
Towards Feature-based Versioning for Musicological Research
Paul Grünbacher

Institute of Software Systems Engineering
Johannes Kepler University Linz

4040 Linz, Austria
paul.gruenbacher@jku.at

Markus Neuwirth
Institute for Theory and History

Anton Bruckner Privatuniversität Linz, Austria
4040 Linz, Austria

markus.neuwirth@bruckneruni.at

ABSTRACT
This paper discusses the management of revisions and variants of
musical works for the context of musicological research. Domain-
specific languages (DSLs) are a fundamental tool in music notation
and analysis, as they enable the notation of music and also support
music analysis when investigating particular structural properties
of melody, harmony, rhythm, or form. However, the fields of music
philology and music analysis still lack a systematic approach for
uniformlymanaging revisions and variants of musical compositions.
This research-in-progress paper proposes the use of feature-based
versioning to streamline the management of revisions and variants
in music artifacts. We introduce an illustrative example and present
research challenges regarding variability and feature-based version-
ing for musicological research. We present a preliminary approach
which involves mapping features to specific parts of musical works
and musical analyses, thereby facilitating the composition of new
variants based on selected features, a prerequisite for enhanced
research in music philology and music analysis.

CCS CONCEPTS
• Software and its engineering → Software configuration
management and version control systems; Software product
lines; Domain specific languages; • Applied computing →
Performing arts.

KEYWORDS
music and variability, feature-based version control, domain-specific
languages, musicology
ACM Reference Format:
Paul Grünbacher and Markus Neuwirth. 2024. Towards Feature-based Ver-
sioning for Musicological Research. In 18th International Working Conference
on Variability Modelling of Software-Intensive Systems (VaMoS 2024), Feb-
ruary 07–09, 2024, Bern, Switzerland. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3634713.3634723

1 INTRODUCTION
As is common in an artistic field and typical of any creative process,
musical works frequently exist in numerous versions, which often
reflects their history and genesis during composition, publication,
and performance. Composers, copyists, and editors often markup

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

VaMoS 2024, February 07–09, 2024, Bern, Switzerland
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0877-0/24/02.
https://doi.org/10.1145/3634713.3634723

different revisions of manuscripts, e.g., to correct apparent errors; to
indicate the regularization of irregular, non-standard, or eccentric
features; or to handle editorial additions, suppressions, and omis-
sions. In particular, versions are either revisions caused by changes
or editorial markups made over time, or variants, e.g., different
editions of the same musical work. While revisions usually concern
minor differences (e.g., stem directions), variations may involve
more significant differences (e.g., extra measures or omissions of
entire sections). A well-known example is the excessive number
of revisions and variants of Anton Bruckner’s symphonies, which,
in the case of the Third Symphony, primarily served to reduce the
extraordinary length of the work’s original version.

As a result, revisions and variants of musical works are a major
topic in musicological research: Music philology describes and edits
the revisions that exist regarding a particular work of music [14].
Music analysis addresses the variants and patterns, e.g., of motives,
formal designs, and voice-leading idioms, that appear within a
particular work or across a corpus of works [6]. This may also
involve tracing the creation of a musical work in all its recorded
details—from the first sketches to the complete text—to investigate
processes of compositional thought [30].

Currentmusicological research adopts domain-specific languages
(DSLs) [21, 26, 34] for representing both musical scores and sup-
porting music analyses:

DSLs for musical scores are a prerequisite for the notation of any
music, i.e., "visual analogues of musical sound, either as a record
of sound heard or imagined, or as a set of visual instructions for
performers" [3]. Examples are the Music Encoding Initiative (MEI),
MusicXML, LilyPond, or Humdrum. The DSL LilyPond [23] allows
engravers to focus on defining the actual music instead of the score’s
layout and the detailed rules of manual engraving [13]. The MEI is
an open-source community effort for encoding musical documents
in a machine-readable format [32] and also defines best practices
for representing a broad range of musical documents and structures.
The MEI guidelines cover the creation of digital scholarly editions
of music.

