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ABSTRACT
Pneumonia has a significant impact on morbidity and mortality
worldwide and is associated with serious diseases, such as coron-
avirus disease 2019 (COVID-19). Pneumonia diagnosis is typically
performed by medical experts, trained to evaluate chest x-rays,
which is usually a difficult and time-consuming task. To address
this problem, in this paper, a novel classification scheme based on
a Fuzzy Cognitive Map (FCM) is introduced. The proposed FCM
model is applied for the detection of foci of consolidation, which
is a common radiographic manifestation of pneumonia, while en-
abling the explanation of the outcome using linguistic terms. Also,
unlike most FCM models, it is automatic, in the sense that it does
not require any manual intervention for the construction of the
fuzzy graph. Experimental results using publicly available datasets
demonstrate the effectiveness of the introduced model.
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1 INTRODUCTION
Pulmonary infections can be evoked by various pathogens includ-
ing fungi, bacteria, and viruses, which can be fatal and cause serious
problems, particularly among immunocompromised people. Pneu-
monia is a heterogeneous and complex disease that occurs when
a virulent pathogen, such as S. pneumoniae and SARS-CoV-2, in-
vades the normally sterile space in the lungs [1]. For the diagnosis
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of pneumonia, chest x-ray is the most commonly used method.
However, this method can be time consuming, as pneumonia has
similar opacity to images with other diseases such as lung cancer
and excess fluid. Thus, despite advances in the treatment and pre-
vention of pneumonia, further improvement in the diagnosis of
respiratory diseases, including pneumonia, remains a challenge.

Recently, artificial intelligence has been effectively utilized to
detect respiratory diseases [2]. Specifically, FCMs [3] constitute a
soft computing technique that is used to model complex systems
and provide results that are compatible to human logic. Among
various soft computing approaches, FCMs have shown remarkable
results used as a tool aimed at modeling and analyzing the dynam-
ics of complex systems. The simplicity and effectiveness of FCMs
have contributed to be widely used in many applications of various
scientific domains [4], including time series forecasting, develop-
ment of medical decision support systems [5], and medical decision
making tasks [6] [8].

In this paper, we introduce a graph-based model, which is ap-
plied for image-based pneumonia detection. The proposed FCM
model receives chest x-ray images of patients as an input, and it
classifies them as belonging to a normal or pneumonia case, based
on the texture of the lung regions. Unlike most current FCM mod-
els, the proposed one is automatically constructed, without the
need of manual input by medical experts, because the weights of
the FCM are automatically adjusted. More importantly, the pro-
posed model provides explainable results, by providing a humanly-
understandable reasoning regarding the reasons of inferring its
output. Thus, the proposed model does not only offer an approach
towards the reduction of diagnostic errors and the productivity
increase of the experts, but also a tool that can offer more reliable
outcomes for the experts based on causal reasoning. The rest of the
paper is organized into four sections. Section 2 includes the basic
theory of FCMs, section 3 presents the proposed model, and section
4 describes the experiments and results obtained for the case study
of pneumonia detection in x-ray images. Finally, the conclusions
derived from this study are summarized in section 5.

2 FUZZY COGNITIVE MAPS
Fuzzy Cognitive Maps originate from the combination of fuzzy logic
and neural networks and constitute illustrative model representa-
tions close to human perception [3]. An FCM is a weighted graph
consisting of nodes and links among them. Each node represents a
concept 𝐶 = 𝐶1,𝐶2, ...,𝐶𝑛where n is the total number of concepts
and form a state vector 𝐴 = {𝐴𝑟 }.The causal-effect relationships
among them are described by directed weighted edges. The edge
weight𝑤 𝑗𝑖 is a fuzzy value representing the impact that a concept
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Figure 1: Example of FCM with four concepts

𝐶 𝑗has on the connected other concept 𝐶𝑖 . For example, according
to Figure 1, looking at𝐶1 → 𝐶4,𝐶1 has an impact on𝐶4 , described
by𝑤14. Based on the sign of the weight, this interaction can be neg-
ative, positive, or neutral [3]. The weights ranging within [−1, 1],
constitute a square weight matrix𝑊 .

