
A Reward Modulated Spiked Timing Depended Plasticity inspired
algorithm applied on a MultiLayer Perceptron
Georgios Giannakas∗

Dpt. of Computer Science and Biomedical Informatics,
University of Thessaly

Lamia, Greece
ggiannakas@uth.gr

Maria Sapounaki∗
Dpt. of Computer Science and Biomedical Informatics,

University of Thessaly
Lamia, Greece

msapounaki@uth.gr

Vasileios Tsoukas∗
Dpt. of Computer Science and Biomedical Informatics,

University of Thessaly
Lamia, Greece

vtsoukas@uth.gr

Athanasios Kakarountas∗
Dpt. of Computer Science and Biomedical Informatics,

University of Thessaly
Lamia, Greece

kakarountas@uth.gr

ABSTRACT
The creation of a framework in which traditional Machine Learning
and neuromorphic algorithms compete to solve a shared Reinforce-
ment Learning environment is presented in this work. In addition,
this configuration allows the exploitation of modern and widely-
used Machine Learning libraries. The PyTorch framework is used
to investigate the expanded capabilities and potential of training
an action-critic network pair comprised of specialised units using a
custom learning algorithm. The policy and value networks utilised
in this context are fully interconnectedMultiLayer Perceptrons. The
training procedure employs two distinct algorithms: an algorithm
inspired by Reward Modulated Spiked Timing Dependent Plasticity
and the conventional Back Propagation technique. A comparative
evaluation and analysis of the findings is performed.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; Rein-
forcement learning;Neural networks;Bio-inspired approaches.

KEYWORDS
Machine Learning, Reward Modulated, Spiked Timing Depended
Plasticity, Agent, Reinforcement Learning, PyTorch, autograd, Bio
& Nature Inspired Computing

ACM Reference Format:
Georgios Giannakas, Maria Sapounaki, Vasileios Tsoukas, and Athanasios
Kakarountas. 2023. A RewardModulated Spiked Timing Depended Plasticity
inspired algorithm applied on a MultiLayer Perceptron. In 27th Pan-Hellenic
Conference on Progress in Computing and Informatics (PCI 2023), November
24–26, 2023, Lamia, Greece. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3635059.3635066

This work is licensed under a Creative Commons Attribution International
4.0 License.

PCI 2023, November 24–26, 2023, Lamia, Greece
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1626-3/23/11.
https://doi.org/10.1145/3635059.3635066

1 INTRODUCTION
Currently, Machine Learning (ML) is widely regarded as the most
prevalent type of Artificial Intelligence (AI) due to its ability to
address a wide variety of challenging issues. As a result, a plethora
of tools, frameworks, and algorithms have been developed to im-
prove the efficacy and efficiency of machine learning applications
[34]. Reinforcement learning (RL) is a subfield of machine learning
that has gained significant popularity. RL aims to optimise the cu-
mulative reward obtained over a sequence of actions, rather than
focusing solely on the immediate rewards associated with individ-
ual actions. Consequently, its effectiveness is increasingly notable
in fields ranging from technology to health-care to playing games
[23]. As a result of the demonstrated effectiveness, companies such
as OpenAI and DeepMind have focused their research efforts on
advancing reinforcement learning. The publication of Deepmind’s
‘ATARI paper’ in 2013 [20], which investigated the application of
RL agents in playing Atari games, sparked considerable intrigue
and captivated both the general public and the scientific commu-
nity. The OpenAI Gym, which was introduced in 2016 [6], offers a
standardised application programming interface (API) for reinforce-
ment learning (RL) environments, thereby providing substantial
assistance to researchers in this field.

An additional subgenre of machine learning (ML) research that
is gaining prominence is the investigation of Spiking Neural Net-
works (SNNs) [33]. The bioplausibility of these entities surpasses
that of their traditional counterparts. Hence, their research can pro-
vide a deeper understanding of the brain’s low power consumption,
particularly in contrast to artificial neural networks. Additionally,
this can potentially contribute to the advancement of more efficient
brain-computer interfaces. In recent years, there has been notable
progress in the field of SNN simulation tools and neuromorphic
algorithms, facilitating their study and expanding their potential ap-
plications. Additionally, there has been a gradual emergence of SNN
hardware. The integration of reinforcement learning (RL) and spik-
ing neural networks (SNN) is gradually attracting interest within
the academic community. According to Izhikevich [14], this ap-
proach has the potential to provide insights into various processes,
such as the influence of dopamine on learning. It can also contribute
to the development of robotics that are significantly more energy

42

https://orcid.org/0000-0003-3423-3606
https://orcid.org/0000-0003-3675-4341
https://orcid.org/0000-0003-0081-2052
https://orcid.org/0000-0001-5431-2454
https://doi.org/10.1145/3635059.3635066
https://doi.org/10.1145/3635059.3635066
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3635059.3635066
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3635059.3635066&domain=pdf&date_stamp=2024-02-14


PCI 2023, November 24–26, 2023, Lamia, Greece Giannakas G., et al.

efficient [5]. Nevertheless, there has been limited advancement in
integrating the breakthroughs from both disciplines.