DSLs for music analysis are used bymusicologists to encode anno-
tations of musical features such as harmony, meter, or form. Exam-
ples of annotations of harmony are the DCML standard [18, 29] and
the Romantext Format [12, 33]. The convenience and expressive-
ness of such DSLs reduce the gap between high-level concepts used
by the music analysts and low-level concepts needed for engraving
music and implementing automated analyses.

As pointed out, the DSL code of musical artifacts evolves in time
(leading to revisions) and in space (leading to variants), thus result-
ing in challenges for version control and variability management.
For instance, analyzing the genesis and history of compositions
may require creating multiple variants and score layouts of the

77

https://doi.org/10.1145/3634713.3634723
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3634713.3634723
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3634713.3634723&domain=pdf&date_stamp=2024-02-07

VaMoS 2024, February 07–09, 2024, Bern, Switzerland Paul Grünbacher and Markus Neuwirth

Abstract representation of Fonte pattern

Instantiation of Fonte in Mozart’s K 279/i

44
V(64)}

16 !
!

V|HC

"
"
!
"

! !

#
{

!
"! !

$!
!
!! %

&
VV7/ii

! !' ! ! !' ! !
!

!

!!!!

(

!!
!!)

! !
! !!

44

ii

!!!!
"
!!!!"!

#
!
"! !*

+! !
!! %

&
V7

! !' ! ! !' ! !
!

!

!!!!

(
!!
!!)

!! !

!,
I}{

-! !' !

!
p
.

!
I6

!

!.

!!

!

!
IV

/

I6

!!

!

!

' !
"

!

!

! !

!

!

!

!

!

Thoroughbass

Harm. steps

Melod.
steps

DCML Annotations

Basic music features
(notes, slurs, dynamics,

articulations, …)

whole-tonelower

V.V7/ii

Figure 1: The excerpt from Mozart’s K. 279/i covers basic music features like notes, slurs, and dynamics; features for music
analysis including DCML annotations of tonal harmony; and a possible instantiation of the Fonte voice-leading pattern
represented in abstract form above the score.

same musical work, and the variants and revisions may exist at
different levels of granularity. At the same time, musicologists need
to manage variants and revisions of annotations as well as editorial
markups and interventions [32].

In the field of software engineering, features are used to manage
both revisions and variants of digital artifacts [1, 10]. In particular,
feature-oriented techniques map features to the parts of the arti-
facts realizing them. These mappings can then be used to compose
new variants of the artifacts based on a selection of the desired fea-
tures. However, this remains challenging, as the mappings cannot
be defined fully automatically, and feature characteristics such as
their granularity, scattering, and degree of interaction have a major
impact on the process of composing them [19, 20, 35].

Considerable advances have been made in modeling and analyz-
ing the genesis and versions of musical works (e.g., Beethoven’s
Werkstatt [8, 22] or Bruckner’s compositional studies [31]). Also,
standards for encoding music explicitly state requirements for man-
aging versions [32]. However, a systematic, feature-based approach
to uniformly managing both revisions and variants has so far not
been investigated in the area of musicological research. Thus many
opportunities arise for improving the state-of-the-art of managing
revisions and variants in the fields of music philology and analysis.

This research-in-progress paper motivates our ongoing research
based on an illustrative example (Section 2). We then outline re-
search challenges on variability and feature-based versioning for
musicological research (Section 3). We describe our preliminary
approach, illustrated with examples. Finally, we provide an outlook
on our future work.

2 ILLUSTRATIVE EXAMPLE: MUSIC
FEATURES AND VERSIONING

The question of what constitutes a feature generally depends on
the application context and the domain of interest [4]. In software
engineering, a feature has been described as “a distinguishable
characteristic of a concept (system, component, etc.) that is relevant
to some stakeholder of the concept” [9]. However, what are the
distinguishable characteristics of music relevant to a musicologist?

