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ABSTRACT
Deep learning is increasingly used in diverse application fields
with results typically surpassing those of traditional machine learn-
ing techniques. The portfolio of available neural networks is wide,
consisting of the full range in terms of complexity, from compact
networks to large ones with multiple layers and parameters. This
heterogeneity in the model topology is reflected, not necessarily
linearly, on the required computational resources for training and
inference. Similarly, the environments where the neural networks
are trained and executed are transformed from fully-fledged central-
ized nodes to distributed architectures with constrained resources.
In this view, computational resource requirements can be one of
the criteria for resource usage management and neural network
selection. In this work we measure the training times for a set of
five convolutional neural networks of varying complexity and age
(GoogleNet, ShuffleNet, VGGish, YAMNet) under different training
configurations, considering the batch size, the number of epochs
and the learning rate. These measurements are used to create a
CPU-time-training dataset of more than 500 values. This dataset is
used to train and evaluate models, based on neural networks, for
estimating and predicting training times depending on the models
employed and the training parameters. Five regression models have
been trained and evaluated in terms of correlation coefficient and
root mean square error. In addition, we measure the CPU times
needed for inference for a subset of the trained models, which prove
to be uncorrelated with the corresponding training times.
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1 INTRODUCTION
Recent advancements in computing, mostly related to the applica-
tion of deep learning techniques in a wide variety of domains (e.g.,
computer vision and language processing) and the integration of IoT
technologies and edge computing impose the development of cost-
effective hosting of multiple applications in a secure, customizable
computing environment. This yields to higher resources utilization
with reduced costs at all levels [1]. More in detail, deep learning
algorithms are considered as the state-of-the-art techniques for
several computing tasks related either to image processing with
high-level of understanding of semantics requirements such as
image classification, object segmentation and clustering, anomaly
detection or either cases where low level image processing tasks
are required. In parallel, datasets are being created, to train and
validate the learning algorithms and tasks can take place in a cen-
tralized manner and / or in a distributed manner involving devices
and nodes of varying resources and capabilities. To support its
increasingly diverse application fields, the deep learning models
evolve into larger ones with more layers and parameters. This re-
sults in increasing training time and need for resource utilizations.
Despite the advances in learning schemes, users are still facing is-
sues related to the optimal configuration of deep learning execution
settings and mechanisms related to computing resources allocation
and their relation to the training time and the accuracy.
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Resource management techniques play a noteworthy role for all
types of computing and it is related to the requirements of high vir-
tualization, scalability, and transparency. Resource monitoring is a
part of resource management for a modern computing environment
where deep learning is applied, which provides a better understand-
ing for resource allocation serving towards the increased efficiency
of services such as: task scheduling, capacity planning, proactive
auto-scaling and load balancing, improving computing and network
performance. A prerequisite for effective resource management is
a priori estimation of the resources needed.

This is a challenging point as there is a lack of an association
mechanism between the learning tasks (training and inference),
the volume of the networks involved and the resources needed,
in terms of CPU and memory. Towards this goal an accurate and
simple estimation of resources utilization is required considering
the dynamic and time-varying workloads of modern computing
environments under different constraints. A simple model based
on existing from the self-products may serve this scope in order to
capture the workload dynamics. Furthermore, modern computing
devices seem as deep learning friendly managing different work-
loads under a resource constraint environment [2]. Despite, the
new design approaches in the area, resource allocation evaluation
and performance monitoring for deep learning applications re-
mains stimulating especially when deep learning models should be
deployed under a resource constraint environment of e.g. mobile de-
vices or IoT sensors, where the optimal configuration of execution
settings is required.

In this paper, a study on the required computational resources is
performed presenting different scenarios of deep-learning schemes.
The method presented is based on a multi parametric evaluation of
resource utilization based on simple tools to identify Convolutional
Neural Networks’ (CNNs) configurations, training parameters and
input characteristics so that we can perform a series of training
and inference experiments under different problem settings related
to computational resources and achieved accuracies. Our adaptive
multi-parameter approach considers different scenarios encoun-
tered in image and sound classification and enables selecting the
predictive method, based on regression, that learns best and predicts
resource requirements.

