
D. TEICH ROEW, Editor

A Language for Modeling and
Simulating Dynamic Systems

R. J. PAa~:NTE AND H. S. Kr~AsNow
International Bu.siness Machines Corporation,*
Yor~;town Heights, N.Y.

/he general objective of this language is to facilitate both the
modeling and experimental aspects of simulation studies. The
ability to represent systems containing highly interactive proc-
esses is an essential feature. The nature of the language, and the
role of the process concept, is presented by means of an ex-
tended example.

i . I n t r o d u c t i o n

Development in simulation languages has taken place
for almost a decade, with interest increasing rapidly in re-
cent years. Well over a dozen general purpose languages
have been developed, and several of these are currently
operational.

The advent of a new generation of computers, coupled
with continued growth of interest in simulation as a tool
for decision making, has helped to motivate the experi-
mental language discussed in this paper. This language is
indebted to prior languages which first clarified and em-
bodied the basic concepts o[discrete system modeling. But
this language is an attempt to extend these concepts so as
to provide, within a single system, both fl'eedom for modd-
ing and experimentation and a built-in concept of modu-
larity.

In this paper the general orientation of the language is
presented, rather than a formal definition. Emphasis is
placed upon those features which contribute most directly
to the overall structure of the language, with limited at-
tention to the many details which must Mso be provided.
Most of the discussion is based upon an example of a simu-
lation1 study.

This simulation language is an experimental develop-
meat of the Advanced Systems Development Division of
IBM. A prototype processor is currently being imple-
mented.

* Advanced Systems Development Division

Volume 10 / Nunlber 9 / September, 1967

2. E l e m e n t s o f a S i m u l a t i o n Study

System studies are frequently conducted with a repre-
sentation, or model, of the system. Experiments conducted
with such a model allow a systems analyst to observe per-
formanee under specified conditions. The main steps in
eortducting a simulation study are:

1. Define the problem.
2. Design art experiment.
3. Construct a model.
4. Specify the conditions of the experiment.
5. Observe the performance of the model.
6. Analyze the observations.

I t is presumed that a substantive problem, or set of
problems, exists, and that simulation is the tool appro-
priate to the study of the problem(s). The presumption is
nontrivial. A simulation language itself is of no direct
assistance in detel~nining when to simulate or to what
detail a model should be constructed. This determination
rests upon the skill of the analyst, as does the design of the
experiment or the families of experiments by which the
problem is to be analyzed.

I t is not feasible to define a simulation experiment fully
without reference to a model or to the facilities of the com-
puting system on which the model is to be run. Hence, a
simulation language begins to influence the study in its
earliest stages. From then on, it is an inseparable partner
in the analysis. Its effects range from subtly influencing the
model structure to directly imposing limitations on what
can and cannot be done with the model.

The list of steps suggests a strict linear ordering to the
stages of a simulation study, but in practice there is a need
for extensive iteration over various stages. For example,
an experiment cannot be fully defined until the model has
been constructed; yet the full description of the system to
be simulated requires information concerning the design of
the experiments to be conducted with the model. At
another stage, a complete experiment may often consist of
multiple runs of a model, each run requiring reinitializa-
tion and start-up, as well as separate observations and
analyses. Also, an outer loop exists wherein the analysis of
experimental results leads to the redesign of experiments
or to the design of new experiments with concomitant
modifications of the model. A simulation language should
contribute at all of these stages of the study and, in par-
tieular, should facilitate the frequent modification and
change that is characteristic of the use of simulation for
studying operational problems.

Communications of the ACM 559

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363566.363684&domain=pdf&date_stamp=1967-09-01

3. G e n e r a l A p p r o a c h o f t h e Language

This language is intended to serve the user in all stages
of a simulation study. Its capabilities may be classified in
two major areas: (1) Tile descriptive capabilities are de-
signed to facilitate the clear and direct representation of a
dynamic system. These may be referred to as the modeling
capabilities. (2) The experimental capabilities serve for the
expression and execution of a sinmlation experiment.

3.1. MODEI~L~'G. There are two aspects to the repre-
sentation, or modeling, of a system: The first is concerned
with the identification and specification of each type of
component that will exist in the model; the second pertains
to the specification of the model @namies.

