
Sampling Cardinality-Based Feature Models
Lukas Güthing

lukas.guething@kit.edu

Karlsruhe Institute of Technology

Karlsruhe, Germany

Mathis Weiß

mathis.weiss@uni-siegen.de

University of Siegen

Siegen, Germany

Ina Schaefer

ina.schaefer@kit.edu

Karlsruhe Institute of Technology

Karlsruhe, Germany

Malte Lochau

malte.lochau@uni-siegen.de

University of Siegen

Siegen, Germany

ABSTRACT
The goal of sample-based testing of variant-rich software systems

is to reduce usually very large configuration spaces to significantly

smaller, yet still representative subsets of configurations to be tested

for quality assurance. Recent sampling techniques and tools are

restricted to finite-dimensional, Boolean configuration spaces spec-

ified by a feature model. However, in many modern application

domains like cloud computing and cyber-physical systems, cus-

tomers not only decide about the presence or absence of features in

a configuration but also about the multiplicity (number of instances)

of configurable resources. Cardinality-based feature models extend

Boolean feature models by cardinality annotations and respective

constraints to enable multiple, and even potentially a-priori un-

bounded, copies of features and their respective sub-trees. The

resulting infinite and inherently non-convex configuration spaces

are no longer tractable by established sampling criteria and cor-

responding sampling algorithms for Boolean feature models like

pairwise feature interaction coverage. In this paper, we first revisit

the subtleties of the configuration semantics of cardinality-based

feature models.We propose novel sampling criteria explicitly taking

multiplicity of feature selections into account. Finally, we present

evaluation results gained from applying our tool implementation

to a collection of example models, showing applicability of the

proposed approach.

CCS CONCEPTS
• Software and its engineering→ Software product lines.

KEYWORDS
software product lines, software variability, sampling, cardinality-

based feature models

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

VaMoS 2024, February 07–09, 2024, Bern, Switzerland
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0877-0/24/02. . . $15.00

https://doi.org/10.1145/3634713.3634719

ACM Reference Format:
Lukas Güthing, Mathis Weiß, Ina Schaefer, and Malte Lochau. 2024. Sam-

pling Cardinality-Based Feature Models. In 18th International Working Con-
ference on Variability Modelling of Software-Intensive Systems (VaMoS 2024),
February 07–09, 2024, Bern, Switzerland. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3634713.3634719

1 INTRODUCTION
Background and Motivation. Many modern software systems

are highly configurable to diverse customer needs and application

platforms. Feature models provide a graphical modeling language

to describe valid configuration spaces from a problem-oriented

point of view [7]. Feature models organize the set of features (user-

configurable increments of functionality) in a tree-like hierarchy

with further notational elements to define configuration constraints.

Today, feature models enjoy a rich background theory and mature

tool support. For instance, feature models serve as input for many

recent tools for sample-based testing of variant-rich software [21].

The goal of sampling is to systematically reduce the inherently

very large configuration space to significantly smaller, yet still

representative subsets (samples) of configurations to be tested for

quality assurance. As an effectiveness measure, recent sampling

techniques and tools apply combinatorial coverage criteria inspired

by functional black-box testing. In this way, fully automated sample

selection can be performed. The widely considered 𝑘-wise feature

interaction coverage criteria requires every possible on/off combi-

nation for any subset of 𝑘 features to be covered in the sample [21].

In its original form, feature models and sampling tools are lim-

ited to finite Boolean configuration spaces: the number of features

is fixed during domain analysis and every feature constitutes an

on/off configuration decision of some optional functionality. How-

ever, in modern domains like cloud computing and cyber-physical

systems, customers may also decide about the multiplicity (number

of instances) of configurable resources. Cardinality-based feature

models (CFM) extend Boolean feature models by cardinality con-

straints for features [3, 12, 23]. These constraints specify cardinality

intervals on the number of feature instances: interval ⟨𝑙, 𝑢⟩ denotes
that feature 𝑓 must be selected at least 𝑙 and at most 𝑢 times. Wild-

card ∗may be used instead of a fixed integer value, allowing a-priori

unbounded number of feature instances. Moreover, for every in-

stance of a feature 𝑓 , the configuration contains an individually

configurable copy (clone) of the whole sub-tree of 𝑓 . This gives rise

to infinite and non-convex configuration spaces of CFMs which are

46

https://orcid.org/0000-0002-2287-4433
https://orcid.org/0009-0006-9067-4624
https://orcid.org/0000-0002-7153-761X
https://orcid.org/0000-0002-8404-753X
https://doi.org/10.1145/3634713.3634719
https://doi.org/10.1145/3634713.3634719
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3634713.3634719&domain=pdf&date_stamp=2024-02-07

VaMoS 2024, February 07–09, 2024, Bern, Switzerland Lukas Güthing, Mathis Weiß, Ina Schaefer, Malte Lochau

no more tractable by classical sampling criteria and algorithms of

Boolean feature models due to the following reasons.

• Applying classical 𝑘-wise feature interaction criteria as-is

only covers 0 and 1 in 𝑘-wise feature combinations. Multiple

copies of features are not sampled. However, a naive gener-

alization of these classical criteria to 𝑘-wise combinations of

all valid feature multiplicities is not feasible leading to very

large (or even infinite) samples.

• The sampling problem for Boolean feature models is well-

defined as the configuration semantics are clearly understood

and canonically formalized. In contrast, no generally agreed

formal configuration semantics for CFMs exist so far.

• Most recent sampling tools rely on encodings into proposi-

tional formulae, which facilitates applications of off-the-shelf

SAT solvers for automated and highly scalable sample gen-

eration. This is not feasible for CFMs due to their increased

expressiveness, which requires more involved mathematical

models like ILP or SMT [15, 22].

Research Questions. We tackle the following research questions

to enable sample-based testing for configurable software with con-

figuration spaces specified by CFMs.

(RQ1) How to define reasonable sampling criteria for CFMs?

(RQ2) How to perform automated sample generation for CFMs

using existing tools?

Concepts and Contributions. We first revisit syntactic and seman-

tic subtleties of CFMs and precisely characterize the constructs

supported by our approach. Our goal is to facilitate expressiveness,

yet enable efficient encoding into existing modeling and instance

generation tools to perform scalable sample generation using cur-

rent tools [1, 15].

Second, we propose a generalization of 𝑘-wise sampling criteria

for CFMs. We employ a normal form representation that makes

explicit crucial semantic singularities (interval gaps) relevant for

sampling [23]. To handle infinite configuration spaces, we employ

the 𝑀-boundedness property of CFMs, ensuring the existence of

a finite bound 𝑀 enclosing all singularities. Based on this repre-

sentation, we utilize principles of boundary-interior testing [4] to

sample presumably critical feature multiplicities. Those criteria

are based on the empirically approved assumption that faults are

often located at the boundary of intervals. We make the following

contributions.

We define novel sampling criteria for CFMs. To this end, we

first clarify the configuration semantics for CFMs considered in our

framework. The criteria are well-defined for feature multiplicity

intervals, including interval gaps as well as right-open intervals.

We present a prototype implementation based on Clafer as

textual input language for cardinality-based feature models and

Clafer Instance Generator for sample generation.

We provide experimental evaluation results gained from ap-

plying our tool to examples. Due to the novelty of our approach,

we focus our evaluation on applicability and scalability.

2 BACKGROUND
In this section, we introduce a running example to explain the

foundations of cardinality-based feature models (CFM), compared

to Boolean feature models [7], illustrating subtleties of the enhanced

configuration semantics of CFM. We derive research challenges in

adapting sampling criteria from Boolean configuration spaces to

configuration spaces shaped by CFM.