The rest of the paper is organized as follows. In Section 2, selected
related work is presented focusing on performance evaluation and
monitoring of computing resources. In Section 3 the appliedmethod-
ology is described as well as the CNNs and the datasets employed.
Section 4 presents the set of parameters’ values that affect the train-
ing time, and the relevant measures. These results have been used
to train selected regression models (based on neural networks), and
the performance of these models is described in terms of correla-
tion coefficient and root mean square error. Section 5 includes the
conclusions and future work.

2 RELATEDWORK
A detailed survey in the area of efficient inference is provided in [3],
where the main research challenges are identified and analyzed. In
this paper, the significance of resource constraints and monitoring
are studied considering edge environment. In addition, a representa-
tive survey analysis for deep learning models is presented providing

also the appropriate metrics for the performance evaluation. A com-
prehensive analysis of deep neural network architectures is given
in [4]. In this work, various neural network architectures are de-
scribed and evaluated based on multiple performance indices, such
as recognition accuracy, model complexity, computational com-
plexity, memory usage, and inference time. This study provides
an understanding over the impact of resource constraints when
these architectures are under practical deployments. More in detail,
44 different neural networks models are tested and evaluated in a
resource constrained environment, giving experimental results by
the neural networks testing.

Moreover, in [5] an analysis of pre-trained neural networks
application is performed. The importance and the usefulness of
pretrained models is presented, showcasing the transfer learning
approach. In this case, the advantages of the pre-trained models are
presented in terms of computational requirements and resources,
enabling faster inference and reducing complexity.

Estimation of resources utilization and the accurate use of the
appropriate model has been investigated in different contexts. In
[6], a classifier is trained using previous resource usage to select a
resource utilization prediction model within specific time intervals.
Towards this goal, various prediction methods are applied in order
to improve the accuracy of the forecasted computing resources
since the prediction of resource requirements, such as CPU usage,
is a complex task amd depends on incoming workloads. In [7], a
deep learning model is proposed and evaluated according to its
forecasting accuracy and error minimization. Similar studies have
been presented aiming to predict the resources and support the
most appropriate network based on evaluation techniques showing
the importance of resource performance evaluation, such as [8]
where a novel scheme is proposed. More in detail, graph neural
networks are employed to predict the resource consumption of
diverse workloads and transfer learning can be further exploited in
order to extend the graph neural networks and adapt to differences
in computing and resources environments. Moreover, optimization
techniques are applied in [9] where adaptive model selection is
applied based on machine learning to develop a low-cost predictive
model to quickly select a pretrained neural network by considering
the desired accuracy and inference time on a given data input.

Finally, the impact of transfer learning is examined in [10], where
the authors have explored the influence of retraining parameters, in-
cluding the optimizer, the mini-batch size, the learning rate, and the
number of epochs, on the classification accuracy and the processing
time needed. Another technique employed to increase efficiency
and potentially decrease the computational load required is to select
a subset of the available features of the principal signal (such as
sound or image / video) so that the models are trained upon this
subset. A methodology employing feature selection based on the
Principal Component Analysis (PCA) weights is presented in [11].

3 METHODOLOGY
In this work, we observe and measure the computational (CPU)
time needed for the training of a selected set of convolutional neural
networks, under different training parameters and configurations.
These networks have been trained mainly for audio classification.
Audio files are converted into scalograms and/or spectrograms, i.e.,

68



Evaluation and Prediction of Resource Usage for multi-parametric Deep Learning training and inference PCI 2023, November 24–26, 2023, Lamia, Greece

Figure 1: Prediction based on measured load during training and inference

figures, which have been used for training the neural networks.
Similarly, we have collected the corresponding times of a subset of
the trained models when they are used for inference. As depicted in
Figure 1, the training and inference activities (lower layer) depend
on the environment, the model characteristics and the training
or inference parameters respectively. The configuration and mea-
surements retrieved from the training and inference activities are
provided for modelling and prediction (upper layer of Figure 1). In
this layer a set of models is retrained upon these parameters and
measurements so that they can provide estimations and predictions
(output of the overall platform). Such predictions constitute the
estimations of the required resources for training and inference
activities upon a representative subset of CNNs and can support /
guide efficient management of computational resources as well as
the selection of CNNs (considering at the same time the achieved
classification accuracies).

