ted  
when all 2 d vertices are members  of the K-ar ray .  By 
Theorem 4 the d-cube is the only pr ime implicant  tha t  
covers V °. This sole cover of V ° is called an extzv,mal and 
must be a par t  of the min imum expression of the Boolean 
hmction.  

Assume V ° is covered by  an extremal  a]~d consider all 
vertices other than  V ° tha t  are also eo~d~ained in that 
extremat.  Each such vertex is covered by ~ cube which 
mus t  be included in the min imum expression of the  Booleati 
function and has exactly the same properties as tlhe pox% 
CARE vertices, 

I t  should be noted tha t  the procedure only finds prime 
implieants tha t  covet' at  least one vertex,  V °, of the o >  
array.  This is not  t rue in competi t ive procedures which do 
not  differentiate between oN and ItO~'"r CAICE vertices 
during prime implicant  generation and, in turn,  generate 
m a n y  prime implicants tha t  only cover vertices in the 
DON'T CaRE-array and are therefore useless. The  follm~4ng 
set of sequential  steps are listed to summarize  prime impli- 
cant  and extremal  extraction. 
Step. 6 If a d-cube cover or extremal exists, cast all 2 d vertices 
into the DON'T cARE-array; prime implicant extraction is com- 
pleted. If not, the largest cubes are prime implicants; go to Step. 7. 
Step 7. Use the AV~ vectors to determine if each implicant of the 
next smaller size is covered. Any implicant not covered becomes a 
prime implicant. 
Step 8. Use Theorem 4 to determine whether prime implicant 
extraction is completed or whether to return to Step 7. 

Example: 

3 

12 0 

I / \ \  

l &V =-I 

V ° U 1 = Uc t U 2 U~ 2 = {12} 

10/ 139 1 / 120 U~ = 10,4} 
4 

U a is not generated since UJ has less than 3 members. 
12 - 3 = 9 \ show that 1-cubes represented by vertices 9 and 
12 - (-1)  = 13J 13 are covered by the 2-cube. 

Therefore, the 2-cube and 1-cube represented by  vertices 
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that :~  extt 'emal will be found wh(,:~ V ° -- 12. 

o~ aRRaY = {10(~C), LZ (aBe) t 

To develop a general procedure for determining the 
decimal representat ion of any cube, consider two adjacent 
vertices tha t  form a 1-cube. 

THEOREM 55. The decimal representation of a 1-cube of 
two adjacent vertices is given by twice the la~er vertex repre- 
sentationn minus  the smaller vertex representation. 

PRoos. I f  two vertices V, and V2 are adjacent,  they 
differ in one variable position, the larger containing a one 
and the smaller containing a zero or 

V~ = ( d , . . . 1 . - .  &)3 and V~ = (d, . . .  0 - . .  d~)3. 

Then 

2 V ~ -  V ~ =  ( d l " " 2 " . G ) 3 .  

From the tr i t  assignments it follows tha t  the operation 
2V~ - V2 effectively eliminates the variable tha t  differs. 

Q.E.D. 
Theorem 5 establishes the decimal representation for any 

1-cube, C~ ~, which covers V °. To find larger cubes which 
cover V °, the vector  approach m a y  be used again. Define d 
vectors, ACi,  as: 

C)  = V ° + LXC~ (3) 

These ACt vectors may  be described as the decimal num- 
bers which, when added to V °, eliminate the variable in the 
position of adjacency between V ° and Vi  1. 

A relationship exists between the AV/s  and the AC~'s. 
THEOREM 6. I f  A V i  < O, then ACi = - A V ~  ; and i f  

AV~ > O, then ACi = 2(AVi). 
PROOF. I f A V i =  V~ 1 - V ° < 0 o r  V~ 1 <  V °, then by 

Theorem 5, 

C~ 1 = 2V ° - Vi 1 

A C i =  C~ ~ -  V ° = (2V ° -  V~ I) - V ° 

= V ° -  Vi 1 = - A V i .  

IfAV~ = V~ ~ -  V ° >  0 o r V ~  ~ > V °, by  Theorem 5, 

Ci 1 = 2Vi  1 - V ° 

A C i =  C~ ~ -  V ° = ( 2 V ) -  V °) -- V ° 

= 2(V~ l -  V °) = 2(AV,).  Q.E.D. 

The effect of adding j AC/s  to V ° is to eliminate j 
variables and form a j-cube since each AC~ eliminates a 
unique variable. The vertex V / i s  found by adding j AV~'s 
to V ° and represents a cube. The  AV~ vectors define the j 
dimensions of the cube. I f  the set of respective AC~ vectors 
are added to V °, the j literals are eliminated, producing the 
encoded cube. Computa t ion  of cubes may  parallel the pro- 
cedures for locating the vertices which complete those 
cubes. The foregoing is summarized by the following algo- 

r i thm for finding the decimal representation of prime 
implicants. 

Step 9. Use Theorem 5 to calculate the AC~'s from the AVi's. 
Step 10. Use eq. 3 to calculate all d members of the set of C~'s. 
Step 11. With the ACi's replacing the AVe's, use the Generation 
Rules to calculate the decimal representation of each prime im- 
plicant. 

Example  (continued):  

ACi = 2.3 = 6 C11 = 2 . 1 3 -  10 = 16 

AC2 = - - ( - 1 )  = 1 C2 ~ = 2 . 1 0 - 9  = 11 

AC3 = - - ( - 9 )  = 9 C31 = 2 . 1 0 -  1 = 19 

10/16.11 19/17 20 
25 

Therefore, 19(2013 = /~C) and 17(1223 = A) are the two 
prime implicants tha t  cover vertex 10. Steps 1-11 consti- 
tu te  a means of finding every prime implicant tha t  covers a 
single vertex V ° in the ON-array. To cover the Boolean 
function, every member  of the ON-array tha t  is not cast 
into the DON'T CAnE-array by  step 6 must  be covered. 
Therefore steps 1-11 must  be repeated until this is com- 
pleted. 

This algorithm was programmed in FORTRAN. The pro- 
g ram was extremely efficient when applied to the class of 
Boolean functions tha t  are covered predominant ly by 
extremals and could be very efficient applied to the class of 
functions with m a n y  DON'T CARE vertices. In  addition, the 
algorithm inherently requires significantly less memory  
since the method only analyzes the portion of the function 
containing V ° to find the prime implications covering V °. In  
a problem containing n variables, there are only (:.) pos- 
s ib le / -cubes  containing vertex V °. in  contrast,  there are 
(~). 2 ~--1 possible/-cubes within the n-cube and such pro- 
cedures as Quine-McCluskey [6] may  generate lists of this 
size in the process of finding the same prime implicants. As 
a last observation, the method is not as efficient using 
decimal ari thmetic as it is capable of being using binary 
coding and set operations. Decimal arithmetic and 
FORTRAN were chosen for versati l i ty and convenience in 
programming.  
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