For the definition of an FCM, experts with specific scientific
knowledge are involved in the determination of concepts and their
interconnections, utilizing fuzzy “IF-THEN” rules. The FCM is up-
dated iteratively, until either the system converges, or meets a
stopping criterion, such as reaching a predefined number of it-
erations. The concept values 𝐴𝑡+1

𝑖
at a next iteration (𝑡 + 1), are

calculated taking into consideration the concept values 𝐴𝑡
𝑖
of the

previous iteration 𝑡 , as follows:

𝐴𝑡+1
𝑖 = 𝑓

©«𝐴𝑡𝑖 +
𝑛∑︁

𝑗=1, 𝑗≠𝑖
𝑤 𝑗𝑖𝐴

𝑡
𝑗
ª®¬ (1)

where 𝑡 = 1 . . . .,𝑇 is the iteration,𝑤 𝑗𝑖 is the weight matrix of
the edge connecting 𝐶 𝑗 to𝐶𝑖 , and 𝑓 is a sigmoid transfer function,
such as the log sigmoid function [3]. The initial state vector rep-
resents the FCM input concept values for t=0, and is defined as
𝐴0 = (𝐴0

1, . . . , 𝐴
0
𝑛).

3 AUTOMATICALLY CONSTRUCTED FUZZY
COGNITIVE MAPS

To examine the lungs using the introducedmodel, a segmentation of
an x-ray image into 6 regions is performed, based on [7]. Specifically,
the division of lungs was done into six main zones, utilizing two
lines as borders; line A was defined at the level of inferior wall of
the aortic arch, and line B was drawn at the level of the inferior
wall of the right inferior pulmonary vein. Thus, six lung regions
evoked; in the upper, middle and lower zones of the left and right
lung [7]. Taking the above into consideration, the lung regions that
evoke are the following: Left Up, Middle and Low (LU, LM, LL) and
Right Up, Middle, and Low (RU, RM, RL), as presented in Figure 2
(a).

3.1 Figures
In order to perform pneumonia diagnosis in x-ray images, textural
features firstly need to be extracted. For that purpose, the energy
from different bands of the single level 2D-Discrete Wavelet Trans-
form (2D-DWT) are calculated [8], [9]. Specifically, a separable
filter-bank is applied to the original image I0 according to Eq. 2).

𝐼 𝑗0 =

[
𝐻𝑥 ∗

(
𝐻𝑦 ∗ 𝐼 𝑗0−1

)
↓2,1

]
↓1,2

𝐷 𝑗1 =

[
𝐻𝑥 ∗

(
𝐺𝑦 ∗ 𝐼 𝑗0−1

)
↓2,1

]
↓1,2

𝐷 𝑗2 =

[
𝐺𝑥 ∗

(
𝐻𝑦 ∗ 𝐼 𝑗0−1

)
↓2,1

]
↓1,2

𝐷 𝑗3 =

[
𝐺𝑥 ∗

(
𝐺𝑦 ∗ 𝐼 𝑗0−1

)
↓2,1

]
↓1,2


(2)

where k ∈ Z,1 ≤ j ≤ j0, , j0 ∈ Z, ↓2,1 and ↓1,2 represent the sub-
sampling along the rows and columns respectively, (*) is the convo-
lution operator, H is the low-pass filter. The variable G corresponds
to the high-pass filter. Thus, the energy from band 𝐼 𝑗0 , of the DWT
is calculated, for different DWT families and are utilized as a feature
to represent the contents of the chest x-ray images. The extracted
feature vector that describes the energy values in an image region
is symbolized as 𝐸𝑟

𝜆
= (𝑒1, 𝑒2, . . . , 𝑒𝑢 ), where 𝑢 represents the dif-

ferent wavelet families, e.g., Haar, Daubechies [10] , 𝜆 = 1, 2, . . . ,Λ
is an identifier corresponding to the examined classes, e.g. Normal
lungs, lungs with Pneumonia. The variable 𝑟 = 1, 2, . . . , 𝑅 repre-
sents the examined lung regions. Specifically, for this study, a total
number of 𝑅 = 6 lung regions were used for the experiments, based
on [7], as presented in Figure 2.