The neural networks that have been selected for training and
inference include GoogleNet, SqueezeNet, ShuffleNet, VGGish, and
YAMNet. These networks are well-known, and widely used in a
rich portfolio of applications. They are used for image recognition
and classification (with these images being the spectrograms and or
scalograms of converted audio files). The design of the selected net-
works starts from 2014 (year when GoogleNet has been designed)
until recent years. They are also adequately complex, as the number
of layers ranges from 9 to 50, allowing for efficient parameterization
of their training procedures. Network characteristics include the ar-
chitecture and design of the network, the number of layers, number
of parameters, the activation function, and the size in memory.

GoogleNet is a relatively complex network consisting of twenty-
two layers with 7 million parameters and uses filters of different
dimensions. The outputs are concatenated into a single output
(inception module). The usage of 1x1 convolutional layer in the In-
ception module and the pooling result in a significant reduction of
the number of parameters [12]. SqueezeNet, with its eighteen layers,
includes 1.24 million parameters. It employs the fire module, which
reduces the dimension of the feature map and concatenates the
feature maps [13]. ShuffleNet consists of 50 layers and 1.4 million
parameters, using shuffling and pointwise convolution to increase
classification accuracy and reduce computational requirements [14].

VGGish and YAMNet CNNs, with nine and twenty-eight layers re-
spectively are used to classify sounds converted to images. VGGish
involves 72.1 million parameters and YAMNet 3.75 million respec-
tively.

Training of a neural network is computationally intense pro-
cedure, possibly involving extensive periods of time. A working
option is the application of transfer learning, knowledge retrieved
from one origin (source) domain is applied to another destination
(target) domain. Practically, this means that the network is initially
trained in the origin domain and a part (or parts) of it is retrained
based on the data of the destination domain. Apart from the re-
duction of the requirements on training time and resources, this
mechanism also alleviates the possibility of a reduced dataset in the
destination domain. The extension of the network part depends,
typically involving only the classifier part. In some cases, the con-
volutional part of the network may be re-trained (with the addition,
removal, or adaptation of layers) along with the classification part.
In rather infrequent cases, the full network is trained from scratch
considering the datasets of the destination domain.

The selection depends on each specific problem, as well as the
affinity of the origin and destination domains. As the more typical
cases involve the adaptation (retraining) of the classification parts
of the networks, keeping the overall architecture as well as the num-
ber of layers. In this view our measurements refer to the retraining
duration (CPU time), when the classification part of the previous
networks is affected. The training (retraining) is affected by param-
eters which influence the computational resources. These involve
the optimizer, the size of mini-batches, the number of epochs, and
the learning rate.

Of course, the input dataset parameters also play their role. These
involve the number of the files used for training, their resolution
and format (for example jpg, png or tiff). GoogleNet and ShuffleNet
receive as input images of 224 × 224 × 3, while images used by
SqueezeNet have resolution of 227 × 227 × 3. VGGish and YAMNet
receive input image size of 96 × 64 × 1.

The datasets involved include UrbanSound8K, the ESC-10, and
the Air Compressor. Interesting dataset characteristics include the
number of files and the number of classes. UrbanSound8K (with its
8732 files) includes 10 classes of outdoor sounds, ESC-10 dataset
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Table 1: Network and training parameters and their values

Parameter Values
CNN GogLeNet SqueezeNet ShuffleNet VGGish YAMNet
# Layers 22 18 50 9 28
Parameters (million) 7 1.24 1.4 72.1 3.75
Memory size (MB) 27 5.2 5.4 289 15.5
Input resolution 224x224x3 227x227x3 224x224x3 96x64x1 96x64x1

Training hyperparameters Optimizer Mini-batch size Epochs Learning rate
Adam, SGDM 8,16, 32 (Image CNNs) 6, 8, 10 0.5, 1, 2 (x10-3)

64, 128, 256 (Sound CNNs)

Datasets UrbanSound8K ESC-10 Air Compressor
# Files 8732 400 1800
# Classes 10 10 8

also 10 classes, with each one consisting of 40 audio ogg files. The
Air Compressor dataset contains eight classes with each class being
associated with 225 audio wav files.