Therefore, a resulting question is how a setup can be constructed
where the comparison of classical ML and neuromorphic algorithms
is possible on the same virtual environment while the ability to use
modern ML libraries is also retained.

In alignment with the aforementioned perspective, the objective
is to leverage the expanding capabilities of Pytorch [25] in a man-
ner that provides adequate adaptability, enabling the training of a
network comprising of customized units and a specialized learning
algorithm. The model should be able to learn a Farama Foundation
Gymnasium RL Environment [6]. Therefore, the learning algorithm
should be able to communicate with the environment and use its
output –especially the rewards for the successful training of the
model-.

To validate the efficacy of the proposed methodology, the im-
plemented configuration is assessed through experimentation in-
volving the training of an intelligent agent to successfully solve
the CartPole environment within the Gymnasium framework [6].
The learning algorithm uses Proximal Policy Optimization (PPO)
[30]. The generated loss function is handled by an Adam optimizer
[16] but instead of applying usual Back Propagation (BP), a variant
inspired by Reward Modulated Spiked Timing Depended Plastic-
ity (R-STDP) [15] is applied. For simplicity, the policy and value
networks are fully connected MultiLayer Perceptrons (MLPs). Each
layer however corresponds to a custom torch.nn.module [25] and
therefore it can easily be replaced with any type of layer: classical
spiking, recursive or hybrid.

BP since its introduction has been the main and most successful
optimization algorithm used in artificial neural networks [10]. It
is based on the evaluation, through the application of chain rule,
of the error signal’s derivatives of each layer with respect to the
parameters of the layer’s units [28]. However as Weiderman points
out BP is non-biologically faithfully process [35]. Biological neurons
utilize their own group of learning processes and STDP is perhaps
the most well documented and understood. It is expressed through
the processes of Long Term Potentiation (LTP) and Long Term
Depression (LTD) [4] and provides a biological explanation for
Hebbian learning [24].

The remainder of this work is organized as follows. Section 2
provides an overview of related models and applications. Section 3
presents an analytical description of the overall methodology. Sec-
tion 4 reveals the produced results. Finally Section 5 concludes on
the work’s findings and discusses future plans.

2 RELATEDWORK
The subsequent paragraphs provide a concise overview of prior
research endeavours, with a particular emphasis on the utilisation
of neuromorphic training algorithms in various applications. Specif-
ically Spike Timing Depended Plasticity (STDP) [4] in Supervised
Learning (SL) and RL, through the BP of an error or reward signal
respectively. A case of SNN training through BP is also examined.

2.1 STPD in SL
A target-reaching navigation system for a mobile vehicle is pro-
posed by Bing et al. based on a R-STDP learning rule and a Leaky

Integrate and Fire SNN [5]. In their approach, the weight modifica-
tion is the product of an STDP component, an annealing learning
rate, a local to every synapse reward signal, and a local for every
synapse eligibility trace designed to represent the synaptic efficacy.
The reward signal is back-propagated to every synapse and has its
local value evaluated based on every weight contribution.

Liu et al. proposed a Supervised STDP as an efficient training
method for a SNN classifier. The multilayer network uses Integrate
and Fire neurons and is trained to successfully classify the MNIST
dataset [7]. In the proposed approach, only the first spike of the
spike train and its timing carry significant information. The error
signal is normally computed as the Jacobian of the loss function
relative to the weights. The STDP components take part in this
computation as partial derivatives of the output’s first spike timing
with respect to the weights.

2.2 STDP in RL
An obstacle avoiding navigation system for a mobile robot is devel-
oped by Shim and Li [31]. The proposed model utilizes a one hidden
layer feed-forward Leaky Integrate and Fire SNN. The network is
trained through additive R-STDP. An eligibility trace is introduced
which keeps track of the STDP contribution to the weight change.
The reward signal at any given moment is global for the whole
network. The resulting weight change is dictated by the product
of the current weight, the learning rate, the global reward, and the
eligibility trace.

Mozafari et al. [21] categorize their work as RL due to the fact
that they also utilize R-STDP. However, the proposed SNN network
is being trained on image classification. Therefore, it does not seem
to be any sparse rewards involved. In a similar approach as Liu et
al. [19], Mozafati et al. consider the timing of the first spike to carry
all the significant information. A reward-punishment mechanism
is proposed and a comparison is carried out between traditional
STDP and R-STDP.