3.2 Fuzzy Set Construction
To linguistically describe the energy level of lung regions in each
image, fuzzy sets are defined and constructed accordingly for each
extracted feature 𝑒𝑢 . Specifically, the average value 𝑒𝑢 for 𝑁𝜆 train-
ing images of each class 𝜆 is calculated, based on Eq. 3):

𝑒𝑢 =

∑
𝑁𝜆

𝑒𝑢

𝑁𝜆
(3)

with a standard deviation 𝜎 (𝑒𝑢 ). A fuzzy set 𝑠𝑟
𝑢,𝜆

is defined based
on 𝑒𝑢 , 𝜎 (𝑒𝑢 ) with a respective membership function:

0 < 𝜇𝑟
𝑢,𝜆

(𝑒𝑢 ) < 1 (4)

For simplicity, triangular membership functions are used. The
fuzzy sets (𝑠𝑟

𝑢,𝜆
) of the same class region 𝑟 are then aggregated

using the fuzzy union operation, resulting into new fuzzy sets 𝑠𝑟
𝜆
,

each of which corresponds to a feature 𝑒𝑢 , with a membership
function 𝜇𝑟

𝜆
(𝑒𝑢 ). The overall energy 𝐸𝑟 of each image region 𝑟 is

calculated as follows:

𝐸𝑟 =

∑𝑢
𝑖=1 𝑒𝑢 ·𝑚𝑎𝑥

(
𝜇𝑟
𝑢,1 (𝑒𝑢 ) , .., 𝜇

𝑟
𝑢,Λ (𝑒𝑢 )

)
∑𝑢
𝑖=1𝑚𝑎𝑥

(
𝜇𝑟
𝑢,1 (𝑒𝑢 ) , .., 𝜇

𝑟
𝑢,Λ (𝑒𝑢 )

) (5)

Thus, based on Eq.(5) the initial state vector takes the following
form:

𝐴0
(
𝐸𝑟

)
= max

(
𝜇𝑟1

(
𝐸𝑟

)
, .., 𝜇𝑟Λ

(
𝐸𝑟

))
(6)

which is then scaled in the range of [𝑎𝑟𝑔max(𝜇𝑟1 (𝐸𝑟 ), .., 𝜇
𝑟
Λ (𝐸𝑟 )) −

1/Λ, 𝑎𝑟𝑔max(𝜇𝑟1 (𝐸𝑟 ), .., 𝜇
𝑟
Λ (𝐸𝑟 ))/Λ].
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Figure 2: (a) Segmentation of lungs into six regions: Left Upper, Middle, Lower (LU, LM, LL) and Right Upper, Middle, Lower
(RU, RM, RL), (b) Structure of the proposed FCM model.

3.3 Definition of Interconnections
FCMs represent knowledge through concepts and directed,
weighted edges between them [3]. In this study, to diagnose pneu-
monia, a total of seven initial concepts, representing the lung re-
gions (Figure 2) were considered. Specifically, the structure of the
proposed model for the pneumonia diagnosis problem is illustrated
in Figure 2 (b); 𝑪1=Right Upper (RU), 𝑪2= Left Upper (LU), 𝑪3=
Right Middle (RM), 𝑪4= Left Middle (LM), 𝑪5= Right Lower (RL),
𝑪6= Left Lower (LL), and 𝑪7= Pneumonia, which is the output node
that determines the final outcome.

To estimate the weight matrix of the graph, the causal relation-
ships between the concepts are examined. Initially, the calculation
of the weights between an input concept𝐶𝑟 and the output concept
𝐶7 of the graph is performed based on Eq. 7).

