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A means is described for extending the area of applica- 
tion of digital computers beyond the numerical data processing 
stage and reducing the need for human participation in the 
formulation of certain types of computer problems. By the 
use of tensor calculus and a computer language designed to 
facilitate symbolic mathematical computation, a method has 
been devised whereby a digital computer can be used to do 
non-numeric work, that is, symbolic algebraic manipulation and 
differentiation. 

To illustrate the techniques involved, a digital computer has 
been used to derive the equations of motion of a point mass 
in a general orthogonal curvillnear coordinate system. Since 
this operation involves a formulation in terms of first- and sec- 
ond-order differential coefficients, it provides a good demon- 
stmtlon of a computer's capability to do non-numeric work 
and to assist in the formulation process which normally pre- 
cedes the numerical data processing stage. Moreover, this 
particular problem serves to illustrate the advantages of the 
mathematical techniques employed. With the program pre- 
pared for this purpose the computer will derive the equations 
of motion in any coordinate system requested by the user. 
Results are presented for the following coordinate systems: 
cylindrical polar, spherical polar, and prolate spheroidal. 

pedieng of expressing all vectors in terms of their tensor 
colnponents. 

As a consequence of the geometrical simplification in- 
herent in the tensor metimd, the operations involved in 
formulating problems in unfamiliar emwilinear coordinate 
systems can be reduced to routine computer operations. 
I t  is this aspect of the tensor method which is so at tract ive 
for the types of computer applications contemplated. I t  is 
the  purpose of this report to show that  digital computers 
can be used to do non-numeric work. With this object in 
mind, a computer program was written to demonstrate 
the effectiveness of the proposed technique. This program, 
in the FOaMAC computex language, was used. to derive the 
equations of motion of a point mass in a variety of eurvi- 
linear coordinate systems. To derive the equations of mo- 
t ion of a particle by this method, the user need only know 
the coordinate transformation equations relating the eurvi- 
linear coordinates to an orthogonal Cartesian triad. When 
this program is used and the coordinate transformation 
equations are supplied as input, the computer will derive 
the equations of motion. The equations of motion obtained 
will be relative to the eurvilinear coordinate system speci- 
fied by the coordinate transformation equations used as 
input. The computer  presents the results in FOt~TnAN 
language. However, for the convenience of readers, the 
FORTRAN statements are translated to conventional 
mathematical symbolism. 

N o m e n c l a t u r e  

A 
At(x) 

Aj(x) 

A t j  

I n t r o d u c t i o n  A i,s 
a t (x)  

T h e  extensive logic and storage capabilities of digital aJx) 
computers, combined with the evolution of new computer a*(x) 

a~(x) 
languages, enable them to be used for a wide range of non- B~(y) 
numeric operations. The author is aware of only two pre- 
vious at tempts  to use computers in this manner: (a) In B~(y) 
[1] an interesting technique is described whereby a digital 
computer was used to derive equations of motion. The b~(y) 
technique, as described, was not completely satisfactory b~(y) g~s 
in tha t  part  of the operation had to be performed manu- a~j 
ally. (b) In  [2] and [3] an I B M  7094 computer equipped M 
with a FOaM~C compiler was used to obtain the Chris¢offel p(j) 
symbols of the first and second kind for 12 orthogonal 
curvilinear coordinate sys tems .  R(i) 

If  the extensive logic and storage capabilities of these 
T 

computers are to be used to full advantage, a departure Ti 
from conventional techniques of formulation may be nee- 7,~ 
essary. For example, when conventional methods are used, V 
the form which the equations of motion and of mathe- x ~ 

ma t i c a l  physics assumes depends on the coordinate system x~(y~Y2Y3) 
used to describe the problem. This dependence, which is y~ 
due to the practice of expressing vectors in terms of their y~(x~x2x,) 
physical components, can be removed by the simple ex- 