2.3 BP in SNNs
Moreover, closely related to the present research is the work of
Esser et al. [9]. The researchers use a training none-neuromorphic
network and a deployment neuromorphic network. They apply a
BP rule on the training network and then they copy the weights’
updates on the deployment network. The training network units’
output represents the probability of the corresponding deployment
network’s neuron to spike. In the present paper the authors, in
an almost antithetical to the above publication but also similar
in the same instance manner, regard the MLP units’ output as the
probability that a hypothetical, corresponding SNN’s neurons spike.

3 METHODOLOGY
In the following paragraphs a detailed description of the constructed
setup is provided. Additionally, the parameters and details of the
use case are also mentioned and explained. The developed code can
be found uploaded on GitHub [11].

3.1 Experimental Setup and RL Environment
All the simulations are conducted on a DELL XPS 15 9570 [12]
equipped with an Intel i7-8750H [29] processor and 16GB of RAM.

43



A Reward Modulated Spiked Timing Depended Plasticity inspired algorithm applied on a MultiLayer Perceptron PCI 2023, November 24–26, 2023, Lamia, Greece

The graphics card is an NVIDIA GeForce GTX 1050 Ti [17]. All
code is written in Python3. Version 3.11.3 64bit [25] is used during
all runs. Pytorch version is 2.0.1 with CUDA 11.8 [25].

The used RL enviroment is CartPole [6] and is part of Gymna-
sium’s Classic Control environments. A cart, moving on a line, tries
balancing a non-stable horizontal rod under the effect of gravity.
Version used is CartPole-v1. The implementation is able to use par-
allel environments. During all runs the algorithm collects data from
four parallel synchronized environments. They are all wrapped
together as a single gymnasium.vector.SyncVectorEnv subclass [6].

3.2 Networks and Parameters’ Update
For the whole subsection indices i and j denote the corresponding
input and output units respectively. Index l corresponds to the num-
ber of the example in a mini-batch of a population of size n. Index
k denotes the layer level of the corresponding unit. Furthermore,
a, z, and w representing the signal after activation –application of
the sigmoid function, the signal before activation and the synaptic
weight respectively. The above notation remains consistent across
all equations contained in the present publication.

An Agent is created for the control of the environment. It con-
sists of two actor-critic MLPs [27] networks. Each of their layers
comprises 64 fully connected units. Each unit implements the Per-
ceptron model without bias as shown in equations (1) and (2).

𝑧𝑘𝑗 =

𝑛∑︁
𝑖

𝑤𝑖 𝑗 · 𝑎𝑘−1𝑖 (1)

𝑎𝑘𝑗 =
1

1 + 𝑒
−𝑧𝑘

𝑗

(2)

The MLPs are implemented with the Pytorch tensor library [25].
The usual implementation of a layer of perceptrons in Pytorch
is a sequence of torch.nn.linear and torch.nn.Sigmoid classes. In-
stead, the perceptron’s layer is implemented as a single subclass of
torch.nn.Module. This approach actually allows different possible
type of unit layers, linear, nonlinear, recursive, neuromorphic to be
defined as separate modules.

Through the extending capabilities of Pytorch autograd [25] cus-
tom BP, different custom methods can be implemented for each
module, offering the opportunity of comparison between them. A
similar method and implementation is followed by Liu et al. [19]
in their application of STDP on SL. Autograd normally performs
the task of generating a Jacobian matrix of the loss function with
respect to the weights. torch.autograd.backward computes the gra-
dients of the given tensors with respect to graph leaves as stated in
the documentation [25]. This Jacobian is passed by the torch.optim
step method to the optimization algorithm which is the one per-
forming the weight updates. In this work, two different methods
are implemented.

The first implementation performs the same operations and
chain rule differentiation as the intrinsic autograd does, in order to
perform usual BP on a MLP [28]. It is included mainly for compari-
son reasons but also for additional validation –especially during the
early phases of development in order to test that the overall process
produces consistent results. The underlying chain rule describing
the differentiation between layers, for the case that no biases are
present, is presented in equations (3), (4) and (5).

𝜕𝑎𝑘𝑙
𝑖

𝜕𝑧𝑘𝑙
𝑖

= 𝑎𝑘𝑙𝑖 · (1 − 𝑎𝑘𝑙𝑖 ) (3)

𝜕𝑧𝑘𝑙
𝑖

𝜕𝑤𝑘
𝑖 𝑗

=

𝑛∑︁
𝑙

𝜕𝑎𝑘𝑙
𝑖

𝜕𝑧𝑘𝑙
𝑖

𝑎
(𝑘−1)𝑙
𝑗

(4)

𝜕𝑧𝑘𝑙
𝑖

𝜕𝑎
(𝑘−1)𝑙
𝑗

=

𝑛∑︁
𝑙

𝜕𝑎𝑘𝑙
𝑖

𝜕𝑧𝑘𝑙
𝑖

𝑤
(𝑘−1)
𝑖 𝑗

(5)

The second implementation generates a matrix with each ele-
ment corresponding to an appropriate weight correction, but in-
stead of being generated by chain rule differentiation, a different
scheme is applied, inspired by R-STDP. STDP is a bio-plausible
procedure that is able to introduce a learning mechanism to the
biological neuron [4]. When STDP is combined with biological
rewarding systems, like the dopamine system, induces R-STDP.
R-STDP can explain RL in living organisms as shown and also
modeled by Izhikevich [15].