𝑤𝐶𝑟 |𝐶7 =
𝑅𝑟
𝜆1 − 𝑅𝑟

𝜆2
𝑅𝑟
𝜆1 + 𝑅𝑟

𝜆2
(7)

where 𝜆1, 𝜆2 are the classes belonging to different types of x-ray
images, i.e., Normal, Pneumonia, respectively. Equation 7 expresses
the energy rate. The weighted average energy is calculated using
Eq.(8). This average value characterizes the calculated energy level
among the lung regions

𝑅𝑟
𝜆
=

∑𝐾𝜆

𝑘=1 𝐸
𝑟 ·𝑚𝑎𝑥

(
𝜇𝑟
𝜆1

(
𝐸𝑟

)
, 𝜇𝑟
𝜆2

(
𝐸𝑟

))
∑𝐾𝜆

𝑘=1𝑚𝑎𝑥

(
𝜇𝑟
𝜆1

(
𝐸𝑟

)
, 𝜇𝑟
𝜆2

(
𝐸𝑟

)) (8)

Then, the influence between two concepts which represent the
energy level in two lung regions 𝐶𝑟1 , 𝐶𝑟2 , can be defined with
respect to the differences observed in the certain regions and is
calculated based on Eq. 9).

𝑤𝐶𝑟1 |𝐶𝑟2
=
𝑅
𝑟1
𝜆1

− 𝑅
𝑟1
𝜆2

+ 𝑅
𝑟2
𝜆1

− 𝑅
𝑟2
𝜆2

𝑅
𝑟1
𝜆1

+ 𝑅
𝑟1
𝜆2

+ 𝑅
𝑟2
𝜆1

+ 𝑅
𝑟2
𝜆2

(9)

where 𝑟1, 𝑟2 are the lung regions, and 𝜆1, 𝜆2 correspond to the classes
belonging to different types of x-ray images.

4 EXPERIMENTS AND RESULTS
4.1 Dataset Description and Processing
The dataset used for the experiments includes 5247 chest X-ray
images of normal, viral and bacterial pneumonia. Specifically, 3906
images correspond to patients suffering from pneumonia (2561
images for bacterial pneumonia and 1345 for viral pneumonia) and
1341 images are normal chest x-ray images. The resolution of the
images varies from 400p to 2000p [13]. In addition, a total of 10
variations of this dataset was created, by following a 10-fold cross
validation of the samples into non-overlapping training and test
subsets [14].

4.2 Classification Results
To evaluate the performance of the proposed model the following
metrics were utilized: accuracy, sensitivity, specificity, and Area
under the ROC Curve (AUC) [14], [15].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(10)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(11)

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(12)

TP: True Positive, TN: True Negative, FP: False Positive, FN: False
Negative
The proposed FCM was compared to the following well-known
classifiers: Support Vector Machine (SVM), k-Nearest Neighbors
(k-NN) algorithm, Naïve Bayes (NB), Binary Decision Tree (BDT)
[11] and the results are presented in Table I. The ranges of the
hyperparameters tested in the case of the SVM classifiers were
𝐶 = [10−2, 102], 𝛾 = [10−3, 103], and for KNN the range of nearest
neighbors was [1, 5]. As can be observed from Table 1, the proposed
FCM model provides higher results compared to the rest models.
Specifically, the introduced model achieved an accuracy of 93%,
with a sensitivity of 51% and a specificity of 98%. The calculated
area under the ROC curve (AUC) was equal to 93%. In addition,
it has to be mentioned that an advantage over the rest compared
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Table 1: Comparisons of the proposed FCM model with well-known classifiers.

Models/Metrics Accuracy AUC Sensitivity Specificity
SVM 0.90 0.90 0.38 0.97
𝑘-NN 0.89 0.88 0.38 0.97
NB 0.66 0.68 0.80 0.64
BDT 0.90 0.89 0.39 0.96
Proposed FCM 0.93 0.93 0.51 0.98

methods is that the proposed model provides outcomes that are
understandable in a way compatible to human logic.