vector 
contravariant vector components in the x-coordinate 
system 
covariant vector components in the x-coordinate 
system 
covariant derivative of a contravariant vector 
eovariant derivative of a covariant vector 
system of base vectors in the x-coordinate system 
system of unit base vectors in the direction of ai(x) 
system of base vectors reciprocal to ai(x) 
system of unit base vectors in the direction of at(x) 
contravariant vector components in the y-coordinate 
system 
covariant vector components in the y-coordinate 
system 
system of base vectors in the y-coordinate system 
system of base vectors reciprocal to bj(y) 
ai-a/ 
a l . a  i 
mass of particle 
d 2x ] 
dt 2 

dx ~ 
dt 
thrust vector 
covariant component of the thrust vector 
contravariant component of the thrust vector 
velocity vector 
system coordinates 
functional form of the transformation from the y- 

coordinate system to the x-coordinate system 
system coordinates 
functional form of the transformation from tile x- 

coordinate system to the y-coordinate system 
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I~7, k] 

<jkj 

T i 

Y~p 

i, j ,  k, l 

Christoffel symbol of the first kind 

Christoffel symbol of the second kind 

Kronecker delta 
physical component of the thrust vector 
potential function 
gradient of potential function 

Subscripts 

indices of covariance 

Super sc r ip t s  

o~, i ,  j ,  k ,  l indices of contravariance 

A n a l y s i s  

COMPONENTS. In order t o  facilitate the processing of 
vectors, bi-vectors and general n-vectors, it is convenient 
from the point of view of non-numeric operations to ex- 
press all such entities in terms of their tensor components, 
rather than in terms of their physical components. When 
referred to a general curvilinear coordinate system, a 
vector A may be expressed in the alternative forms (see 

[41): 
A = A~a~ = A # J .  (1)  

If in some expression a certain index occurs twice, this 
means that the expression is to be summed with respect 
to that  index for all admissible values of the index. 

Components denoted by superscripts, as in A ~, are 
termed contravafiant components, whereas components 
denoted by subscripts, as in A~, are termed covariant 
components. The base vectors a i and aj  are related as 
follows 

a l . a j  = ~i i 

where ~ / i s  the Kronecker delta (see [5]). 

I~ for i = j,  
~/ = for i ~ j .  

Because of this relationship, the base vector a i is termed 
the reciprocal of the base vector a i .  The variance of vec- 
tor components is determined by the transformation law 
which the components obey. For a coordinate transforma- 
tion from a coordinate system x to a coordinate system y 
given by 

y~ = yi(xlx2x3), (2) 

the transformation law for the components of a contra- 
variant vector A ~ is given by (see [4]) 

B j ( y )  = A ' ( x )  (2a) 
Ox ~ 

where At(x) are the eontravariant components in the x- 
coordinate system and Bi(y) are the components when 
referred to the y-coordinate system. For the same trans- 
formation of coordinates, which is assumed to be reversible 
and one-to-one, the transformation law for the eovariant 
components A ~ is 

Ox~ A~(x). (3) B A y )  = 
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In this case A,;(x) are the cowu'ia~R components in the 
x-coordinate system and ]~j(y) are the covariant compo- 
nents when referred to the y-coordinate system. The dis- 
tinetion between these two transformtRion laws vanishes 
when the transformation is orthogonal Cartesian. This 
explains why there is no preoccupation with these vectors 
in the study of ordinary vector anMysis. 