Running Example. Our running example is inspired by a cloud-

based multi-player game [13]. Each player of this game interacts

with a personal device. A central node administers the game and

handles inter-team communication. Players are organized into

teams, each team has a leader who bundles communication. Com-

munication is separated into intra- and inter-team communication,

the first bypassing the central node, the second routed via the cen-

tral node. Each leader can decide between either a scattered or a

specific strategy. The first strategy is not available for games with

five or fewer teams and requires broadcasts, whereas the second

is not available for games with exactly five teams due to game-

design-specific reasons. For a few players, Bluetooth is sufficient

for intra-team comm., whereas for larger amounts, WiFi is required.

Cardinality-Based Feature Models. The described game is con-

figurable in various ways. Besides Boolean configuration options

(e.g., choosing between two alternative strategies), most of the vari-

ability concerns the multiplicity of game components (e.g., number

of players or teams). In addition, for each of the feature instances

(copies, clones), further instance-specific decisions can be made

(e.g., intra-team comm. for each team instance).

Purely Boolean feature models like feature diagrams in FODA no-

tation [7] are not expressive enough to capture feature multiplicity

constraints. We instead use a cardinality-based featuremodel (CFM)

as shown in Figure 1 for our running example [2]. A CFM constitutes

a conservative extension of Boolean feature diagrams in FODA no-

tation, employing a tree-like hierarchy. The features located below

the root node partition the configuration model into two subtrees,

where the left sub-tree contains the configuration options for the

central node and the right for the separate teams. Based on the tree

layout, CFM further comprises different syntactic constructs to re-

strict feature multiplicity (i.e., the valid number of feature instances

within configurations). These restrictions are based on the unifying

concept of cardinality constraints. For instance, feature Team is an-

notated by a feature instance cardinality ⟨2, ∗⟩ consisting of a lower

bound 𝑙 = 2 and an upper bound 𝑢 = ∗. This cardinality interval
(𝑙, 𝑢) restricts the number of instances of feature Team. The lower

bound may be any natural number, including 0. The upper bound

also includes the distinct symbol * to permit any natural number

of instances. For each selected instance of Team, the corresponding

subtree is cloned to enable instance-specific configurations of every

team. For instance, if we select three instances of feature Team, the

configuration contains instance-specific copies of the sub-features

Members and Intra T. Comm. and their sub-trees.

In this way, a cardinality interval imposed on feature instances

generalizes the notions of mandatory features (interval (1, 1)) and
optional features (interval (0, 1)). Cardinality intervals are further

used to restrict the selection of feature types in a group, thus gener-

alizing the notions of alternative-groups and or-groups from FODA

notation [14]. The group type cardinality [2, 2] attached to the bow

below the root feature denotes that at least and at most two in-

stances with distinct types of features have to be selected. Hence,

at least one feature of type Central Node and of type Team must

47

Sampling Cardinality-Based Feature Models VaMoS 2024, February 07–09, 2024, Bern, Switzerland

Multiplayer Game

Central Node

Display Inter Team Communication

Broadcast Unicast

Team

Intra Team Communication

WiFi BT

Members

Player Leader

Scattered Strategy Specific Strategy

⟨1,1⟩

⟨1,1⟩ ⟨1,1⟩

⟨0,1⟩ ⟨0,1⟩

⟨2,*⟩

⟨1,1⟩

⟨0,1⟩ ⟨0,1⟩

⟨1,1⟩

⟨0,*⟩ ⟨1,1⟩

⟨0,1⟩ ⟨0,1⟩

[2,2]
⟨3,9⟩

⟨1,*⟩

⟨5,5⟩

⟨5,*⟩⟨1,*⟩ ⟨0,5⟩⟨1,*⟩

⟨1,*⟩

⟨1,1⟩

⟨6,*⟩

⟨1,*⟩

[2,2]
⟨2,2⟩

[1,1]

⟨1,1⟩
[1,1]

⟨1,1⟩

[2,2]
⟨2,2⟩

[1,2]
⟨1,*⟩

[1,1]
⟨1,1⟩

Figure 1: Cardinality-Based Feature Model of a Competitive Mobile Multi-Player Game

Multiplayer Game

Team

Intra

WiFi

Members

Leader

Scattered

Player

Player

Player

Player

Player

Player

Team

Intra

WiFi

Members

Leader

Scattered

Multiplayer Game

Team

Intra

BT

Members

Leader

Scattered

Player

Player

Player

Team

Intra

BT

Members

Leader

Scattered

Player

Player

Player

Figure 2: Excerpt from Two Valid Configurations

be selected. In addition, the group below the root feature is an-

notated with the group instance cardinality ⟨3, 9⟩, restricting the

total number of instances of any type selected from that group.

For instance, selecting two instances of Central Node and of Team
sums up to four instances, satisfying the group instance cardinality.

However, this example demonstrates the subtle interplay between

cardinality constraints: selecting two times feature Central Node as
well as feature Team would satisfy the group instance cardinality

constraint and the group type cardinality constraint [2, 2], whereas
the feature instance cardinality ⟨1, 1⟩ does not permit more than

one instance of Central Node.
Finally, CFMs also include cross-tree constraint by means of

require- and exclude-edges annotated by cardinality intervals at

both ends [12]. For instance, the require-edge from Specific Strategy
to Team is annotated by ⟨1, ∗⟩ and ⟨6, ∗⟩. This means that if at least

one instance of Scattered Strategy is selected, then the number of

instances of Team must fall into interval (6, ∗). Exclude-edges are
interpreted accordingly.

Modeling Cardinalities in Variability Models. Apart from Boolean
feature models, there are other variability models, some of which

already support cardinalities. UVL and Clafer are textual modeling

languages for variabilitymodeling. UVL, or the Universal Variability

Language [18–20], is a project aimed to be a common intermediate

language for variability models. UVL uses indents to model the

hierarchy of the variability model. Additionally, UVL supports fea-

ture instance and group type cardinalities, but no group instance

cardinalities (cf. section 2). However, UVL is mainly used to ex-
press variability, not to analyze it. Therefore, there are only a few

tools to analyze UVL variability models. This lack of analysis sup-

port mainly stems from the sheer expressiveness of UVL models,

with complex constraints and ∗-cardinalities leading to potentially

undecidability problems. Therefore, there is no general sampling

approach for UVL models yet.

Clafer [1, 5] is a modeling language to model software struc-

ture, behavior, and variability. Like in UVL, indents represent the

hierarchy of the features in Clafer. Clafer also supports feature

instance and group type cardinalities and also lacks group instance

cardinality. Clafer has some built-in variability analyses: Clafer can

detect dead feature intervals, a generalization of dead features in

FODA models, false optional and core features, falsely unbounded

feature instance intervals, and false upper/lower bounds. Clafer also

supports feature attributes and multi-objective optimization. These

analyses are based on ILP (integer linear programming), Alloy, and

ChocoSolver. Additionally, Clafer also has an instance generator.

Due to the high complexity the cardinalities introduce, however,

Clafer does not have the same range of analyses that is available for

48

VaMoS 2024, February 07–09, 2024, Bern, Switzerland Lukas Güthing, Mathis Weiß, Ina Schaefer, Malte Lochau

Boolean feature models, like calculating the number of all possible

configurations or sampling.