4.3 Explainable Example of Pneumonia
Detection

For better understanding the interpretation of the outcome de-
rived from the proposed FCM model, an indicative example of
pneumonia detection is presented. Firstly, an x-ray image of the
dataset used was randomly selected and inserted as input of the
proposed model. Using Eq. 6) the initial state vector of the graph,
for the given problem, was calculated and defined as follows: A0 =

(0.90, 0.80, 0.87, 0.87, 0.41, 0.39, 0). FCMs generate a new state
vector at each discrete time step, and this procedure is repeated
until the system stabilizes. Considering the above, in the example,
the proposed FCM model reaches a steady state after 9 iterations
and the corresponding state vector is generated, using the weight
matrix presented below:

𝑤𝑖 𝑗=



0 1 0.42 0.74 1 −0.89 0.93
1 0 0.48 0.95 1 −0.71 1

0.42 0.48 0 0.30 0.59 −1 0.22
0.74 0.95 0.30 0 1 −0.57 0.52

1 1 0.59 1 0 −0.45 −1
−0.89 −0.71 −1 −0.57 −0.45 0 −0.21

0 0 0 0 0 0 0


(13)

The resulting state vector is the 𝐴9 =

(0.95, 0.93, 0.95, 0.95, 0.13, 0.19, 0.97). The last value of 𝐴9

corresponds to the output concept C7=“pneumonia”, which is
responsible for the outcome of the problem. Figure 4 (a) illustrates
the constructed fuzzy sets utilized to linguistically characterize
the calculated degree of pneumonia as: “Very Low (VL)” [0, 0.30],
“Low (L)” [0.20, 0.50], “Medium (M)” [0.30, 0.70], “High (H )” [0.50,
0.80], “Very High (VH )” [0.70, 1]. In this example 𝐴9 reveals that
the examined patient has a “Very High” possibility of having
pneumonia, which is equal to 0.97. Specifically, according to the
calculated 𝐴9, the possibility of pneumonia is “Very High” if the
following apply:

• the texture of the lung regions in the chest X-ray, described
by 𝑪1=Right Upper, 𝑪2= Left Upper, 𝑪3= Right Middle, 𝑪4=
Left Middle, is “Very High”. This is because the respective
calculated concept values of the graph after 9 iterations are
𝐶1 = 0.95, 𝐶2 = 0.93, 𝐶3 = 0.95, 𝐶4 = 0.95 and correspond
to “Very High” pneumonia, based on the defined fuzzy sets
(Figure 4 (a)).

• the texture of the lung regions in the chest x-ray, given
by 𝑪5= Right Lower, 𝑪6= Left Lower is “Very Low”. This is

because the resulting concept values 𝐶5 = 0.13, 𝐶6 = 0.19
represent “Very Low” pneumonia, based on the constructed
fuzzy sets illustrated in Figure 4 (a).

In this paper, the texture is characterized by wavelet energy
features, as described in section 3.1. This can also be noticed in
Figure 3, which depicts a normal lung (Figure 3left) and a lung
suffering from pneumonia (Figure 3right). In the case of the lung
suffering from pneumonia, the brightness level is more intense with
a different texture differentiating the DWT energy levels from those
characterizing the normal lung parenchyma. The proposed model is
performing its reasoning procedure, until it finally reaches a steady
state and converges; the convergence plot of the proposed FCM for a
patient suffering from “Very High” pneumonia is depicted in Figure
4 (b). In addition, as observed from the experiments performed, the
energy 𝑒𝑢 corresponding to images from normal patients is lower
than those with pneumonia disease; this is because there are fewer
light deviations in normal x-rays

5 CONCLUCIONS
In this paper, a novel FCM model aiming to perform pneumonia de-
tection. Taking into consideration that diagnosing pneumonia from
x-ray images is time consuming and less accurate, the introduced
model deals with these problems, whereas it limits human inter-
vention. The experiments demonstrated the effectiveness of the
introduced FCMmodel, as it succeeded in identifying which regions
of the lungs were most associated with pneumonia, while automati-
cally detecting the interconnections between them. In addition, the
proposed model provides easily explainable results, while being
aware of uncertainty, and simple to implement. Future research
directions include further investigation of the effectiveness of the
proposed model.
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