In this formulation the reward signal for the hidden layers is
given by equation (6), where 𝑟𝑘𝑙

𝑗
is the reward assigned to the jth

neuron of the kth hidden layer. This approach is similar to the one
previously, suggested by Bing et al. [5] with the difference that in
the present case at this stage a separate reward signal is stored for
each training example. The reward signal corresponding to every
synaptic weight𝑤𝑘

𝑖 𝑗
will be 𝑟𝑘𝑙

𝑗
= 𝑟𝑘𝑙

𝑗
. For the outer layer, the reward

signal is calculated by Pytorch’s backward method applied to the
loss of the Proximal Policy Optimization (PPO) algorithm.

𝑟𝑘𝑙𝑗 =

∑
𝑖 |𝑤𝑘

𝑖 𝑗
| · 𝑟 (𝑘+1)

𝑖∑
𝑖 |𝑤𝑘

𝑖 𝑗
|

(6)

The STDP-inspired component of the weight update signal is
calculated on the forward pass as described by equation 9. An as-
sumption is made in regard to that the perceptron’s output can be
viewed as equivalent to the spike rate of an SNN neuron. Then, a
conditioned rate for a synapse of a presynaptic neuron to spike,
given that its postsynaptic neuron is not spiking at a given trial, can
be approximated by equation (7). It is known that this condition
between pre-synaptic and post-synaptic neurons is the required
condition for LTP –a state under which the synaptic weight be-
comes stronger [4]. The opposite function LTD resulting in the
weakening of the synaptic strength is known to happen when the
postsynaptic neuron spikes, given that the presynaptic neuron does
not spike. The conditional rate of this event is approximated by
equation (8). In equations (7) and (8) intersections are calculated as
the average of their minimum and maximum bounds.

Λ(𝐿𝑇𝑃)𝑘𝑙𝑖 𝑗 =
𝑚𝑎𝑥 (0, 𝑎 (𝑘+1)𝑙

𝑖
− 𝑎𝑘𝑙

𝑗
) +𝑚𝑖𝑛(𝑎𝑘𝑙

𝑗
, 1 − 𝑎

(𝑘+1)𝑙
𝑖

)

2 · (1 − 𝑎
(𝑘+1)𝑙
𝑖

) + 𝑒𝑝𝑠𝑚
(7)

Λ(𝐿𝑇𝐷)𝑘𝑙𝑖 𝑗 =
𝑚𝑎𝑥 (0, 𝑎𝑘𝑙𝑗 − 𝑎

(𝑘+1)𝑙
𝑖

+𝑚𝑖𝑛(𝑎 (𝑘+1)𝑙
𝑖

, 1 − 𝑎𝑘𝑙
𝑗
)

2 · (1 − 𝑎𝑘𝑙
𝑗
) + 𝑒𝑝𝑠𝑚

(8)

In order to calculate the STDP component of the weight correc-
tion, a few further assumptions are made. Each step is considered

44



PCI 2023, November 24–26, 2023, Lamia, Greece Giannakas G., et al.

to have a duration of 1 time unit. The two phenomena LTP and
LTD are assumed to obey a Poisson distribution. The difference
between the chances of each event happening once in one time-step
is assumed here as a valid measure of the change in synaptic weight
due to STDP. The resulting formula is presented by equation (9).

Δ𝑤 (𝑆𝑇𝐷𝑃)𝑘𝑙𝑖 𝑗 = Λ(𝐿𝑇𝑃)𝑘𝑙𝑖 𝑗 · 𝑒
−Λ(𝐿𝑇𝑃 )𝑘𝑙

𝑖 𝑗 − Λ(𝐿𝑇𝐷)𝑘𝑙𝑖 𝑗 · 𝑒
−Λ(𝐿𝑇𝐷 )𝑘𝑙

𝑖 𝑗

(9)
The final weight correction signal, which is passed from autograd

to the optimization algorithm, consists of the mean over all the
mini-batches training examples of the element-by-element products
of the reward times the STDP component. The relative evaluation
is demonstrated in equation (10). A negative sign is added in order
for the optimizer to be able to solve this as a minimization problem.
epsm stands for epsilon machine and it is added in order to avoid
division with zero terms.