Musicological researchers and music engravers use DSLs and
their accompanying software tools to define scores and score an-
notations. We illustrate the idea of music features with an excerpt
from Wolfgang Amadé Mozart’s first piano sonata, K. 279 (first
movement, mm. 16–21; see Fig. 1):

After a short break, the second theme opens up with a non-tonic
harmony (V7/ii; m. 17), fromwhich the music leads back to the tonic
of the local key of G major (the dominant key) via a descending-
fifth sequence (V7/ii ii V7 I). These harmonic events are expressed
here using the DCML standard for harmonic annotation. A within-
movement variant of this segment appears in the recapitulation (mm.
69–75; not shown in Fig. 1), which features a number of interesting
modifications (e.g., mixed transposition by fourth/fifth, metrical
shift by half-bar, and several melodic variations). Furthermore, the
excerpts can be seen to represent variation on a different scale,
one transcending the piece level: it instantiates a voice-leading
pattern known as the Fonte, which has been in use since about
the last quarter of the 17th century and is still in use today. The
upper part of Fig. 1 shows the characteristic harmonic, melodic,
and formal features of the Fonte sequence: Harmonically, it can be
described as a subtype of a descending-fifth sequence (V7/ii ii V7 I);
melodically, it consists of two local 4̂ 3̂ progressions in the soprano,
each contrapuntally combined with local 7̂ 1̂ motions in the bass
(see the notes highlighted red); and formally, the Fonte consists of

78

Towards Feature-based Versioning for Musicological Research VaMoS 2024, February 07–09, 2024, Bern, Switzerland

two halves, the latter of which (in minor) appears one whole-tone
lower (in major) than the former [e.g., 11, 28]. The example shows
that music features address different aspects:

Basic music features concern properties like pitches, durations,
dynamics, or articulations. Variability management for basic music
features has been investigated in our earlier research. For instance,
we experimented with a feature-based version control system [25]
to support the composition of music scores encoded in the DSL
LilyPond based on music features [16], leaving the annotations
required for musicological research out of account. In addition,
we studied the variability-rich process of automatically rendering
scores to different end-user devices [15]. We benefit from these
findings to manage variability and rendering at different levels of
abstraction.

High-level music features, on the other hand, concern harmonies,
keys, voice-leading schemata, and formal designs, all of which are
addressed in the related fields of music theory/analysis, computa-
tional musicology, and music corpus research: Harmony annota-
tions, e.g., based on the DCML encoding standard, offer multiple
harmonic features such as global and local keys, chord type, root,
inversion, missing and added chord notes, and harmonic motion
over a pedal note. Voice-leading schemata as a characteristic compo-
nent of Western musical styles have been explored in the research
project “From Bach to the Beatles” [28]. Annotations of musical
form could be based on an extended version of an encoding stan-
dard introduced by Gotham and Ireland [12]. Based on such expert
annotations, large datasets can then be analyzed in order to uncover
characteristic stylistic patterns as, e.g., shown in [27].

3 RESEARCH CHALLENGES
Earlier research shows that musical features need to be encoded at
different levels of granularity, are scattered across artifacts, and are
highly interacting [16]. This leads to three main research challenges
when considering the requirements of musicologists:

Understanding features for variability management in musicologi-
cal research. The ability to trace features in musical artifacts and
structures depends on the DSL used to encode the music, the notion
of music features, and the workflow of musicologists. While initial
studies suggest that feature-oriented techniques can work for basic
features [15], it remains unclear to what extent they might be useful
for high-level and more complex features. For instance, it is impor-
tant to model music annotations (e.g., of harmony or large-scale
form) as features such that musicologists can then create and ana-
lyze different variants of music works. Existing feature taxonomies
from musicology [e.g., 5] may serve as a starting point to identify
such feature candidates. An important area of our research is to
investigate the usefulness of feature-based techniques for musi-
cians, i.e., to find out if the automated integration of variants, as
accomplished by feature-based version control systems, allows to
derive semantically reasonable features for the discussed use cases.
It is also interesting to examine the extent to which the process will
be in need to rely on manual interventions.