BASE VEC'rOiRS. The base vectors associated with tlhe 
tensor components have a variance consistent with the in- 
dex assigned to them. As in the case of tensor components, 
a base vector which is characterized by a subscript is 
eovariant, whereas a base vector which is characterized 
by a superscript is contravariant. Tha t  is, if a(x) and 
b(y) are the base vectors in the x- and y-coordinate sys. 
terns, respectively, and the coordinate transformation is 
assumed given by eq. (2), then 

OX i / ,, 
bi (y)  = ~ a~(x) (4) 

and 

OYi at(x) .  (5) b (Y) = 

VECTOR DERIVATIVES AND THE CHRISTOFFEL SYMBOLS, 

For a digital computer progrmnmed for non-numeric oper- 
ations, it  is desirable to have formulas for the derivative 
of a vector which are sufficiently general to apply in Ml 
coordinate systems, and yet  are amenable to routine com- 
puter determinations. Research indicates tha t  the intrin- 
sic derivative of a vector meets these requirements. The 
intrinsic derivative differs from the total  derivatives of 
the differential calculus by  a series of terms involving the 
Christoffel symbols of the second kind. These syinbots 
may  be obtained in terms of the scalar products of the base 
vectors by the following procedure. The scalar product of 
any two base vectors ai and ai may be defined as follows: 

ai 'a3'  = g i i  = a y ' a i .  (6) 

Likewise, the scalar product of the reciprocal base vectors 
a and aJ may  be defined as 

a / . a  / = giy = aY.a I. (7) 

The symmetry of gci and gCJ follows from the nature of the 
scalar product. Certain combinations of the partial deriv- 
atives of these scalar products with respect to the system 
coordinates are useful in obtaining the derivative of a vec- 
tor, in formulating the equations of motion, or in writing 
the equations of mathematical physics in a general curvi- 
linear coordinate system. The definitions that  follow are 
ascribed to Christoffel and are called Christoffel symbols 
[6]. There are two of these symbols, the first of which is 
defined as 

1 (Og.~k Ogik Og~j~ 
[ij, l~] = ~ \Oxi + Ox ~ Oxk ] " (8) 

The Christoffel symbol of the second kind is defined as 
follows: 

= g [~3, 1]. ( 9 )  
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'.l'l~e~e symbols may also be obtained from the coordinate 
transformation equations. It transpires that this method of 
derivation is more suitable for tile computer applications 
contemplated in this report. Assuming that the eurvilinear 
coordim~tes a.re rel:~ted to a system of Cartesian coordi- 
nates by the transformation of eq. (2), it is easily shown 

O0~y ~ Oy ~ 
[i], lc] - ox~ox~ oz,o (10) 

aHd 

(~[C} -- 02ya Oxl 
j OxiOx ~ Oy"" 

Likewise, the metric tensor g,x~ is given by 

Oy ~ Oy ~ 
Vii - Ox ~ Ox~ 

(11) 

(12) 

COV~ RIANT AND INTRINSIC DERIVATIVES. Christoffel 
symbols play an important role in the operations of co- 
variant and intrinsic differentiation. When a vector A is 
expressed in terms of its contravariant components and 
associated base vectors, covariant differentiation with 
respect to any coordinate x e gives the following [6]: 

Ox k \dxk -+- A i a~ = A/kay. (13) 

Likewise, intrinsic differentiation with respect to some 
parameter t yields 

dt \ dt -k- _ _ _  A ~ - d t  / a~ .4, k - ~  a~ (14) 

where A,~k is the covariant derivative of the contravariant 
form of the vector A, and A/k(dx~/dt)  is the correspond- 
ing intrinsic derivative. 

When the vector A is given in terms of its eovariant 
components and reciprocal base vectors, eovariant and 
intrinsic differentit~tion yields the following: 

OA - ( O A k  {~k} ) a~ a '  
Ox ~ \dxk -- Ay = A~.~ (15) 

dA (dA.~ {Jk} d ~ X ~ a ' = A ~ ' k d x ' '  
dt - \ - ~ -  - Ai  d r /  - ~  a (16) 

where A~,k is the covariant derivative of the eovariant 
form of the vector A and Ai,~(dxk/dt) is the corresponding 
intrinsic derivative. 

In a general space of three dimensions, each of eqs. 
(13)-(16) contains 27 Christoffel symbols. However, 
because of the symmetry of these symbols 

f i j }  = ( ~ }  (17) 

the number of independent Christoffel symbols re- 
duces to 18. 