Δ𝑤𝑘
𝑖 𝑗 = −

𝑛∑︁
𝑙

Δ𝑤 (𝑆𝑇𝐷𝑃)𝑘𝑙𝑖 𝑗 · 𝑟
𝑘𝑙
𝑗 (10)

3.3 Training and Optimization
For the purposes of training, an appropriate variation of PPO [30]
is applied. The present implementation of the algorithm is heavily
based on the one discussed in the blog-post ‘The 37 Implementa-
tion Details of Proximal Policy Optimization’ and implemented in
the corresponding GitHub repository by Huang [13]. A clipped
loss version is used with Generalized Advantage Estimation. The
clipping factor is set at 0.2. This value is in the range suggested by
Andrychowicz et al. [2] for similar setups. In their publication, con-
tinuous action spaces are used and harder to solve environments
but a similar dependence on the clipping factor is guessed in this
work’s experiments. The factor discount coefficient set to 0.99 while
the Generalized Advantage Estimation’s hyper-parameter is set to
0.95. The entropy factor equals 0.01. Finally, the factor of the value
function component is set to 0.5.

The algorithm is an on-policy algorithm and therefore improves
the policy that is used, through constant evaluation. The evalua-
tion is carried out by a critic separate network while the policy
is manifested by an actor-network as a probability distribution of
choosing any action for any given state. Andrychowicz et al. find
in general a better performance in setups with separate networks
than in setups of a shared actor-critic network [2] and these is
also the approach followed here. An orthogonal weight initializa-
tion is performed as recommended by Engstrom et al.[8] and the
actor-network is initialized with a distribution of 0 mean and a low
std=0.01 as recommended by Andrychowicz et al. [2].

A variation of Adam algorithm [16] is used for the optimization
of the parameters -synaptic weights- of both the value and the
policy networks. Adam combines the technique of the adaptive
individual rates with the idea of the momentum, where instead of
the actual gradients a moving average is used. The implemented
version is the one supplied by torch.optimAdam [25]. Furthermore,
the stabilizing hyperparameter of the algorithm during all the runs,
is set to 1.𝑒 − 5 instead the preset 1.𝑒 − 8.

4 RESULTS
Performance is often hard to track in RL tasks in comparison to
other types of learning. This is mainly due to the highly noisy out-
put. Total average episode reward is often chosen as an appropriate
metric [20] and the same approach is followed here. All diagrams
are generated with the aid of Tensorboard [1]. Tensorboard offers
visualization of the measurements conducted during the workflow.
Exponential smoothing by a factor of 0.99 is applied to all the graphs
in order to reduce the noise and therefore make them easier to read.
All diagrams demonstrate a training period of 1 million total steps
of the parallelized environment.

4.1 Vanilla BP
As demonstrated in Figure 1 BP in combination with proven solid
training and optimization algorithms provides excellent results and
converges extremely fast, even if it does not fully solve the environ-
ment. Its consistent behavior provides proof that the present setup
is valid and functional. The algorithm achieves best performance
for a learning rate of 1.𝑒 − 3. Learning rate annealing is also applied,
as suggested, for optimal fine-tuning of network’s parameters by
Sutton and Barto [32]. The result is demonstrated in Figure 1. The
Steps Per Second (SPS) rate converges to a value of around 850sps
while training the networks.

Figure 1: BP Algorithm. Diagram of Episode’s Return vs.
Global Step

4.2 Hybrid R-STDP Inspired Algorithm
The hybrid algorithm did not manage to solve the environment
in the span of 1000000 steps. However, it manages to showcase
a clear ability to learn. Under the absence of successful learning,
the average of the game stays very close to the value 22 ± 2 –after
smoothing- and clearly this is not the case. The best performance,
demonstrated in Figure 2, is achieved with a learning rate of 5.6𝑒−3
and no learning rate annealing. The learning process seems to have
been accelerated after about 600k steps. A possible explanation
may be that for this learning rule, the networks’ initial state is not
favorable. SPS converges to approximately 280sps, while training
the networks.

5 CONCLUSIONS
One challenge encountered by the researchers pertains to the re-
finement of parameter initialization and the determination of appro-
priate hyper-parameter values. RL demonstrates a notable degree

45



A Reward Modulated Spiked Timing Depended Plasticity inspired algorithm applied on a MultiLayer Perceptron PCI 2023, November 24–26, 2023, Lamia, Greece

Figure 2: R-STDP Inspired Algorithm. Diagram of Episode’s
Return vs Global Step

of sensitivity, whereby an inappropriate choice of initialization can
potentially disrupt the learning process. Andrychowicz et al. insist
on the importance of good policy initialization and good hyper-
parameters configurations as a complete successful set [2]. In a
future project, the additional use of a tuning library like Ray [18]
can assist the search for a functional set and achieve an optimiza-
tion level that in practice is not possible to be attained by guesses
and tries.