Representing features with different properties in music artifacts.
Manually or automatically relating features to the artifacts real-
izing them [1] is difficult, as features are often fine-grained and

scattered, and may exist at different levels [4]: From an encoding
perspective, feature granularity concerns the size of individual el-
ements mapped to a particular feature. For instance, in Fig. 1 the
notes of the first voice of the left-hand part notated in the bass
clef represent a coarse-grained feature, while the articulation on a
single note represents a fine-grained feature. Feature modularity
means the number of different locations a feature is implemented
in. For instance, a header with global settings of Mozart’s K. 279/i is
highly modular and can be defined in a single place only, while the
slurs require scattered definitions in non-contiguous places in the
code. Further, features need to exist at different levels to support
versioning of high-level characteristics defined by musicologists
via manual or automated annotations (cf. the harmonic annotations
and the Fonte pattern in Fig. 1), as well as basic features expressed
in a music DSL.

Modeling and analyzing dependencies and interactions between
music features. Feature models use a tree-like structure to define
the hierarchical relationships between features, with more general
features at the top and more specific features at the bottom [10].
Feature models also capture constraints on the features, such as
mandatory, optional, or mutually exclusive features. These con-
straints help to validate the variants generated from an integrated
representation of music and annotations. However, to what extent
do the assumptions made about feature dependencies also hold in
the domain of musicology? For instance, how can the sometimes
complex relations between formal sections within a given piece of
music be modeled and managed? How are different kinds of fea-
tures related with each other? What are the core features in music
and what are its modifications? An example is the (generally highly
flexible) instantiation of the abstract representation of the Fonte
pattern shown in Fig. 1. Furthermore, one must consider feature
interactions, i.e., the case of one feature modifying or influencing
other features in defining overall behavior [35]. Such structural
interactions manifest themselves at the code level whenever code
needs to be included in a variant because of a combination of se-
lected (or unselected) features [2], i.e., DSL code needs to ensure
the correct joint working of the interacting features.

4 APPROACH
In our ongoing research, we aim at developing an approach that
comprises the following steps to address the above challenges:

Music Encoding. This step involves the selection or creation
of digital representations of scores. For instance, Fig. 2 shows a
code snippet of Mozart’s K. 279 (first movement, measure 16, right
hand) encoded in the music DSL Lilypond. This step is carried out
by incrementally committing the basic music features like notes of
instruments, dynamics, articulations, etc. to a feature-based version
control system.

Music Analysis and Annotation of Scores. Building on the
previous step, we use the DCML standard [18, 29], a DSL to add mu-
sic analytical annotations to the scores (e.g., harmony, voice-leading
schemata, and form). This step involves feature-based commits of
the DCML annotations, i.e., the high-level features. Fig. 2 shows
examples of such annotations for Mozart’s K. 279 (first movement,
measure 16). The DCML harmony annotation standard allows us
to account for a high degree of structural detail in the music. This

79

VaMoS 2024, February 07–09, 2024, Bern, Switzerland Paul Grünbacher and Markus Neuwirth

Music Encoding

Versions of
Scores and
Autographs

Music in DSL
LilyPond

Music Analysis and
Annotation of Scores

Versions of
Annotations and

Music

Automated Extractive
Feature-based

Analyses
ECCO: Feature-
based Version
Control System

Analyses and
Visualization of Music

Feature Properties

Feature-based
Composition and

Rendering

Rendered
Versions of
Scores and
Analyses

DCML
Annotations

LilyPond-DCML
Merger

Figure 2: Feature-oriented approach for managing revisions and variants of DSLs for music notation and music analysis.