.arge number of terms appearing in the expanded 
eqs. (13)-(16) is due to the generality of these 

as, which are applicable to any space of three 

-la ! "~J , .~h~  0 / ~ a n t ~ m h e r .  1967 

dimensions. Fortunately, for the three-dimensional spaces 
most commonly used, these equations reduce to a more 
manageable size. 

Compu te r  Applications 

As a consequence of the geometrical simplification 
inherent in the tensor medlod, the operations involved in 
obtaining derivatives and formulating equations of motion 
in unfamiliar curvilinear coordinate systems carl be re- 
duced to routine operations. It is this aspect of the tensor 
method which makes it so attractive for computer appli- 
cations. Because of their logic and storage capabilities, 
digital computers are well suited to such routine opera- 
tions. If the functional form given by eq. (2) is known, the 
Christoffel symbols may be obtained from eqs. (10) and 
(11). Moreover, given the Christoffel symbols, there are 
two formulas for finding the intrinsic derivative of a vec- 
tor'. Equation (14) gives the intrinsic derivative in terms 
of the contravariant components, whereas eq. (16) gives 
the same result in terms of the covariant components. 
Either of these equations may be used. However, in order 
to avoid the necessity of transforming covariant compo- 
nents into contravariant components and vice versa, it is 
better to match the formula to the variance of the vectors 
being used. It  will be evident what the variance of ~he 
vectors is during the course of the analysis. 

ACCELERATION YECTOm If, in order to formulate the 
equations of motion of a particle, the acceleration vector 
were required, the velocigy vector V would be substituted 
for the vector A in the equation for the intrinsic derivative. 
Since the velocity vector is contravariant, the tensor com- 
ponents of velocity must be substituted for the components 
of A in eq. (14). Hence, in a general curvilinear coordinate 
system the acceleration vector assumes the following 
form: 

d t  - \ W + U N  dt dr/a" (lS) 

Tiffs equation gives the acceleration in any coordinate sys- 
tem provided the Christoffel symbols are appropriate to 
the coordinate system chosen to describe the motion of the 
particle. 

EQUATIONS OF MOTION: FORMULATION IN TERMS OF 

CONTRAVARIANT COMPONENTS. In using tensor methods 
to derive equations of motion, it is important to remember 
that the acceleration and force vectors must always be 
expressed in terms of their tensor components, rather 
than their physical components. Hence, the two sides of 
every equation must balance with respect to their co- 
variant or contravariant properties before applying New- 
ton's second law of motion. In this connection it is worth 
noting that, although the acceleration vector is expressed 
in contravariant form in eq. (18), the force vector may 
appear in the form of a covm'iant vector. The force vector 
assumes the covariant form in situations where it appears 
as the gradient of a scalar point function. This occurs in 
deriving the equations of motion of a space vehicle which, 
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in addition to tile thrust force, is subject to gravitatio~xat 
forces. If, as is usual, tile gravitational forces are expressed 
in the form of the gradient of a gravitational potential 
function, the force vector is given by 

F = V¢ -t- T (19) 

where ¢ is the gravitational potential function, which may 
include the influence of oblateness and extraterrestrial 
gravitational forces, and T is the thrust vector (see [7, 
8]). The tensor form of the gradient of a scalar point func- 
tion assumes the form (see [9]): 

V@ = ~ a . (20)  

The components of the gradient function in the y-coordi- 
nate system are related to those in the x-coordinate system 
by the equation: 

O~ O~ Ox i 
- (21)  Oy ~ Ox~ Oy i" 

This is seen to be the eovariant transformation as defined 
in eq. (3). 