Early versions of the algorithm prior to the implementation of the
custom autograd mechanism were up to two scales of magnitude
slower than the later versions that use autograd. To put this in
context, prior to the autograd implementation the achieved SPS was
consistently under 10sps, while after the autograd implementation,
there was an increase in the sps rate, up to the achieved 280sps,
after optimization. BP achieved 850sps. Therefore, this proves that
normal BP is not onlymore efficient than the proposed experimental
algorithm –for this setup- but also cheaper.

However, there are a few remarks to be made. Spiking is not an
intrinsic function of Perceptron. Therefore, LTP and LTD are not
intrinsic processes but simulated. This adds to the computational
cost. Furthermore, in the case of Perceptron an exact computation-
ally cheap derivative does exist and therefore classic BP is a clear
winner. However, in neuromorphic models, exact differentiation is
usually impossible [22] and on the contrary spiking is a intrinsic
process. Therefore, STDP components can directly be evaluated.
Furthermore, with the aid of appropriate traces [26], this can be
done in a computationally efficient way, while exact differentiation
is not an option.

Another issue is the fact that BP achieves 850sps but this is far
behind the approximately 2500sps achieved on the same machine
with a similar setup if build-in autograd differentiation is used. The
main reason for this is that build-in functions are written in C++
while the custom differentiation functions which are used in this
implementation are written in Python3. Therefore, there is a huge
speed gap, since C++ is a faster language. Aruoba and Fernández-
Villaverde [3] note an approximately 44 times speed difference
between the two. However, Libtorch ,a Pytorch version with C++
frontend, offers the option to directly write custom differentiation
functions in C++ and add them to torch::autograd, achieving this
way similar performance with the build-in functions [25].

The present work manages to demonstrate that a process nor-
mally linked to units with temporal dynamics can be applied even
in the absence of such behavior. It also hints the high potential of a

R-STDP as a process in network training. Moreover, it is the authors’
belief that the fusion of different techniques, the combined use of
recently developed tools in RL with the application of concepts in-
spired by neuromorphic algorithms, is still an ’uncharted’ field and
of great potential for further research. Many tools, such as training
algorithms, optimization algorithms, and network structures have
been developed for either classic ML or neuromorphic computing.
Therefore, hybrid implementations and their capabilities are highly
unexplored.

The present approach enables the researchers to easily imple-
ment different kinds of setups and apply them on the same problem.
The behavior of different neuromorphic spiking models, under
variations of R-STDP and gradient-based algorithms, can be ex-
amined and their performance can be compared. Similarities and
differences between parameter updates performed with different
methods and under the use of an appropriate metric might be useful
to be examined. The option of implementing autograd extensions
directly in C++ is very appealing and a worthwhile endeavor that
should be pursued. Also additional algorithms can be examined
through further customization of the optim function of Pytorch [25],
which is responsible for the applied optimizer. Other neuromorphic
hardware-software setup combinations might be considered too.

ACKNOWLEDGMENTS
This research has been financed by the project “ParICT_CENG:
Enhancing ICT research infrastructure in Central Greece to enable
processing of Big data from sensor stream, multimedia content, and
complex mathematical modeling and simulations” (MIS 5047244)
which is implemented under the Action “Reinforcement of the
Research and Innovation Infrastructure”, funded by the Operational
Programme "Competitiveness, Entrepreneurship and Innovation"
(NSRF 2014-2020) and co-financed by Greece and the European
Union (European Regional Development Fund)

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Marcin Andrychowicz, Anton Raichuk, Sertan Girgin, Raphaël Marinier, Léonard
Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly,
and Olivier Bachem. 2021. WHAT MATTERS FOR ON-POLICY DEEP ACTOR-
CRITIC METHODS? A LARGE-SCALE STUDY. (2021).

[3] S. Borağan Aruoba and Jesús Fernández-Villaverde. 2014. A Comparison of
Programming Languages in Economics. Working Paper 20263. National Bureau of
Economic Research. https://doi.org/10.3386/w20263

[4] G. Q. Bi andM.M. Poo. 1998. Synaptic modifications in cultured hippocampal neu-
rons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J
Neurosci 18, 24 (Dec. 1998), 10464–10472. https://doi.org/10.1523/JNEUROSCI.18-
24-10464.1998

[5] Zhenshan Bing, Ivan Baumann, Zhuangyi Jiang, Kai Huang, Caixia Cai, and Alois
Knoll. 2019. Supervised Learning in SNN via Reward-Modulated Spike-Timing-
Dependent Plasticity for a Target Reaching Vehicle. Frontiers in Neurorobotics 13
(2019). https://www.frontiersin.org/articles/10.3389/fnbot.2019.00018

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

46

https://www.tensorflow.org/
https://doi.org/10.3386/w20263
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00018


PCI 2023, November 24–26, 2023, Lamia, Greece Giannakas G., et al.