Cardinality-Based Configuration Spaces. The configuration spaces
of Boolean feature models comprise all valid assignments of Boolean

values true (present) or false (absent) to each feature such that all

configuration constraints are satisfied. The configuration semantics

of CFM instead assigns to each feature a natural number 𝑘 denot-

ing number of instances (0 in case of absence) of that features in a

configuration. In this sense, the notion of configuration of CFM gen-

eralizes that of Boolean feature models from (sub-)sets of (selected)

features to multisets of features. However, this notion of CFM con-

figuration might be considered ambiguous as it does not preserve

the (potentially relevant) parent-child relationship for each feature

instance [23]. To illustrate this issue, consider the excerpts from

two configurations of our example in Fig. 2. We abbreviated some

feature names and omitted the left subtree. The instance on the

left-hand side is a game with two teams. The first team has six

players in addition to the leader, whereas the second team only con-

sists of a leader. The instance on the right-hand side is also a game

with two teams and an overall number of six players, where the

players are equally distributed over both teams (i.e., three players

each). Only considering the multiset of both games (total number

of players), the composition of the teams is indistinguishable. An

instance-based configuration notion contains the number of feature

instances and stores the relationship of every instance to its parent

instance, distinguishing between both team compositions.

In any case, for a CFM configuration to be valid, it has to satisfy

all cardinality constraints of the CFM. Again, depending on the

notion of configuration, cross-tree constraints may be interpreted

locally or globally [8]. In a local interpretation, the configuration

on the left is invalid as the team with 0 players does not satisfy

the exclude constraint between WiFi and Players: an instance of

WiFi may be only selected if more than five players are part of the

team. In contrast, the right configuration is valid. For both teams,

an instance of BT is selected in compliance with the number of

players (3). In case of a global interpretation (multiset-based), just

the configuration on the right is valid. Considering the total number

of players (6) requires the selection ofWiFi.
The loss of semantic precision caused by multiset semantics and

global interpretation is justified by the improved scalability of auto-

mated analyses for CFM due to a significantly reduced impact of the

combinatorial explosion problem [23]. However, the configuration

space of CFM remains large and is infinite if the CFM contains

an unbounded interval (e.g. * for feature Player). In addition, the

interplay between different kinds of cardinality constraints might

lead to non-convex configuration spaces containing singularities

(e.g., interval gap of feature Player excluding multiplicity value 5).

Research Challenges. For classical Boolean feature models, sam-

pling criteria and corresponding sample-generation techniques and

tools are widely considered in practice to counter-act the combina-

torial explosion problem for quality assurance of configurable sys-

tems [21]. Adapting these concepts to CFM is not straightforward.

For instance, uniform random sampling, a basic sampling criterion,

may be adapted to CFMs by expanding the random choosing of 0

or 1 instance for each feature, to randomly choose a multiplicity

value𝑚 from the valid cardinality interval for each feature. Beyond

uniform random sampling, 𝑘-wise combinatorial feature interac-

tion coverage constitutes the most established sample criterion,

guaranteeing that each valid combination of 𝑘 feature selections

is sampled. In this regard, pairwise sampling (i.e., 𝑘 = 2) has been

shown to be a promising trade-off between efficiency (sample size)

and effectiveness (error coverage) in practice. However, naively

generalizing this criterion to CFM is not feasible as treating every

valid pair of multiplicity values of any 𝑘 features as a unique in-

teraction excessively blows up the sample size, already in case of

𝑘 = 1. Moreover, for unbounded cardinality intervals, the sample

size would be, by definition, infinite. In addition, feature multiplici-

ties may introduce novel types of interactions. Multiple instances

of the same feature may interact with each other. To summarize,

we have to tackle the following research challenges (RC) to enable

CFM sampling.

• (RC1) Infinite configuration spaces.We have to impose

finite bounds on a-priori infinite configuration spaces to

make combinatorial coverage criteria applicable for CFM.

• (RC2) Non-convex configuration spaces.We have to han-

dle inherently non-convex configuration spaces which ob-

structs automated sample extraction. In addition, we have to

ensure that potentially erroneous realizations of configura-

tions located around intervals gaps are sufficiently covered

by the generated samples.

• (RC3) Excessively large configuration spaces.We have

to define adapted notions of combinatorial coverage crite-

ria to extract samples with reasonable sizes from the now

bounded, but still excessively high number of multiplicity

combinations.

3 CARDINALITY-BASED FEATURE MODELS
In this section, we provide precise definitions of the abstract syntax

and configuration semantics of CFM which are based on Weckesser

et al. [23]. This builds the conceptual basis to define novel sampling

criteria for CFM in the next section.

3.1 Abstract Syntax
As illustrated in the previous section, CFMs generalize the notion

of configurations from Boolean decisions tomultiplicities of feature
instantiations corresponding to non-negative integer values. Hence,

a feature is either absent (value 0) or present 𝑘 times (𝑘 ≥ 1) in a

CFM configuration. In addition to the number of instances per

feature, a CFM configuration further consists of a relation defining

which child-feature instances are related to which parent-feature

instances.

The configuration constraints imposed by a CFM are likewise

generalized from propositional formulas (Boolean feature models)

to cardinality constraints. Cardinality constraints express cardinality
intervals denoting valid value ranges for the multiplicity of feature

instantiations. Simple cardinality intervals are defined as pairs (𝑙, 𝑢)
of non-negative integer values with 𝑙 ≤ 𝑢, where 𝑙 denotes the lower
bound and 𝑢 denotes the upper bound of the interval. Multiplicity

value 𝑘 satisfies (is contained in) an interval (𝑙, 𝑢) if 𝑙 ≤ 𝑘 and 𝑘 ≤ 𝑢

holds, which we denote by 𝑘 ∈ (𝑙, 𝑢) in the following. As a possible

upper bound of cardinality intervals, we allow the distinguished

49

Sampling Cardinality-Based Feature Models VaMoS 2024, February 07–09, 2024, Bern, Switzerland

symbol *, denoting unbounded (unconstrained, right-open) inter-

vals satisfied by any possible multiplicity (i.e., 𝑘 ≤ * holds for any
value 𝑘).

Multiple disjoint simple cardinality intervals may be combined

into a compound cardinality interval to implicitly exclude particular

sub-intervals (gaps) from a set of valid multiplicity values. In our

running example (Figure 1), each team must select one strategy.

However, if the number of teams is exactly 5, neither the feature

Scattered Strategy nor the feature Specific Strategy may be selected.

Thus, selecting a strategy for a game with five teams is not possible,

leading to an invalid configuration. To make this gap explicit, we

refine the feature instance cardinality of Team to the compound car-

dinality interval ⟨0, 4⟩⟨6, ∗⟩. It is reasonable to require a compound

interval to be defined as concise as possible, forbidding non-disjoint

simple intervals.

Definition 3.1 (Cardinality Interval [23]). The set of cardinality
intervals is defined as I ⊂ N0 × (N0 ∪ {∗}), where (𝑙, 𝑢) ∈ I iff
𝑙 ≤ 𝑢 holds. The set L ⊂fin 2

I
of compound cardinality intervals

contains all finite subsets 𝐿 ∈ L of I such that for all pairs (𝑙𝑖 , 𝑢𝑖) ∈
𝐿, (𝑙 𝑗 , 𝑢 𝑗) ∈ 𝐿, 𝑖 ≠ 𝑗 , either 𝑙𝑖 > 𝑢 𝑗 , or 𝑢𝑖 < 𝑙 𝑗 holds.

We use the notation 𝑘 ∈ L for compound intervals L in obvious

ways (i.e., requiring 𝑘 ∈ (𝑙𝑖 , 𝑢𝑖) for exactly one simple interval

contained in L).

As illustrated by our running example (Figure 1), cardinality-

based feature models provide syntactic constructs to express cardi-
nality constraints, which are semantically interpreted as cardinality

intervals. Like in Boolean feature models, CFMs define a tree-like

hierarchy describing a parent-child relation ≺𝐹 (decomposition re-

lation) on the set of features 𝐹 . Based on this hierarchy, cardinality

intervals occur in five different types of cardinality constraints as

defined by the following functions on 𝐹 .