In the general ease, the equation of motion of a space 
vehicle, which is subject to gravitational and thrust forces, 
is obtained by combining eqs. (18) and (19)• Newton's 
second law of motion requires that 

M \-~6 + j -~- dt / a , =  V~+ T (22) 

where M is the mass of the vehicle. 
The acceleration components represented by the left 

side of this equation are all contravariant. The thrust 
vector, on the other hand, is usually given in terms of its 
physical components; and as already indicated in eq. (21), 
the gravitational forces assume the form of eovariant vec- 
tors. In order to have a force system which is compatible 
with the acceleration, it is necessary to convert all the 
force terms to the contravariant form. The covariant and 
contravariant components are related as follows: 

A s = g~JA~. (23) 

Likewise, the physical components of the thrust vector 
are related to the eontravariant components by the equa- 
tion: 

T ~ - 1 (g.~))~ ~ (24) 

where the parentheses imply suspension of the summation 
convention. By substitution from eqs. (23) and (24) in 
eq. (22), the equation of motion assumes tile form 

(d2x ' ~ i< dx i dx~ = (g~ O~ r' 
M \'~[i + [ jkJ  ~ ~] ~xi -4- ~ ) .  (25)  

In orthogonal coordinate systems, 

g~¢ = 0 for i ~ j  
and 

546 

1 g(ii) _ 
g(ii) 
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Substitution of these values in eq. (25) gives for orthog- 
onal systems 

M g(,.) -~- + [jk, i] dxj ~-  dt ] O~c -~ + (g(zi))~ ,r', (26) 

Ii¥om the point of view of non-numeric eompul,er opera- 
lions, it is expedient to eliminate the Chrisgoffel symbols 
and the metric tensors from eq. (26). These arc related ~o 
the coordinate transformation equations by eqs. (10) 
and (12). Substitution from cqs. (10) and (12) in eq. 
(26) gives 

 uF(0y ° 0y°  ' 

L \ox") ox"V -~- 
( O~y ̀~ dy" ) dx i dxk 1 

(27) 

This equation is in a form well suited to routine non- 
numeric computer operations. The large nmnber of terms 
appearing in eq. (27) is due to the generality of this equa- 
tion, which is applicable to any space of three dimensions. 
Moreover, since this equation is applicable to any space 
of three dimensions, it may be permanently stored in the 
computer. Hence, in order to obtain tile equations of 
motion in any system of coordinates, the only informatiot~ 
required is the special form of eq.(2) relating that system 
of coordinates to the orthogonal Cartesian coordinates 
yq For example, consider a transformation of coordinates 
specifying the relation between the spherical polar coor- 
dinates x ~ and the orthogonal Cartesian coordinates y~ 
(Figure 1). In this case, eq. (2) becomes: 

y~ = x ~sinx 2eosx a 

y~ = x ' s i n x  2sinx 3 

y3 = x 1 c o s  x 2, 

y3 

X~~Y 2 
FiG. 1 

These coordinate transformation equations were sup- 
plied as input to an IBM 7094 computer, which was 
equipped with a FoaMAe Compiler. When the computer 
was programmed to perform the operations involved in 
eq. (27), the output was obtained in FOaTRAN language as 
shown in Figure 2. 

In interpreting these ti'Om'RAN statements, it must be 
remembered that: 

R(i) - dx~ P(i) d~x~ 
dr' = ~V" 
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In terms of conventional mathemat ica l  symbolism, 
these eqm~tions assume the following form: 

':l~:~dt ~ ~ (dx2"~ / ( dx~27 M l_ x I sin x ~ = 0~ rl - x  - ~[ / d g~ i +  

f ( xl ) ~ d%2 dzl dx2 M 

_ (~cl)~sinx2cosx2(dx3~2 J = (O~p. + xlre) 

M (x sin x + I sin x 
dt dt 

-F2(:~)~sinx~c°sx~dx~dx~l~ dt ] = (O~. + xl sin x ~ r ~ ) .  