concerns both the level of key and the level of the individual chords.
Keys occurring within a movement (“local keys”) are referenced
by means of Roman numerals in relation to the main key (e.g., I,
ii, iii, IV, etc. as the chords used within the diatonic major mode).
Temporary references to a key are expressed by “applied chords”
(e.g., V/V as the dominant of the dominant). With regard to the
level of chords, the standard allows one to encode the features of
“chord type” (major, minor, diminished, augmented, etc.), “chord
form” (such as a root-position chord or an inversion thereof), “sus-
pensions” (such as 6/4 temporarily replacing the third and the fifth
of a chord, as shown in Figure 2) and “added notes”, as well as
harmonic motion over a pedal. In addition, phrase endings can be
indicated by using curly brackets, and cadence types (such as full or
half cadences) appearing at phrase endings can be expressed by the
pipe symbol and the appropriate abbreviation (such as PAC, IAC,
HC, or DEC) after the phrase-final chord (for more details, see [18]).
Our current prototype involves a Python script integrating music
encoded in LilyPond with such DCML annotations. For instance,
the annotated score in Fig. 1 was automatically rendered based on
the output of this program.

Automated Feature-based Analyses. We analyze the com-
monalities and differences of the various versions of annotated
scores. Specifically, we use the intensional variation control sys-
tem ECCO providing feature-based mechanisms for automatically
tracing the location of features in artifacts and storing them in a
feature-based repository [25]. Specifically, ECCO determines the
code snippets shared between multiple versions of the DSL code
and creates mappings to features common in those versions. ECCO
also determines code snippets of the DSL code only existing in some

versions and creates mappings to features accordingly [24]. The
resulting feature-to-code mappings allow managing fine-grained
variants and thereby avoid feature branches or variant branches
known from extensional versioning systems like Git. Furthermore,
ECCO allows creating versions that have not been explicitly com-
mitted as such before. In our ongoing work we enhance ECCO to
the domain of music analysis, based our experiences of extending
ECCO to the DSL Lilypond [16].

Statistics and Visualization of Music Feature Properties.
We will study feature properties by inspecting the feature-to-code
mappings as well as highlighting differences in the versions with
regard to different feature properties, such as different degrees of
granularity and theoretical conceptions.

Feature-based Composition and Rendering. Variation con-
trol systems use features and composition rules to create arbitrary
versions. This means that with ECCO a user can at any time check-
out (combinations of) features stored in the repository to compose
arbitrary variants of a music artifact, even if they were not sub-
mitted as such to the repository before. Depending on the history
of the earlier committed features and their interactions, this can
then be used to fully automatically compose new variants. Such
sampling based on both intensional and extensional versioning [7]
allows to create certain parts or excerpts of annotated scores as a
pre-requisite for more sophisticated use cases for music analysis
(e.g., performing different analyses of the same passages). However,
manual effort may be needed to complete code for missing feature
interactions. We will use ECCO to compose and visualize different
versions of scores. This also includes rendering scores with attached
music annotations. For instance, Fig. 2 shows the measure 16 of

80

Towards Feature-based Versioning for Musicological Research VaMoS 2024, February 07–09, 2024, Bern, Switzerland

Mozart’s K. 279 (first movement) with some DCML annotations as
rendered by our prototype.

We have identified Anton Bruckner’s Third Symphony as a case
study for the evaluation of our approach. This choice is justified
by the fact that this symphony exists in no fewer than three major
versions and features a complex harmonic, voice-leading, and for-
mal structure in terms of intra-work relationships, which we shall
describe in terms of variants and patterns. The first version from
1872-73 happens to be the longest symphonic work in Bruckner’s
entire œuvre), and changes in the second and third versions (from
1878 and 1889, respectively) primarily serve to reduce the work’s
excessive length. In addition, we shall consider the D-minor Sym-
phony known as the “Annullierte,” which in several ways prefigures
the shape of the Third Symphony.

Overall, our goal to create a uniform approach for managing
revisions and variants in music analysis research is challenged by
the high number of musical revisions and variants results in many
features, which increases computational complexity; the need to
reconcile different views and perspectives when modeling vari-
ability both at the level of scores and the level of annotations as
required by musicologists; the modularity and granularity of music
features, which may render their analysis difficult; and the possibly
still important role of the human in the loop, caused by the limi-
tations in creating a fully automated approach for tracing music
features in the DSL code.