• Function 𝜆𝐹
𝐼
assigns an instance cardinality interval to each

feature, constraining the multiplicity of individual features.

• Function 𝜆𝐺
𝐼
assigns a group instance cardinality interval to

each feature, constraining the sum of multiplicities of its

direct child feature instances.

• Function 𝜆𝐺
𝑇

assigns a group type cardinality interval to each

feature, constraining the number of different types of its

direct child feature instances.

• Relation 𝜙𝑅 defines require-edges between some pairs of

features, enforcing certain combinations of multiplicities

among these features.

• Relation 𝜙𝑋 defines exclude-constraints between some pairs

of features, forbidding certain combinations of multiplicities

among these features.

Summarizing these ingredients, we obtain the following definition

of the abstract syntax of cardinality-based feature models.

Definition 3.2 (CFM Abstract Syntax [23]). A cardinality-based

feature model (CFM) defined over a non-empty, finite set 𝐹 is a

tuple (≺𝐹 , 𝜆
𝐹
𝐼
, 𝜆𝐺

𝐼
, 𝜆𝐺

𝑇
, 𝜙𝑅, 𝜙𝑋), where

– ≺𝐹⊆ 𝐹 × 𝐹 is a feature decomposition relation,

– 𝜆𝐹
𝐼
: 𝐹 → L is a feature instance cardinality function,

– 𝜆𝐺
𝐼
: 𝐹 → L is a feature group instance cardinality function,

– 𝜆𝐺
𝑇

: 𝐹 → L is a feature group type cardinality function,

– 𝜙𝑅 ⊆ 𝐹 × L × L × 𝐹 is a feature instance require-edge

cardinality relation, and

– 𝜙𝑋 ⊆ 𝐹 × L × L × 𝐹 is a feature instance exclude-edge

cardinality relation.

To be syntactically well-formed, the feature decomposition re-

lation should form a finite-rooted tree on 𝐹 , meaning that each

feature has exactly one predecessor, except for the distinguished

root feature 𝑓𝑟 . We further assume 𝜆𝐹
𝐼
(𝑓𝑟) = (1, 1) (i.e., there is

exactly one instance of the root feature in every configuration) and

both kinds of group cardinality intervals assigned to leaf features

(feature without child features) must be empty (i.e. (0,0)).

3.2 Configuration Semantics
Based on the abstract syntax, we define a configuration of a CFM

to be a pair of a multiset 𝑀 over feature set 𝐹 and a parent-child

feature instance relation ≺𝑀
𝐹
) on𝑀 . Formally, a multiset 𝑀 : 𝐹 →

N0 over 𝐹 is a mapping from 𝐹 into the non-negative integers,

where𝑀 (𝑓) denotes the multiplicity of 𝑓 ∈ 𝐹 . We use the notation

#𝑓 = 𝑀 (𝑓) to refer to the multiplicity of 𝑓 in multiset𝑀 whenever

𝑀 is clear from context. To refer to the 𝑖-th instance, 1 ≤ 𝑖 ≤ #𝑓 ,

of feature 𝑓 in multiset𝑀 , we write 𝑓 𝑖 ∈ 𝑀 . By ≺𝑀
𝐹
⊆ 𝑀 ×𝑀 , we

denote the feature instance decomposition relation on multiset𝑀

in accordance to the feature decomposition relation ≺𝐹 on 𝐹 such

that: 𝑓 𝑖 ≺𝑀
𝐹

𝑓 ′𝑗 ⇒ 𝑓 ≺𝐹 𝑓 ′ holds.
Before we formally define a valid CFM configuration as a pair

(𝑀, ≺𝑀
𝐹
), we intuitively explain the configuration semantics us-

ing the examples in Figs. 1 and 2, referred to as (𝑀, ≺𝑀
𝐹
) and

(𝑀′, ≺𝑀 ′
𝐹

). Let us consider feature Members and its sub-tree. In

both configurations, two instances of this feature are present (i.e.,

𝑀 (Members) = 𝑀′ (Members) = 2) and corresponding copies of the

sub-tree are related by ≺𝑀
𝐹

and ≺𝑀 ′
𝐹

, respectively. Due to the fea-

ture instance cardinality constraint (1, 1) for feature Leader, each
instance of Member must be related to exactly one instance of

Leader which holds in all four cases. In contrast, feature Player is
annotated with constraint (0,*) which is satisfied by every num-

ber of instances of Player. In both configurations, it holds that

𝑀 (Player) = 𝑀′ (Player) = 6, where in the left one, ≺𝑀
𝐹

relates all

six instances to the subtree of the first instance of Members and
none to the second, whereas ≺𝑀 ′

𝐹
relates three to the first and to the

second one. Let us next have a look at the group instance cardinality

for feature Members: the interval (1, *) requires that at least one
instance of some child feature of Members is present in a configu-

ration. Due to the mandatory presence of one instance of feature

Leader, this is satisfied in all sub-trees of both configurations. The

group type cardinality (1, 2) Member requires that instances from
at least one, and at most two, types of child features ofMembers are
present. Again, this constraint is always satisfied as the mandatory

instance of feature Leader ensures that the lower and upper bound

cannot be exceeded as Members only has two different children.

In contrast to the previously described constraints which are

checked locally (i.e., for every feature instance sub-tree in separate),

we interpret cross-tree constraints globally (i.e., on the overall

number of selected feature instances). For instance, for the require-

constraint from Specific Strategy to Team to be satisfied, it must

hold that if the overall number of instances of Specific Strategy falls

into (1, *), then the overall number of instances of (Team) must fall

50

VaMoS 2024, February 07–09, 2024, Bern, Switzerland Lukas Güthing, Mathis Weiß, Ina Schaefer, Malte Lochau

into (6, ∗). However, this condition is obviously satisfied as in both

configurations, Specific Strategy is absent. Similarly, the exclude-

constraint between Player and BT forbids the global number of

instances of Player to fall into (5, ∗) if that of feature BT falls into

(1, *) and vice versa. As the global number of instances of type

Player is 6 in both configurations, this forbids the selection of any

instances of type BT, causing the right configuration to be invalid.

We formally define configuration semantics of CFM as follows.

Definition 3.3 (CFM Configuration Semantics). A configuration
(𝑀, ≺𝑀

𝐹
) of a cardinality-based featuremodel (≺𝐹 , 𝜆

𝐹
𝐼
, 𝜆𝐺

𝐼
, 𝜆𝐺

𝑇
, 𝜙𝑅, 𝜙𝑋)

is valid if the following properties hold.

• 𝑀 (𝑓𝑟) = 1.

• If 𝑓 ′𝑖 ≺𝑀
𝐹

𝑓 𝑗 , then 𝑓 ′ ≺𝐹 𝑓 and (≺𝑀
𝐹
)+ forms a rooted tree

on𝑀 .

• If 𝑓 ′𝑖 ∈ 𝑀 , then for each 𝑓 ∈ 𝐹 with 𝑓 ′ ≺𝐹 𝑓 it holds that

|{𝑓 𝑗 ∈ 𝑀 |𝑓 ′𝑖 ≺𝑀
𝐹

𝑓 𝑗 }| ∈ 𝜆𝐼
𝐹
(𝑓).

• If 𝑓 ′𝑖 ∈ 𝑀 , then it holds that |{𝑓 𝑗 ∈ 𝑀 |𝑓 ′𝑖 ≺𝑀
𝐹

𝑓 𝑗 }| ∈
𝜆𝐼
𝐺
(𝑓 ′).

• If 𝑓 ′𝑖 ∈ 𝑀 , then it holds that |{𝑓 ∈ 𝐹 |∃𝑓 𝑗 ∈ 𝑀 : 𝑓 ′𝑖 ≺𝑀
𝐹

𝑓 𝑗 }| ∈ 𝜆𝑇
𝐺
(𝑓 ′).