4 RESULTS AND DISCUSSION
4.1 Measurements Dataset
The dataset we have created includes the CPU time measurements
according to the number of CNNs, the number of training datasets,
as well as the number of applicable optimizers, mini-batch sizes,
epochs and learning rates:
[# 𝐶𝑁𝑁𝑠] ∗ [# 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠] ∗ [𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟𝑠] ∗ [#𝑀𝑖𝑛𝑖 − 𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒𝑠] ∗
[#𝐸𝑝𝑜𝑐ℎ𝑠] ∗ [#𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒𝑠]

The available values are presented in Table 1 and have resulted
in 504 combinations and measurements.

The CPU time is measured using the environment employed
to perform both training and inference, namely Matlab (version
2023b). In addition to the training CPU times, the corresponding
times for inference have been measured for a subset of the trained
networks (one per family) and the relationship (correlation) with
investigation times has been investigated. All training and inference
sessions are performed using the same computational infrastructure
and normalization has been applied. Specifically, a desktop PC with
memory of 32 GB RAM, processor Intel Core i7-10700K, eight cores
up to 3.8GHz, with the graphic card NVIDIA GeForce RTX 3060
has been used.

4.2 Prediction based on Regression
Prior to training, a selection process among available regression
models has taken place. The procedure involves training candidate
models including linear regression, support vector machines, regres-
sion trees and ensembles of regression trees, kernel approximation
as well as neural networks. The selection has been based on the
minimization of the validation error, calculated as the Root Mean
Squared Error (RMSE).

All selected models have been based on neural networks and
specifically include the narrow, the medium and the wide neural
networks with 1-layer and the bi-layered and tri-layered networks

with 2 and 3 layers respectively. All networks use the ReLu activa-
tion function.

For training and testing, 80% and 20% of the dataset have been
used (respectively) and the prediction results for the CPU training
times are depicted in Figure 2. This figure consists of 5 sub-figures
presenting the results of each of the five predicting neural networks.
The evaluation of available models has been performed consid-
ering the root mean square error (RMSE), and the coefficient of
determination (R2). The calculation formulas are provided below:

𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(�𝑙𝑜𝑎𝑑 (𝑖) − 𝑙𝑜𝑎𝑑 (𝑖)
)2

(1)

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 − 𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

∑𝑁
𝑖=1

(�𝑙𝑜𝑎𝑑 (𝑖) − 𝑙𝑜𝑎𝑑 (𝑖)
)2∑𝑁

𝑖=1 (𝑙𝑜𝑎𝑑 (𝑖)) − 1
𝑁

∑𝑁
𝑖=1 (𝑙𝑜𝑎𝑑 (𝑖))

(2)
Where �𝑙𝑜𝑎𝑑 (𝑖) is the predicted value and 𝑙𝑜𝑎𝑑 (𝑖) the actual value.

Furthermore, SST is the sum of squares total, SSR the sum of squares
regression, and SSE the sum of squares error.

The correlation coefficients R versus the RMSE for each predictor
are presented in Figure 3, vertical and horizontal axis respectively.

As presented in Figure 3, the model that provides the most ac-
curate prediction is the bi-layered network, which achieves the
largest value of R (slightly below 0.86) with the smaller value of
RMSE (slightly larger than 270). It is followed by the narrow neural
network and the medium network. The tri-layered and the wide
networks present the weakest performance despite their relatively
complex structure.

4.3 Inference time
We have measured the inference time for a subset of the trained net-
works, one per category and with the most typical training configu-
rations. Specifically, the optimizer has been Adam, the epochs 8, the
learning rate 2×10-3 and for GoogleNet, ShuffleNet and SqueezeNet
the mini-batch size has been set to 32, while for the Sound CNNs the
mini-batch size 256 (as in the pre-processing phase each file is split
by 0.96). The UrbanSound8K data set has been used for inference
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Figure 2: Prediction results

Table 2: The training and inference time for each CNN.