5 CONCLUSIONS AND FUTUREWORK
Our research is interdisciplinary in nature, and depends on ex-
pertise from and interactive collaboration between the fields of
musicology and software engineering. We expect that musicolog-
ical research will benefit from feature-based versioning of music
artifacts (both scores and analyses), as it allows for enhanced anal-
yses by the advanced management of revisions and variants. Also,
it will combine philology and analysis, which are usually carried
out as separate activities. We expect that our results will be useful
to the field of Digital Humanities, which is located at the intersec-
tion of computing and and different disciplines of the humanities.
Software engineering research, on the other hand, can benefit from
improving existing methods for version control by applying exist-
ing methods and techniques in a novel domain dealing with unusual
feature characteristics. The research community in software en-
gineering will benefit from results on variability engineering in
the context of DSLs. Despite existing work (e.g., [17]), this field
deserves attention given the growing importance of DSLs in many
areas. Further, a systematic literature study on DSLs further pointed
out a lack of evaluation research [21], which we intend to pursue
in future work.

REFERENCES
[1] Sven Apel, Don Batory, Christian Kstner, and Gunter Saake. 2013. Feature-

Oriented Software Product Lines: Concepts and Implementation. Springer-Verlag,
Berlin, Heidelberg.

[2] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Brady
Garvin. 2013. Exploring Feature Interactions in the Wild: The New Feature-
Interaction Challenge. In Proceedings 5th International Workshop on Feature-
Oriented Software Development (Indianapolis, Indiana, USA) ((FOSD ’13)). ACM,
New York, NY, USA, 1–8. https://doi.org/10.1145/2528265.2528267

[3] Ian D. Bent, David W. Hughes, Robert C. Provine, Richard Rastall, Anne Kilmer,
David Hiley, Janka Szendrei, Thomas B. Payne, Margaret Bent, and Geoffrey

Chew. 2001. Notation. https://doi.org/10.1093/gmo/9781561592630.article.20114
[4] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,

Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a
Feature? A Qualitative Study of Features in Industrial Software Product Lines. In
Proc. 19th International Software Product Line Conference (Nashville, USA). ACM,
New York, NY, USA, 16–25. https://doi.org/10.1145/2791060.2791108

[5] Andrew Brinkman, Daniel Shanahan, and Craig Sapp. 2016. Musical stylometry,
machine learning and attribution studies: A semi-supervised approach to the
works of Josquin. In Proceedings of the Biennial International Conference on Music
Perception and Cognition. San Francisco, USA, 91–97.

[6] Thomas Christensen (Ed.). 2006. The Cambridge History of Western Music Theory.
Cambridge University Press, Cambridge.

[7] Reidar Conradi and Bernhard Westfechtel. 1998. Version Models for Software
Configuration Management. ACM Computing Surveys 30, 2 (1998), 232–282.
https://doi.org/10.1145/280277.280280

[8] Susanne Cox and Johannes Kepper. 2021. Encoding Genetic Processes II. In
Music Encoding Conference 2021. Humanities Commons, Alicante, Spain, 85–95.
https://doi.org/10.17613/q6y4-9139

[9] Krysztof Czarnecki and Ulrich Eisenecker. 2000. Generative Programming: Meth-
ods, Tools, and Applications. Addison-Wesley, Boston, MA.

[10] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wąsowski. 2012. Cool features and tough decisions: a comparison of variability
modeling approaches. In Proceedings 6th International Workshop on Variability
Modelling of Software-Intensive Systems. ACM, New York, NY, USA, 173–182.

[11] Robert O. Gjerdingen. 2007. Music in the Galant Style. Oxford University Press,
New York.

[12] MarkGotham andMatthew Ireland. 2019. Taking form: A representation standard,
conversion code, and example corpus for recording, visualizing, and studying
analyses of musical form. In Proceedings of the International Society for Music Infor-
mation Retrieval (ISMIR) Conference. International Society for Music Information
Retrieval, Delft, The Netherlands, 693–699.

[13] Elaine Gould. 2011. Behind Bars: The Definitive Guide to Music Notation. Faber
Music, London, United Kingdom.