• If for each 𝑓 , 𝑓 ′ ∈ 𝐹 with (𝑓 ,L,L′, 𝑓 ′) ∈ 𝜙𝑅 , it holds that

#𝑓 ∈ L implies #𝑓 ′ ∈ L′
.

• If for each 𝑓 , 𝑓 ′ ∈ 𝐹 with (𝑓 ,L,L′, 𝑓 ′) ∈ 𝜙𝑋 , it does not

hold that #𝑓 ∈ L and #𝑓 ′ ∈ L′
.

It is important to note that different valid configurations (𝑀, ≺𝑀
𝐹

), (𝑀, ≺𝑀 ′
𝐹

) may exist that only differ in the relations ≺𝑀
𝐹

and ≺𝑀 ′
𝐹

,

while their multisets are equal. Concerning our example, the same

global number of instances of type Player may be selected in two

different configurations (e.g., 6), while the composition between

teams may vary. However, if we omit the relation ≺𝑀
𝐹

and only

consider multiset 𝑀 , this does not guarantee that every possible

other relation ≺𝑀 ′
𝐹

also leads to a valid configuration. For instance,

having a configuration with two instances of Team and Leader, it
is crucial for validity that every Team instance is related to one

Leader instance, whereas a configuration in which one Team has

two Leaders and one none is invalid. In other words, one multiset-

based configuration may correspond to multiple valid as well as

multiple invalid instance-based configurations.

4 SAMPLING CARDINALITY-BASED FEATURE
MODELS

In this section, we describe how to adapt Boolean sampling criteria

to CFM.We first consider a direct adaption and illustrate why this is,

in general, infeasible. We then propose possible solutions to obtain

effective and scalable sampling criteria for CFM. We focus on one-

wise sampling criteria, considering each feature individually, and

briefly describe how to generalize to the 𝑘-wise case.

4.1 Valid Configuration Spaces of CFM
For a generally very large valid configuration space C, the goal of
Boolean sampling criteria is to select a small, yet representative,

subset S ⊆ C of configurations.

The definition of a valid configuration 𝐶 = (𝑀, ≺𝑀
𝐹
) of CFM

according to Def. 3.3 shapes the valid configuration space C (i.e., the

set of all valid configurations) of a given CFM. Similar to Boolean

feature models, we define some semantic properties of CFM such

as consistency (i.e., does C contain at least one valid configuration?).

Our running example in Fig. 1 is obviously consistent, as we have

already described a valid configuration (see Figs. 1 and 2). In ad-

dition, CFMs exhibit semantic properties not present in Boolean

feature models. For instance, the occurrence of * in cardinality con-

straints may lead to unbounded models (i.e., C contains an infinite

number of valid configurations). Our running example in Fig. 1 is

indeed unbounded due to Player. Finally, we generalize the notion
of dead features from Boolean feature models to dead cardinality
in CFM: Cardinality 𝑘 ∈ 𝜆𝐼

𝐹
(𝑓) is dead for feature 𝑓 if C does not

contain any configuration 𝐶 ∈ C in which #𝑓 = 𝑘 holds. In our

running example, feature Team is annotated by feature instance

cardinality of (2, ∗). However, due to group instance cardinality

constraint (3, 9) and the group type cardinality constraint (2, 2), at
most 8 instances of this feature may be selected. Thus, the whole

cardinality interval (9, ∗) for feature Team is dead.

4.2 One-Wise CFM Sampling
In case of Boolean feature models, one of the most basic sampling

criteria (besides uniform random sampling) is one-wise combinato-

rial feature interaction coverage. This criterion requires that every

valid valuation (i.e., selection (0) and deselection (1)) of every fea-

ture 𝑓 ∈ 𝐹 is covered by at least one configuration𝐶 ∈ 𝑆 in a sample

𝑆 ⊆ C. Adapting this notion for CFM would require covering ev-

ery possible multiplicity value #𝑓 ∈ {0, 1, ..., 𝑘} of every feature 𝑓

across the CFM sample. However, this adaption is not feasible for

the following reasons, corresponding to the research challenges

described in Sect. 2:

(RC1) If the valid cardinality interval of 𝑓 is unbounded, no maxi-

mum value 𝑘 exists and the resulting samples S are infinite.

(RC2) If the valid cardinality interval of 𝑓 contains dead cardinali-
ties, then some values between 0 and 𝑘 cannot be covered in

a sample.

(RC3) Even if the valid cardinality interval of 𝑓 contains only

finitely many values, the number of the 𝑘 non-dead car-

dinality values of 𝑓 may still be too large to be completely

sampled.

All these issues are present in our running example in Fig. 1. In

the following, we propose counter-measures to tackle each of the

research challenges.

RC1: Bounded Configuration Spaces. To handle infinite config-

uration spaces, replace all occurrences of * in feature cardinality

constraints (𝑙, *) by proper finite upper bound values. We distin-

guish between false unbounded and true unbounded feature instance
cardinalities.

An unbounded instance cardinality interval (𝑙, *) of a feature
𝑓 is factually bounded to a maximum valid multiplicity value𝑚

due to other constraints. In this case, we can safely replace (𝑙, *)
by (𝑙,𝑚) without changing the valid configuration space. This is

actually a special case of what we will discuss for RC2 (see below)

as every cardinality 𝑘 > 𝑚 of feature 𝑓 is dead.
Otherwise, the instance cardinality interval (𝑙, *) of 𝑓 is true

unbounded, as every multiplicity value 𝑘 > 𝑙 is indeed valid for 𝑓 .

51

Sampling Cardinality-Based Feature Models VaMoS 2024, February 07–09, 2024, Bern, Switzerland

Team

... Members

Player Leader

Scattered Strategy Specific Strategy

⟨1,1⟩

⟨0,8⟩ ⟨1,1⟩

⟨0,1⟩ ⟨0,1⟩⟨1,8⟩

⟨5,5⟩ ⟨5,8⟩

⟨1,8⟩

[2,2]

⟨2,2⟩

[1,2]
⟨1,9⟩

[1,1]
⟨1,1⟩

Figure 3: Normalized Excerpt of the Running Example

To handle these cases, we rely on a useful semantic property of

CFM [9, 23].

Proposition 4.1. Given a CFM over 𝐹 according to Def. 3.2, there
exists a finite integer value 𝑀 such that for each dead cardinality
value 𝑘 of every unbounded feature 𝑓 ∈ 𝐹 , it holds that 𝑘 ≤ 𝑀 .

This so-called Big-𝑀-value can be used as an upper-bound value

replacing * in every true unbounded instance cardinality interval

(𝑙, *). This alters the valid configuration space to a finite sub-space.

However, it is ensured that this sub-space covers all presumably

relevant (i.e., non-convex) regions of the whole configuration space.

RC2: Normal Form Representation. To avoid invalid configura-

tions in one-wise samples, we have to make interval gaps explicit

caused by dead cardinality values, potentially hidden in simple fea-

ture instance cardinality intervals. To this end, we employ another

useful property of CFMs [23].

Proposition 4.2. Given a CFM over 𝐹 according to Def. 3.2, there
exists an equivalent CFM’ without dead feature instance cardinalities.

The transformation of a CFM into its so-called normal form CFM’

includes replacing (1) false unbounded cardinality constraints ∗
by factual upper bounds𝑚 and (2) dead cardinality values within

simple intervals by compound intervals excluding these values.

Figure 3 shows an excerpt from the normalized CFM’ for our

running example CFM, where all transformations are highlighted

in red. For instance, the feature instance cardinality of Team has

been replaced by the compound interval ⟨0, 4⟩⟨6, 8⟩ excluding the
interval gap 5 and replacing the false unbounded upper bound by

8.