CNN Training time (s) Inference time (ms)
GoogleNet 342 2.04
SqueezeNet 154 1.28
ShuffleNet 1063 2.00
VGGish 373 2.94
YAMNet 590 26.67

and specifically the 20% of the files (corresponding to 1747 sound
files). The training and inference times are depicted in Table 2.

ShuffleNet has the longest training time, which is partially ex-
plained by its architecture, while its inference time is shorter. On
the other hand, YAMNet has a relatively large training time and
the largest inference time. SqueezeNet has the shortest inference
duration, and this makes it more appropriate for environments
of more constrained resources. Another interesting observation is
that the inference and the corresponding training durations are not
correlated (the correlation index is at 0.15).

While in a centralized deployment, inference and training may
take place independently even using different environments (train-
ing in the central node and inference at peripheral nodes), in more
distributed and decentralized settings, training and inference can
be intertwined, taking place in the same node and with different
frequency. In this view, we can consider a linear combination of

the training and inference durations to form an index, as below:

𝐼𝑡𝑟𝑎𝑖𝑛,𝑖𝑛𝑓 = 𝑎1𝑇𝑡𝑟 + 𝑎2𝑇𝑖𝑛𝑓 (3)

The coefficients a1 and a2 can be approached through the estimation
of relative frequency of training and inference respectively.

5 CONCLUSION AND FUTUREWORK
Training and re-training of neural networks can be challenging in
terms of computational resources, while their execution to provide
inference also requires a portion of such resources. Given a specific
computational environment, the resource requirements, along with
the performance and the accuracy achieved, may be a criterion for
selecting deep learning models. For this, mechanisms and tools are
needed to estimate the required resources.

In this work we have considered a set of five convolutional neural
networks (CNN) used for image classification, GoogleNet, SuffleNet,

71



PCI 2023, November 24–26, 2023, Lamia, Greece Eleni Tsalera et al.

Figure 3: correlation coefficient R versus the RMSE for each
predictor

SqueezeNet, VGGish and YAMNet. The selection has been repre-
sentative in terms of the evolution of the NNs and their complexity,
ranging from 9 to 50 layers and reaching up to 72million parameters.
These models have been re-trained according to different training
configurations, changing the values of epoch numbers, training
rates and batch sizes. For each of the combinations of the NNs and
training parameters, the training CPU time has been measured,
resulting in a dataset of more than 500 values, offering adequate
variation.

The second step of the work has been to train a set of NN-based
regression models for the estimation of the training CPU time de-
pending on the selected model and training configuration. Five
neural networks have been used and evaluated in terms of root
mean squared error and correlation coefficient. From them, the bi-
layered neural network, followed by the narrow one, has achieved
high predictive performance, offering the largest correlation coeffi-
cient (R) and the lower root mean square error.

Another observation is related to the measurements of the in-
ference times for each of the trained models. While for the four
out of five of the models the inference duration has been relatively
homogeneous (from 1.28 to 2.94 milli-seconds), YAMNet presents
much higher inference time. It is also interesting that the training
and inference durations are not correlated. To combine these two
metrics (training and inference durations) we have also briefly dis-
cussed a straightforward, linear combination, based on the relative
frequencies of training and inference activities.

In terms of future work, we foresee to extend the concept of ob-
serving the usage of computational resources, in different execution

environments, including other portable devices, such as Raspberry
pi and smart phones. In addition, the measurements may consider
additional neural network architectures, performing classification,
regression and clustering, so that the methodology is application
agnostic. In addition, while in this current work, we have employed
the CPU time, as an indication of the computational load for train-
ing and inference, this can be extended to the other computational
resources such as the memory employed by the model. At last,
the straightforward, linear combination of training and inference
duration can be further extended, considering the characteristics
of the resource-constrained infrastructure, as performed in [15].
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