[14] James Grier. 1996. The Critical Editing of Music: History, Method, and Practice.
Cambridge University Press, Cambridge.

[15] Paul Grünbacher. 2022. A Study on Variability for Multi-Device Rendering in
Digital Music Publishing. In Proceedings 16th International Working Conference on
Variability Modelling of Software-Intensive Systems (Florence, Italy). Association
for Computing Machinery, New York, NY, USA, 6:1–6:9. https://doi.org/10.1145/
3510466.3510482

[16] Paul Grünbacher, Rudolf Hanl, and Lukas Linsbauer. 2021. Using Music Features
for Managing Revisions and Variants in Music Notation Software. In Proceedings
International Conference on Technologies for Music Notation and Representation
(Hamburg, Germany), Rama Gottfried, Georg Hajdu, Jacob Sello, Alessandro
Anatrini, and John MacCallum (Eds.). Hamburg University for Music and Theater,
Hamburg, Germany, 212–220.

[17] Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, Gøran K. Olsen, and
Andreas Svendsen. 2008. Adding Standardized Variability to Domain Specific
Languages. In Proceedings 12th International Software Product Line Conference.
IEEE Computer Society, Washington, DC, USA, 139–148. https://doi.org/10.1109/
SPLC.2008.25

[18] Johannes Hentschel, Markus Neuwirth, and Martin Rohrmeier. 2021. The An-
notated Mozart Sonatas: Score, Harmony, and Cadence. Transactions of the
International Society for Music Information Retrieval 4, 1 (2021), 67–80. https:
//doi.org/10.5334/tismir.63

[19] Daniel Hinterreiter, Lukas Linsbauer, Kevin Feichtinger, Herbert Prähofer, and
Paul Grünbacher. 2020. Supporting feature-oriented evolution in industrial
automation product lines. Concurrent Engineering 28, 4 (2020), 265–279. https:
//doi.org/10.1177/1063293X20958930

[20] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2008. Granularity in
software product lines. In 30th International Conference on Software Engineering,
Leipzig, Germany, May 10-18, 2008 (ICSE), Wilhelm Schäfer, Matthew B. Dwyer,
and Volker Gruhn (Eds.). Association for Computing Machinery, New York, NY,
USA, 311–320. https://doi.org/10.1145/1368088.1368131

[21] Tomaž Kosar, Sudev Bohra, andMarjanMernik. 2016. Domain-Specific Languages:
A Systematic Mapping Study. Information and Software Technology 71 (2016),
77–91. https://doi.org/10.1016/j.infsof.2015.11.001

[22] David Lewis, Elisabete Shibata, Mark Saccomano, Lisa Rosendahl, Johannes
Kepper, Andrew Hankinson, Christine Siegert, and Kevin Page. 2022. A Model
for Annotating Musical Versions and Arrangements across Multiple Documents
and Media. In Proceedings of the 9th International Conference on Digital Libraries
for Musicology (Prague, Czech Republic) (DLfM ’22). Association for Computing
Machinery, New York, NY, USA, 10–18. https://doi.org/10.1145/3543882.3543891

[23] LilyPond. 2022. LilyPond – Notation Reference. https://lilypond.org/doc/v2.22/
Documentation/notation.pdf

[24] Lukas Linsbauer, Stefan Fischer, Gabriela Karoline Michelon, Wesley K. G. As-
sunção, Paul Grünbacher, Roberto Erick Lopez-Herrejon, and Alexander Egyed.
2022. Systematic Software Reuse with Automated Extraction and Composition for

81

https://doi.org/10.1145/2528265.2528267
https://doi.org/10.1093/gmo/9781561592630.article.20114
https://doi.org/10.1145/2791060.2791108
https://doi.org/10.1145/280277.280280
https://doi.org/10.17613/q6y4-9139
https://doi.org/10.1145/3510466.3510482
https://doi.org/10.1145/3510466.3510482
https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.5334/tismir.63
https://doi.org/10.5334/tismir.63
https://doi.org/10.1177/1063293X20958930
https://doi.org/10.1177/1063293X20958930
https://doi.org/10.1145/1368088.1368131
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1145/3543882.3543891
https://lilypond.org/doc/v2.22/Documentation/notation.pdf
https://lilypond.org/doc/v2.22/Documentation/notation.pdf