A safe global upper bound value 𝑀 can be approximated by

multiplying the upper bounds of all feature instance cardinalities

along all branches containing no * from the root to all leaf nodes,

and to pick the maximum value. For our example, the value for𝑀

results from the branch Multiplayer Game, Team, Members, Leader,
Scattered Strategy which yields 1 ∗ 8 ∗ 1 ∗ 1 ∗ 1 = 8. All occurrences

of * in cross-tree constraints may be replaced by𝑀 , while all group

instance cardinalities having upper bound * may be replaced by

the sum of the upper bounds of the group members.

After this transformation, we obtain a CFM’ with a finite valid

configuration space C′
, for which we are able to calculate the size.

For instance, for two teams each having up to 8 possible multiplicity

values for feature Player (i.e., 0 to 4 and 6 to 8), the number of

possible combinations for two teams is

(
8+2−1

2

)
= 36. If we sum

this up for any valid number of teams, we get a total number of

36+120+330+62, 016+191, 862+544, 793 = 799, 157 configurations

part of the valid configuration space.

We next describe two measures of our one-wise coverage for

CFM to significantly reduce the sample size compared to the size

of the valid configuration space.

RC3: Multiset Coverage. As described in Sect. 3.2 and illustrated

in Fig. 2, the valid configuration space of a CFM may contain a

high number of similar configurations (𝑀, ≺𝑀
𝐹
), (𝑀, ≺′𝑀

𝐹
) having

the same multisets, differing in the parent-child relations ≺𝑀
𝐹
. Our

one-wise criterion is only concerned with the number of feature

instances to be sampled, such that we can drastically reduce sample

sizes by dropping the relation ≺𝑀
𝐹

from the configurations. By C, we
denote the valid configuration space of a CFM using multiset-based

configuration semantics.

Reconsidering our example with two teams, we have an overall

number between 0 and 16 players, resulting in 17 multiset config-

urations instead of 36 for two teams. Summing this up for every

possible number of teams, we have 17+25+33+384+504+640 = 1603

distinct configurations to be sampled which is considerably smaller

than before, but still very large.

RC3: Boundary-Interior Coverage. To further reduce sample sizes,

we employ concepts from boundary-interior testing [4]. Bound-

ary interior testing is based on the assumption that boundaries

of intervals are particularly error-prone and should be prioritized

during test input selection. We adopt this principle to CFM with

the normal form representation CFM’. For every feature 𝑓 , CFM’

makes explicit the intervals and corresponding boundaries of all

valid multiplicity values.

For instance, in our running example, the global minimum num-

ber of instances of feature Player is 0, while the global maximum

number is 64 (8 teams having 8 players each). Both extremes should

be covered as being located at the left-outer and right-outer bound-
aries of the instance cardinality interval of feature Player. Concern-
ing the coverage of the interior boundaries of cardinality intervals,

we utilize the compound interval representation. For instance, to

cover the interior boundaries of the compound interval ⟨2, 4⟩⟨6, 8⟩
of feature Team, we should at least sample configurations with 4

instances and with 6 instances.

To sum up, we define our one-wise CFM sampling criterion.

Definition 4.3 (One-wise CFM Sample). Let C be the valid multiset

configuration space of a normalized CFM over 𝐹 . A subset S ⊆ C
is a one-wise sample for CFM if for each 𝑓 ∈ 𝐹 the following holds:

(1) if ∃𝑀′ ∈ 𝐶 : 𝑀′ (𝑓) = 𝑏𝑙 and ∀𝑀′′ ∈ 𝐶 : 𝑀′′ (𝑓) ≠ 𝑏𝑙 + 1

then𝑀′ ∈ S with𝑀′ (𝑓) = 𝑏𝑙 .

(2) if ∃𝑀′ ∈ 𝐶 : 𝑀′ (𝑓) = 𝑏𝑟 and ∀𝑀′′ ∈ 𝐶 : 𝑀′′ (𝑓) ≠ (𝑏𝑟) − 1

then𝑀′ ∈ S with𝑀′ (𝑓) = 𝑏𝑟 .

The criterion requires each global interval gap 𝑏𝑙] [𝑏𝑟 of every
feature 𝑓 to be covered at the left boundary 𝑏𝑙 (1) and the right

boundary 𝑏𝑟 . Note that this definition also includes coverage of the

left-most boundary (e.g., 𝑏𝑟 = 0) and the right-most boundary (e.g.,

𝑏𝑙 = 𝑀) of the global cardinality interval of 𝑓 .

52

VaMoS 2024, February 07–09, 2024, Bern, Switzerland Lukas Güthing, Mathis Weiß, Ina Schaefer, Malte Lochau

Broa. Uni. T. WiFi BT P. L. Sca. Spec.

𝑐0 1 0 2 0 2 0 2 2 0

𝑐1 1 0 4 0 4 4 4 4 0

𝑐2 0 1 6 6 0 6 6 0 6

𝑐3 0 1 8 8 0 64 8 0 8

𝑐4 1 0 8 0 8 0 8 8 0

Table 1: Complete and Minimal One-wise Sample

A complete and minimal one-wise sample for our running ex-

ample containing five configurations is shown in Tab. 1. Features

with an instance cardinality of (1,1) are omitted.

The first four configurations cover the boundaries and interiors

of Team (multiplicities 2, 4, 6 and 8). The additional configuration

covers the maximum multiplicity of BT and WiFi which require

eight teams but cannot be covered at the same time.

4.3 Notes on K-Wise CFM Sampling
Similar to the Boolean case, the proposed criterion for one-wise

CFM samples gives rise to the definition of 𝑘-wise CFM sampling

criteria. For instance, for the case 𝑘 = 2, every pair of multiplicity

valuations #𝑓 , #𝑓 ′ according to Def. 4.3 for any two features 𝑓 , 𝑓 ′ ∈
𝐹 is sampled. However, similar to pairwise combinatorial feature

interaction coverage for Boolean feature models, we have to check

each pair for validity. Considering the feature pair Player and Team
in our running example, the maximum number of 64 instances

of type Player only builds a valid pair with 8 instances of Team,

whereas all other valuations selected for one-wise (i.e., 2, 4 and 6)

lead to invalid combinations.

There might be critical valid combinations of instance multi-

plicity values of 𝑘 different features that are not apparent in the

one-wise case. For example, sampling 4 teams with a maximum

number of players per team (32 in total) would cover boundary

cases depending on a specific number of parent feature instances.

Analogously, interval gaps may only appear for specific 𝑘-wise

combinations of feature multiplicities. While such cases are not

contained in our running example, it makes sense to enforce cov-

erage of such globally hidden interval gaps by enhanced k-wise
sample criteria for CFMs. However, we assume that this leads to

quite involved cases, which we plan to investigate in more depth

in future work.

5 IMPLEMENTATION AND FEASIBILITY
STUDY

Due to the novelty of the overall approach, our goal is to show

feasibility of one-wise CFM sampling. Our second evaluation goal

is to assess the run time and sample size.

Our prototypical implementation is based onClafer
1
andCardy-

GAn
2
[15, 23]. The CardyGAn boundanalyzer detects cardinality

gaps but does not automatically produce the normal form. Further-

more, as neither CardyGAn nor Clafer natively support compound

intervals, we are limited to one-wise sampling of CFM with convex

valid configuration spaces. Note that this limitation means that we

can not tackle RC2 with this implementation yet, but plan on doing

1
https://www.clafer.org/

2
https://github.com/Echtzeitsysteme/cardygan

so in future work. The input models are encoded as Clafer mod-

els. The boundanalyzer analyzes the global minimum/maximum

interval bounds per feature. Which are to be covered according

to Def. 4.3. To retrieve a valid configuration for each bound, we

constrain the feature in the Clafer model to one specific bound

and run the Clafer instance generator. The resulting set of

generated configurations is a complete one-wise sample. Note that

this prototype does not yet include any sample minimization steps.