[7] Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.

[8] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus
Janoos, Larry Rudolph, and Aleksander Ma. 2019. IMPLEMENTATIONMATTERS
IN DEEP POLICY GRADIENTS: A CASE STUDY ON PPO AND TRPO. (2019).

[9] Steven K. Esser, Rathinakumar Appuswamy, Paul Merolla, John V. Arthur, and
Dharmendra S. Modha. 2015. Backpropagation for Energy-Efficient Neuromor-
phic Computing. In NIPS. https://api.semanticscholar.org/CorpusID:16801562

[10] P. Frasconi, Marco Gori, and Alberto Tesi. 2001. Successes And Failures Of
Backpropagation: A Theoretical Investigation. (02 2001).

[11] Georgios Giannakas. 2023. Agent capable of solving reinforcement learning envi-
ronment through the use of training algorithm based on Hebb’s Rule.

[12] Eric Grevstad. 2018. Dell XPS 15 (9570) Review. https://www.pcmag.com/reviews/
dell-xps-15-9570

[13] Liben Huang and Xiaohui Qu. 2022. Improving traffic signal control operations
using proximal policy optimization. IET Intelligent Transport Systems (Oct. 2022),
n/a–n/a. https://doi.org/10.1049/itr2.12286

[14] Eugene M. Izhikevich. 2007. Solving the Distal Reward Prob-
lem through Linkage of STDP and Dopamine Signaling. Cere-
bral Cortex 17, 10 (01 2007), 2443–2452. https://doi.org/10.
1093/cercor/bhl152 arXiv:https://academic.oup.com/cercor/article-
pdf/17/10/2443/894946/bhl152.pdf

[15] E. M. Izhikevich. 2007. Solving the Distal Reward Problem through Linkage of
STDP and Dopamine Signaling. Cerebral Cortex 17, 10 (Oct. 2007), 2443–2452.
https://doi.org/10.1093/cercor/bhl152

[16] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. http://arxiv.org/abs/1412.6980 arXiv:1412.6980 [cs].

[17] Richard Leadbetter. 2018. Nvidia GeForce GTX 1050 Ti review. Pascal on a bud-
get. https://www.eurogamer.net/digitalfoundry-2016-nvidia-geforce-gtx-1050-
ti-review-2

[18] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez,
and Ion Stoica. 2018. Tune: A Research Platform for Distributed Model Selection
and Training. arXiv preprint arXiv:1807.05118 (2018).

[19] Fangxin Liu, Wenbo Zhao, Yongbiao Chen, Zongwu Wang, Tao Yang, and Li
Jiang. 2021. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient
Spiking Neural Network Training. Frontiers in Neuroscience 15 (2021). https:
//www.frontiersin.org/articles/10.3389/fnins.2021.756876

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. http://arxiv.org/abs/1312.5602 arXiv:1312.5602
[cs].

[21] Milad Mozafari, Saeed Reza Kheradpisheh, Timothée Masquelier, Abbas Nowzari-
Dalini, and Mohammad Ganjtabesh. 2018. First-spike based visual categorization
using reward-modulated STDP. IEEE Trans. Neural Netw. Learning Syst. 29, 12 (Dec.
2018), 6178–6190. https://doi.org/10.1109/TNNLS.2018.2826721 arXiv:1705.09132
[cs, q-bio].

[22] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. 2019. Surrogate Gra-
dient Learning in Spiking Neural Networks. http://arxiv.org/abs/1901.09948
arXiv:1901.09948 [cs, q-bio].

[23] Rui Nian, Jinfeng Liu, and Biao Huang. 2020. A review On reinforcement learning:
Introduction and applications in industrial process control. Computers & Chemical
Engineering 139 (2020), 106886. https://doi.org/10.1016/j.compchemeng.2020.
106886

[24] Joo Park, Sung-Cherl Jung, and Su-Yong Eun. 2014. Long-term Synaptic Plastic-
ity: Circuit Perturbation and Stabilization. The Korean Journal of Physiology &
Pharmacology 18 (12 2014), 457–60. https://doi.org/10.4196/kjpp.2014.18.6.457

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[26] Fernando M. Quintana, Fernando Perez-Peña, and Pedro L. Galindo. 2022. Bio-
plausible digital implementation of a reward modulated STDP synapse. Neural
Comput & Applic 34, 18 (Sept. 2022), 15649–15660. https://doi.org/10.1007/s00521-
022-07220-6

[27] F. Rosenblatt. 1958. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review 65, 6 (1958), 386–408.
https://doi.org/10.1037/h0042519 Place: US Publisher: American Psychological
Association.