Because of its generMity, eq. (27) is applicable in all 
coordinate systems. Therefore, in order to obtain the 
equations of mot ion in any  other coordinate system, all 
that  is required is to supply the computer  with the ap- 
propriate coordinate t ransformat ion equations. As a fur- 
ther illustration of the procedure involved, consider the 
equations of mot ion in a cylindrical polar system of eoor- 

COMPUTER OUTPUT 

FOR I = 1 
The expression input for Y(I) is given below. 
X(1),FMCSIN(X(2)),FMCCOS(X(3))$ 
FOR I = 2 
The expression input for Y(I) is given below. 
X (1)*FMCSIN(X(2))*FMCSIN(X(3))$ 
FOR I = 3 
The expression input for Y(I) is given below. 
X(1)*FMCCOS (X(2))$ 

EQUATIONS OF MOTION 

FOR I = 1 
The equation for I = 1 is given below. 
M*(P(1) -R(2)**2.0*X(1) - R(3)**2.0*X (1)*FMCSIN (X (2))** 

2.0)$ 
= DPHI(1)+TAU(1)$ 
FOR I = 2 
The equation for I = 2 is given below. 
M, (P (2),X (1),,2.0+ R(1),R(2),X (1),2.0- R(3)**2.0*X (1)*,2.0, 

FMCSIN(X(2))*FMCCOS(X (2))$ 
= DPHI(2)+TAU(2)*X(1)$ 
FOR I = 3 
The equation for I = 3 is given below. 
M,(P (3 ),X (1)**2.0*FMCSIN (X(2) )**2.0+ R(1)*R(3 )*X(1)* 

FMCSIN (X (2))**2.0*2.0+R(2)*R(3)* 
X (1)**2.0,FMCSIN(X(2))*FMCCOS(X(2))*2.0)$ 
= DPHI(3) +TAU(3),X (1),FIV[CSIN(X (2))$ 

JOB ACCOUNTING 

COMP/LOAD EXECUTIVE 

TIME TIME TIME 
ON MIN. MIN. 

! 

950.09 .78 .41 
i 

FIG. 2 
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dinates. In  this case, the coordinate t ransformation equa- 
tions are (see Figure 3) : 

y~ = x 1 cos x 2 

y2 = x ~ sin x e 

y3 = x 3. 

J yt 

t \ 

Fro. 3 

y2 

When these coordinate t ransformation equations were 
used to evaluate the terms of eq. (27), the following com- 
puter  output  was obtained. 

Translat ing these equations f rom FORWICAN language to 
conventional mathemat ical  symbolism yields the follow- 
ing: 

r d~x I dx21 O~ 2 _ x 1 dx 2 
M [ . .~  ~- dt.J = O~ + r 

[ ex' exlex'l 1, 
M ( x l ) ~  + 2 x ~ - ~  - dtJ = 0 ~  2 + x r  

[ d % 3 J ° ~ J .  

PROLATE SPHEROIDAL COORDINATES. Another  in- 
teresting system of orthogonal curvilinear coordinates 
are the prolate spheroidal coordinates. Coordinate sur- 
faces are obtained by  rotating a family of confocal ellipses 
and hyperbolae about  their major  axes. Rotat ion of these 
conic sections gives rise to a sys tem of prolate spheroids 
and hyperboloids of two sheets. A family of planes through 
the axis of rotation completes the system of orthogonal 
surfaces. The  curvilinear coordinate systems generated 
by the curves of intersection of these surfaces are useful 
in certain quantum-mechanical  problems [10, 11]. The 
transformation equations relating this system of coordi- 
nates to the orthogonal Cartesian system are as follows: 

y~ = a sinh x 1 sin x ~ cos x 3 

y2 = a s i n h x  l s i n x  2 s i n x  3 

y3 = a c o s h x  l c o s x  2 

In  order to obtain the equations of motion relative to a 
prolate spheroidal system of coordinates, these t ransforma,  
tion equations were substi tuted for eq. (2) in the coin- 
puter  program. Execute  t ime was 1.63 minutes. Omit t ing 
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COMPUTER OUTPUT 

FOR I = 1 
The expression input for Y(I) is given below, 
X(1).FMCCOS(X(2))$ 

FOR I = 2 
The expression input for Y(I) is givc~ below. 