Our implementation samples CFMs and obtains configurations

that cover all one-wise feature interactions of global cardinality

bounds. As depicted in Table 2, the overall number of valid instance-

based configurations rapidly increases even for simple models. The

number of multiset-based configurations, however, increases at a

much lower rate. As every feature in CFM with a convex configura-

tion space has exactly one upper and one lower bound that has to

be covered, the number of cardinality values to be covered sums up

to only 2 ∗ |𝐹 |. Additionally, configurations generated to cover the

global upper bound of a child feature also cover the global upper

bound of the respective parent feature. This reduces the sample size

further. For each configuration space depicted in Fig. Table 2 a sam-

ple has at most the size 12, demonstrating the effective reduction of

sample size of the proposed sample criterion. The main issue is a

lack of scalability to larger models with large global interval bounds.

Table 3 depicts sampling of CFMs with increasing bounds and hi-

erarchy depths. The runtime of the Clafer instance generator,

and thus our sampling implementation, heavily depends on the

maximum global bound. As a result, sampling small models (w.r.t.

the number of features) with large bounds takes longer than larger

models with smaller bounds. In general, for increasing bounds and

hierarchy depth, the run time tends to grow exponentially. We find

Clafer not feasible for sampling larger CFMs. We therefore plan to

either improve Clafer or to build our own sampling tool for CFMs

based on recent SMT, CSP, and ILP solvers [22].

6 RELATEDWORK
Sampling criteria and sample-generation techniques have been ex-

tensively studied for Boolean feature models in the recent past [21].

In contrast, we are not aware of any existing work on sampling

CFM-like models. Basic criteria like uniform random sampling may

be useful for CFM sampling, while most other criteria cannot be

directly transferred to CFMs. These state-of-the-art criteria include

one-wise, pair-wise, and k-wise feature interaction coverage, par-

tially discussed in this paper. In contrast, more involved sample

criteria like most-enable-disable, all-one-disable, or one-enable that

focus on sampling corner cases might be promising for CFM sam-

pling, where we consider our approach as a proper basis.

Kaltenecker et al. [6] propose a distance-based sampling ap-

proach that might be adapted to CFM. This technique requires a

metric, assigning a distance value to every configuration. Guided by

a predefined probability distribution, configurations with specific

distances are generated evenly covering the configuration space.

Concerning sampling feature models beyond Boolean, Munoz

et al. [10] propose bit-blasting for feature models with numerical

features. While able to generate uniform random samples and to

count the number of valid configurations, this approach only works

for numerical features, whereas multi-instantiation is out of scope.

53

https://www.clafer.org/
https://github.com/Echtzeitsysteme/cardygan

Sampling Cardinality-Based Feature Models VaMoS 2024, February 07–09, 2024, Bern, Switzerland

#valid configurations

Hierarchy instance-based multiset-based #value

level 1..3 1..5 1..3 1..5 schemata

1 3 5 3 5 2

2 19 251 15 65 4

3 1539 8.8 ∗ 109 151 2885 6

4 6 ∗ 108 4.4 ∗ 1047 3495 492545 8

5 3.8 ∗ 1025 1.4 ∗ 10236 198503 3.4 ∗ 108 10

6 9 ∗ 1075 > 1.8 ∗ 10308 2.9 ∗ 107 9.8 ∗ 1011 12

Table 2: Number of valid configurations of CFM models with increasing nesting level and bounds

Hierarchy run time for bound (s)

level 1..1 1..3 1..5 1..10

1 0.5 0.2 0.2 0.2

2 0.2 0.4 0.4 0.3

3 0.3 0.4 0.6 4.9

4 0.3 0.7 5.7 15460.6

5 0.3 2.7 1852.8

6 0.4 49.6

Table 3: Run times for increasing hierarchy level and bounds

There are several works on optimizing non-boolean configurations

of software product lines [1, 11, 24]. Again, all these techniques

consider numerical features and are thus not transferable to CFM.

Sousa et al. [16] highlight the problem of different interpretations of

cardinalities in CFMs. However, their work does not mention sam-

pling or sample generation for the different notions of cardinalities.

Another branch of research does not particularly focus on CFM

but on instance-based structural modeling formalisms in general.

Sullivan et al. [17] propose AUnit for Alloy, enabling automated

generation of coverage-based test suits for Alloy models. For a

given model, the approach generates test cases (instances) cover-

ing specific parts of the model definition. AUnit differs from our

approach in multiple aspects. The goal of AUnit is to test whether

the model is correctly defined, which requires a specification of the

expected behavior. In contrast, sampling is concerned with testing

products, not the configuration model. An Alloy model may define

an unbounded number of products which is handled by AUnit by
requiring a manually specified bound (scope). In contrast, due to

the structural properties of CFM, we automatically determine a

finite bound for a model.

7 CONCLUSION AND FUTUREWORK
In this paper, we tackled the open problem of sampling CFM. To this

end, we had to deal with several challenges obstructing a straight-

forward application of established sampling approaches for Boolean

feature models. These challenges include false/true unbounded and

non-convex configurations spaces of CFM as well as a drastically

increased combinatorial explosion problem. Our proposed criterion

is inspired by 𝑘-wise combinatorial coverage criteria as well as by

boundary interior testing. Using our implementation, we were able

to show realizability of our proposed approach and to gather first

insights into run-time factors and scalability.

In future work, we plan to develop fully-fledged tool support for

CFM modeling and sampling, including proper handling of inter-

val gaps. Building upon the proposed one-wise sample criterion,

we want to investigate more complex criteria like pairwise and

k-wise. Finally, we want to overcome the lack of example models

by conducting case studies.

ACKNOWLEDGMENTS
We thank our reviewers for their constructive feedback. We also

want to thankAlexander Lieb andHendrick Göttmann for providing

source code believed lost to support our evaluation. This work has

been funded by the German Research Foundation within the project

Co-InCyTe (SCHA1635/15-1 and LO 2198/4-1).

REFERENCES
[1] Michał Antkiewicz, Kacper Bąk, Alexandr Murashkin, Rafael Olaechea, Jia

Hui (Jimmy) Liang, and Krzysztof Czarnecki. 2013. Clafer Tools for Prod-

uct Line Engineering. In Proceedings of the 17th International Software Prod-
uct Line Conference Co-Located Workshops (Tokyo, Japan) (SPLC ’13 Work-
shops). Association for Computing Machinery, New York, NY, USA, 130–135.

https://doi.org/10.1145/2499777.2499779

[2] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Formalizing

Cardinality-Based Feature Models and Their Specialization. 10 (2005), 7–29.

[3] Krzysztof Czarnecki and ChangHwan Peter Kim. 2005. Cardinality-Based Feature

Modeling and Constraints: A Progress Report. 16–20.

[4] William E. Howden. 1975. Methodology for the Generation of Program Test

Data. IEEE Trans. Computers 24, 5 (1975), 554–560. https://doi.org/10.1109/T-

C.1975.224259

[5] Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michal Antkiewicz,

Krzysztof Czarnecki, and Andrzej Wasowski. 2018. Clafer: Lightweight Model-

ing of Structure, Behaviour, and Variability. https://arxiv.org/pdf/1807.08576v1.

(2018).

[6] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo,

and Sven Apel. 2019. Distance-Based Sampling of Software Configuration Spaces.