[28] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning
representations by back-propagating errors. Nature 323, 6088 (Oct. 1986), 533–536.
https://doi.org/10.1038/323533a0 Number: 6088 Publisher: Nature Publishing
Group.

[29] Tim Schiesser. 2018. Intel Core i7-8750H Review: Hexa-core Processor for Laptops
Performance on the Go: i7-8750H vs. i7-7700HQ. https://www.techspot.com/

review/1604-intel-core-i7-8750h/
[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. http://arxiv.org/abs/1707.06347
arXiv:1707.06347 [cs].

[31] Myung Seok Shim and Peng Li. 2017. Biologically inspired reinforcement learning
for mobile robot collision avoidance. In 2017 International Joint Conference on
Neural Networks (IJCNN). IEEE, Anchorage, AK, USA, 3098–3105. https://doi.
org/10.1109/IJCNN.2017.7966242

[32] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction. A Bradford Book, Cambridge, MA, USA.

[33] Aboozar Taherkhani, Ammar Belatreche, Yuhua Li, Georgina Cosma, Liam P.
Maguire, and T.M. McGinnity. 2020. A review of learning in biologically plausible
spiking neural networks. Neural Networks 122 (2020), 253–272. https://doi.org/
10.1016/j.neunet.2019.09.036

[34] Vasileios Tsoukas, Anargyros Gkogkidis, Aikaterini Kampa, Georgios Spathoulas,
and Athanasios Kakarountas. 2022. Enhancing Food Supply Chain Security
through the Use of Blockchain and TinyML. Information 13, 5 (2022). https:
//doi.org/10.3390/info13050213

[35] Meagan Wiederman. 2019. Biological Faithfulness is Unnecessary for Machine
Learning. University of Western Ontario Medical Journal 87 (03 2019), 27–29.
https://doi.org/10.5206/uwomj.v87i2.1134

47

https://api.semanticscholar.org/CorpusID:16801562
https://www.pcmag.com/reviews/dell-xps-15-9570
https://www.pcmag.com/reviews/dell-xps-15-9570
https://doi.org/10.1049/itr2.12286
https://doi.org/10.1093/cercor/bhl152
https://doi.org/10.1093/cercor/bhl152
https://arxiv.org/abs/https://academic.oup.com/cercor/article-pdf/17/10/2443/894946/bhl152.pdf
https://arxiv.org/abs/https://academic.oup.com/cercor/article-pdf/17/10/2443/894946/bhl152.pdf
https://doi.org/10.1093/cercor/bhl152
http://arxiv.org/abs/1412.6980
https://www.eurogamer.net/digitalfoundry-2016-nvidia-geforce-gtx-1050-ti-review-2
https://www.eurogamer.net/digitalfoundry-2016-nvidia-geforce-gtx-1050-ti-review-2
https://www.frontiersin.org/articles/10.3389/fnins.2021.756876
https://www.frontiersin.org/articles/10.3389/fnins.2021.756876
http://arxiv.org/abs/1312.5602
https://doi.org/10.1109/TNNLS.2018.2826721
http://arxiv.org/abs/1901.09948
https://doi.org/10.1016/j.compchemeng.2020.106886
https://doi.org/10.1016/j.compchemeng.2020.106886
https://doi.org/10.4196/kjpp.2014.18.6.457
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/s00521-022-07220-6
https://doi.org/10.1007/s00521-022-07220-6
https://doi.org/10.1037/h0042519
https://doi.org/10.1038/323533a0
https://www.techspot.com/review/1604-intel-core-i7-8750h/
https://www.techspot.com/review/1604-intel-core-i7-8750h/
http://arxiv.org/abs/1707.06347
https://doi.org/10.1109/IJCNN.2017.7966242
https://doi.org/10.1109/IJCNN.2017.7966242
https://doi.org/10.1016/j.neunet.2019.09.036
https://doi.org/10.1016/j.neunet.2019.09.036
https://doi.org/10.3390/info13050213
https://doi.org/10.3390/info13050213
https://doi.org/10.5206/uwomj.v87i2.1134

	Abstract
	1 Introduction
	2 Related Work
	2.1 STPD in SL
	2.2 STDP in RL
	2.3 BP in SNNs

	3 Methodology
	3.1 Experimental Setup and RL Environment
	3.2 Networks and Parameters' Update
	3.3 Training and Optimization

	4 Results
	4.1 Vanilla BP
	4.2 Hybrid R-STDP Inspired Algorithm

	5 Conclusions
	Acknowledgments
	References