VaMoS 2024, February 07–09, 2024, Bern, Switzerland Paul Grünbacher and Markus Neuwirth

Clone-and-Own. In Handbook of Re-Engineering Software Intensive Systems into
Software Product Lines, Roberto Erick Lopez-Herrejon, Jabier Martinez, Tewfik
Ziadi, Mathieu Acher, Wesley K. G. Assunção, and Silvia Regina Vergilio (Eds.).
Springer, Cham, 379–404.

[25] Lukas Linsbauer, Felix Schwägerl, Thorsten Berger, and Paul Grünbacher. 2021.
Concepts of Variation Control Systems. Journal of Systems and Software 171
(2021), 110796. https://doi.org/10.1016/j.jss.2020.110796

[26] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and How to
Develop Domain-Specific Languages. Comput. Surveys 37, 4 (2005), 316—344.
https://doi.org/10.1145/1118890.1118892

[27] Fabian C. Moss, Markus Neuwirth, Daniel Harasim, and Martin Rohrmeier. 2019.
Statistical Characteristics of Tonal Harmony: A Corpus Study of Beethoven’s
String Quartets. PLoS One 14, 6 (2019), e0217242.

[28] Markus Neuwirth, Christoph Finkensiep, and Martin Rohrmeier. 2023. Musical
Schemata: Modelling Challenges and Pattern Finding (BachBeatles). In Mixing
Methods. Practical Insights from the Humanities in the Digital Age. transcript,
Bielefeld, 147–164.

[29] Markus Neuwirth, Daniel Harasim, Fabian C. Moss, and Martin Rohrmeier. 2018.
The Annotated Beethoven Corpus (ABC): A Dataset of Harmonic Analyses of All

Beethoven String Quartets. Frontiers in Digital Humanities 5, 16 (2018), 5 pages.
https://doi.org/10.3389/fdigh.2018.00016

[30] Friedemann Sallis. 2015. Music Sketches. Cambridge University Press, Cambridge.
[31] Agnes Seipelt, Paul Gulewycz, and Robert Klugseder. 2018. Digitale Musikanalyse

mit den Techniken der Music Encoding Initiative (MEI) am Beispiel von Kompo-
sitionsstudien Anton Bruckners. Die Musikforschung 71, 4 (2018), 366–378.

[32] Axel Teich Geertinger. 2021. Digital Encoding of Music Notation with MEI. In No-
tated Music in the Digital Sphere. Possibilities and Limitations, Margrethe Støkken
Bue and Annika Rockenberger (Eds.). Nota bene – Studies from the National
Library of Norway, Vol. 15. National Library of Norway, Oslo, 35–56.

[33] Dmitri Tymoczko, Mark Gotham, Michael Scott Cuthbert, and Christopher Ariza.
2019. The Romantext Format: A flexible and standard method for representing
Roman numeral analyses. In International Society for Music Information Retrieval
Conference. ISMIR, Delft, The Netherlands, 123–129.

[34] Arie van Deursen et al. 2000. Domain-Specific Languages: An Annotated Bib-
liography. ACM SIGPLAN Notices 35, 6 (2000), 26–36. https://doi.org/10.1145/
352029.352035

[35] Pamela Zave. 1993. Feature interactions and formal specifications in telecommu-
nications. Computer 26, 8 (Aug 1993), 20–28. https://doi.org/10.1109/2.223539

82

https://doi.org/10.1016/j.jss.2020.110796
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.3389/fdigh.2018.00016
https://doi.org/10.1145/352029.352035
https://doi.org/10.1145/352029.352035
https://doi.org/10.1109/2.223539

	Abstract
	1 Introduction
	2 Illustrative Example: Music Features and Versioning
	3 Research Challenges
	4 Approach
	5 Conclusions and Future Work
	References