1084–1094. https://doi.org/10.1109/ICSE.2019.00112

[7] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer

Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Software Engineering Institute.

[8] Raphael Michel, Andreas Classen, Arnaud Hubaux, and Quentin Boucher. 2011.

A Formal Semantics for Feature Cardinalities in Feature Diagrams. 82–89. https:

//doi.org/10.1145/1944892.1944902

[9] Regina Hunter Mladineo. 1994. Model Building in Mathematical Programming

(H. P. Williams). SIAM Rev. 36, 2 (1994), 313–315. https://doi.org/10.1137/1036082
[10] Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory. 2019.

Uniform Random Sampling Product Configurations of Feature Models That Have

Numerical Features. 289–301. https://doi.org/10.1145/3336294.3336297

[11] Rafael Olaechea, Steven Stewart, Krzysztof Czarnecki, and Derek Rayside. 2012.

Modelling and Multi-Objective Optimization of Quality Attributes in Variability-

Rich Software. In Proceedings of the Fourth International Workshop on Nonfunc-
tional System Properties in Domain Specific Modeling Languages (Innsbruck, Aus-
tria) (NFPinDSML ’12). Association for Computing Machinery, New York, NY,

USA, Article 2, 6 pages. https://doi.org/10.1145/2420942.2420944

54

https://doi.org/10.1145/2499777.2499779
https://doi.org/10.1109/T-C.1975.224259
https://doi.org/10.1109/T-C.1975.224259
https://arxiv.org/pdf/1807.08576v1
https://doi.org/10.1109/ICSE.2019.00112
https://doi.org/10.1145/1944892.1944902
https://doi.org/10.1145/1944892.1944902
https://doi.org/10.1137/1036082
https://doi.org/10.1145/3336294.3336297
https://doi.org/10.1145/2420942.2420944

VaMoS 2024, February 07–09, 2024, Bern, Switzerland Lukas Güthing, Mathis Weiß, Ina Schaefer, Malte Lochau

[12] Clément Quinton, Daniel Romero, and Laurence Duchien. 2013. Cardinality-

based feature models with constraints: a pragmatic approach. In 17th International
Software Product Line Conference, SPLC 2013, Tokyo, Japan - August 26 - 30, 2013,
Tomoji Kishi, Stan Jarzabek, and Stefania Gnesi (Eds.). ACM, 162–166. https:

//doi.org/10.1145/2491627.2491638

[13] Björn Richerzhagen, Dominik Stingl, Ronny Hans, Christian Gross, and Ralf

Steinmetz. 2014. Bypassing the cloud: Peer-assisted event dissemination for

augmented reality games. In 14th IEEE International Conference on Peer-to-Peer
Computing, P2P 2014, London, United Kingdom, September 9-11, 2014, Proceedings.
IEEE, 1–10. https://doi.org/10.1109/P2P.2014.6934296

[14] Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philippow. 2002. Ex-

tending Feature Diagrams with UML Multiplicities.

[15] Thomas Schnabel, Markus Weckesser, Roland Kluge, Malte Lochau, and Andy

Schürr. 2016. CardyGAn: Tool Support for Cardinality-Based Feature Models. In

Proceedings of the 10th InternationalWorkshop on Variability Modelling of Software-
Intensive Systems (Salvador, Brazil) (VaMoS ’16). Association for Computing

Machinery, New York, NY, USA, 33–40. https://doi.org/10.1145/2866614.2866619

[16] Gustavo Sousa, Walter Rudametkin, and Laurence Duchien. 2016. Extending

Feature Models with Relative Cardinalities. In Proceedings of the 20th Interna-
tional Systems and Software Product Line Conference (Beijing, China) (SPLC ’16).
Association for Computing Machinery, New York, NY, USA, 79–88. https:

//doi.org/10.1145/2934466.2934475

[17] Allison Sullivan, Kaiyuan Wang, and Sarfraz Khurshid. 2018. AUnit: A Test

Automation Tool for Alloy. In 11th IEEE International Conference on Software
Testing, Verification and Validation, ICST 2018, Västerås, Sweden, April 9-13, 2018.
IEEE Computer Society, 398–403. https://doi.org/10.1109/ICST.2018.00047

[18] Chico Sundermann, Kevin Feichtinger, Dominik Engelhardt, Rick Rabiser, and

Thomas Thüm. 2021. Yet Another Textual Variability Language? A Community

Effort Towards a Unified Language. 136–147. https://doi.org/10.1145/3461001.

3471145

[19] Chico Sundermann, Kevin Feichtinger, José A. Galindo, David Benavides, Rick

Rabiser, Sebastian Krieter, and Thomas Thüm. 2022. Tutorial on the Universal

Variability Language. 260:1. https://doi.org/10.1145/3546932.3547024

[20] Chico Sundermann, Stefan Vill, Thomas Thüm, Kevin Feichtinger, Prankur Agar-

wal, Rick Rabiser, José A. Galindo, and David Benavides. 2023. UVLParser:

Extending UVL with Language Levels and Conversion Strategies. In Proceedings
of the 27th ACM International Systems and Software Product Line Conference -
Volume B (Tokyo, Japan) (SPLC ’23). Association for Computing Machinery, New

York, NY, USA, 39–42. https://doi.org/10.1145/3579028.3609013

[21] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge, Moham-

mad Reza Mousavi, and Ina Schaefer. 2018. A Classification of Product Sampling

for Software Product Lines. 1–13. https://doi.org/10.1145/3233027.3233035

[22] Markus Weckesser, Malte Lochau, Michael Ries, and Andy Schürr. 2018. Mathe-

matical Programming for Anomaly Analysis of Clafer Models. In Proceedings of
the 21th ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems (Copenhagen, Denmark) (MODELS ’18). Association for

Computing Machinery, New York, NY, USA, 34–44. https://doi.org/10.1145/

3239372.3239398

[23] Markus Weckesser, Malte Lochau, Thomas Schnabel, Björn Richerzhagen, and

Andy Schürr. 2016. Mind the Gap! Automated Anomaly Detection for Potentially

Unbounded Cardinality-Based Feature Models. https://doi.org/10.1007/978-3-

662-49665-7_10

[24] Yi Xiang, Yuren Zhou, Zibin Zheng, and Miqing Li. 2018. Configuring Software

Product Lines by Combining Many-Objective Optimization and SAT Solvers.

ACM Trans. Softw. Eng. Methodol. 26, 4, Article 14 (feb 2018), 46 pages. https:

//doi.org/10.1145/3176644

55

https://doi.org/10.1145/2491627.2491638
https://doi.org/10.1145/2491627.2491638
https://doi.org/10.1109/P2P.2014.6934296
https://doi.org/10.1145/2866614.2866619
https://doi.org/10.1145/2934466.2934475
https://doi.org/10.1145/2934466.2934475
https://doi.org/10.1109/ICST.2018.00047
https://doi.org/10.1145/3461001.3471145
https://doi.org/10.1145/3461001.3471145
https://doi.org/10.1145/3546932.3547024
https://doi.org/10.1145/3579028.3609013
https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1145/3239372.3239398
https://doi.org/10.1145/3239372.3239398
https://doi.org/10.1007/978-3-662-49665-7_10
https://doi.org/10.1007/978-3-662-49665-7_10
https://doi.org/10.1145/3176644
https://doi.org/10.1145/3176644

	Abstract
	1 Introduction
	2 Background
	3 Cardinality-Based Feature Models
	3.1 Abstract Syntax
	3.2 Configuration Semantics

	4 Sampling Cardinality-Based Feature Models
	4.1 Valid Configuration Spaces of CFM
	4.2 One-Wise CFM Sampling
	4.3 Notes on K-Wise CFM Sampling

	5 Implementation and Feasibility Study
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