X(1) *FMCS [N (X(2))$ 
FOR I = 3 
The expression input for g(I) is given below. 

X(3)$ 

EQUATIONS OF MOTION 

The equation for i = 1 is given below. 
M*(P(1)-R(2)**2.0*X(1))$ 
=DPHI(1)+TAU(1)$ 
The equation for I = 2 is given below. 
M.(P(2).X(1)**2.0+R(1)*I{(2)*X(1)*2.0)$ 

= DPHI(2)+TAU(2)*X(1)$ 
The equation for I = 3 is given below. 

M*P(3)$ 
= DPHI(3)+TAU(3)$ 

JOB ACCOUNTING 

COMP/LOAI) EXECUTIVE 
TIME TIME TIME 

ON MIN. MIN. 
037.78 1.15 .14 

FIG. 4 

the p r in tou t  in  li'ORTRAN language, the equat ions of mot ion 

were obta ined as follows: 

i d~x~ dx ~ dx~ M a 2 (sin 2 x ~ + sinh ~ x0 ~ + 2a ~ sin x ~ cos x 2~/~ d--~ 

+ a '~ sinh x ~ cosh x ~ dx__~ d x ~ _ a~ sinh x ~ cosh x 1 dx~ dx_~ 
dt dt dt dt 

dx ~ dxa'] 
-- a ~ sin ~ x e sinh x t cosh x - ~ - ~ j  

= a(s in  ~x ~ + sinh ~ xt) ½r ~ + ~ x  ~ 

M 
I Xx~ x, dx' 

a2(s in  ~ x 2 + s i n h  2 x 0 - ~  - -  a 2 s i n  x 2 cos  dt  dt 

t dxl dx~ dx~ dx~ 
+ 2 a  ~ s i n h  x t c o s h  x ~ - - ~  + a 2 s i n  x ~ cos  x ~ d-t  d--t 

1 dx3 dx3q 
- a 2 sin x 2 cos x 2 sinh ~ x ~ - - ~ j  

0_~ 
= a(s in2  x 2 + s i n h  ~ xl)~ r2 + Ox 2 

M 
I ~ x  8 

a ~ sin~ x 2 s i n h  ~ x 1 - ~  + 2 a  ~ s in  2 x 2 s i n h  x 1 e o s h  x ~ - -  - -  

2 1 dx'2 dx3"] 
+ 2 a  ~ s i n  x 2 cos  x 2 s i n h  x - ~  ~ - J  

dx I dx 3 

dt dt 

= a s i n x  2 s i n h x  l r  3 + O x  8. 
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C o n c l u s i o n s  

Digital  computers c0~n be used to perform ~ wide ra, nge 
of txol>-numeric operations, if rise is m~(le of J:tcw computer 
]ai~gu~ges ixow available. ]:or t, he class of pcoblems con- 

sidcred, the results indicate tha t  computers  can be used 
more effectively for this purpose if all reel.or qu:mtities 
are expressed in terms of their i,easor components  rather 
than in te rms of their physical componerzts. Because of 
the geometrieM simplification inherent  in the tensor 

method,  arid the invar ian t  na tu re  of the forn mla~i;ion with 

respect to coordinate t ransformat ions ,  the formub~tion of 

problems in eurvi l inear  coordinate systems cm~ be re- 
duced to rout ine  computer  operations. The  evolutioJt of 

new computer  languages, which can perform symbolic 

algebraic man ipu la t ion  and differentiation, made it pos- 

sible to write a program which could implement  these 

ideas. This  program was used successfully to derive equa- 

t ions of mot ion  and perform other non-numer ic  opera- 

lions. The  exploitat ion and  extension of these techniques 

should lead to a subs tan t ia l  reduct ion in  the m a n  hours 

required to formulate  and  process engineering and  seien- 

title problems. 
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