Any system component that is to be manipulated or ob-
served may be considered an entity. Some simple examples
of entities in a factory are a machine, an order, and a unit
of material. Each type of entity is described, i.e., its struc-
ture is specified, by associating with it certain character-
istics, or attributes, that are of interest for a particular
system representation. The values of the attributes deter-
mine the state of that entity, and the state of M1 the
entities detelznines the state of the model.

Each entity of a type identified as SET may be utilized
to arbitrarily group entities. The value of an attribute
LIST__COUNT, of each SET is the number of entities
that are grouped in that SET. All or selected members of
a SET may be referenced.

The description of the state of a system at an initial
simulated time, To, or at any time, T~, is not complete
without a description of the states of the processes that are
taking place. A process is a form of entity that is not fully
specified by its associated attributes; it possesses dynamic
characteristics; i.e., a behavior pattern is associated with
it.. Tile user specifies this behavior pattern, using the state-
ments of the language, for each type of process that may
enter the model. Like other entities, however, a process
enters the model (when it is started), it exists for a period
of time (while it is taking place), and then it ceases to exist
(when it stops).

Entities of each of the specified types arc entered into
the model, or "created." They exist in the model for a
period of time and then leave it, or are "destroyed." When
a SET is created, it is "empty"; i.e., there are no entities
in it and the value of its attribute, LIST__COUNT, is zero.
A new process is created each time a process of a given type
is started. Entities, including sets and processes, may be
created by an initializing process or at any time during the
running of the model. Entities may be put into a SET any
time after that SET has been created.

The identification and specification of each type of entity
that is to be represented in the model will be referred to as
tb a "component description" section of the model. In this
section, each type of process is identified but is only parti-
ally specified; attributes are associated with it, but the
actions that represent its behavior pattern are specified,
with the behavior patterns for all other process types, in a
"behavior description" section of the model.

The behavior of a process is specified as a series of ace;ions
that occur over time. t~elationships within or betwee~
processes may be time-dependent or depende~l~ upo~ the
stal:e of the model. As several processes m:~y be I~king
place simultaneously, interaction may occur. Complex
structural relationships, involving several types of eI~lfities,
may be formed.

The actions of a process change a system state ia four
ways:

1. They modify the state of all entity by changing the
values of its attributes.

2. They expand or contract the model by creating and
destroying entities.

3. They rearrange the model by moving entities in and
out of sets.

4. They effect the interactions ill tile model within
and between processes.

In addition, a process makes decisions to determine what
changes ill the model to effect.

Briefly stated, system representation entails speeifyillg
each type of entity that will exist while the mode[is operat-
ing. In addition, for each type of process a behavior pattern
is specified. Each behavior pattern describes a series of
actions that occur over a period of time. When the model
is operating, the combined effect of tile specified aetiolls is
to simulate the changes of state that occur while a system
is in operation.

3.2. EXPERIMENTATION. The specification of a model
is entirely descriptive in character. When the model has
been completed, the description of component types and
behavior is complete, but the model itself does not exist
within the computer, nor is it operating.

Before a simulation study call be conducted, a detailed
description of the experiment is required. All the facilities
of the language which are used ill the specification of a
model may also be employed in tile specification of an ex-
periment. Processes may be described whose behavior have
significance only with respect to a particular experimental
environment.

3.2.1. Experimental Conditions. Experimental condi-
tions must be enumerated for each run of the specified ex-
periment. These test conditions constitute those controlla-
ble factors which are subject to variation between runs.
Depending upon the scope of the data, they may be speci-
fied within the description of the experiment, or input h'om
external sources during the run.

3.2.2. Initialization. The establishment of an initial
model state is art important factor in any experimental run.
The model must be populated with the desired nurnber of
entities of each type, and appropriate attribute wdues must
be designated for each entity so created. The full initializa-
tion of the model includes the establishment of any sets
that are initially required, and the starting of at least, o~le
model process.

For the first time the model may be said to exist. It is
now ill its initial state and will perform in response to the

560 Communications of the ACM Volume 10 / Number 9 / September, 1.967

state ch~mges h:~.duced by processes of the various types de-
fined. The model may be entirely self-sustaining once an
initial model process is started, or it may be irttermi.ttently
self-sustaining with control going back to the experimental
process from time to time. In either ease, a~ least one
process must be started to initiate the conduct of the
experiment.

3.2.3. Observation. The eortduct of the experiment,
that; is, the running of the model under specified experi-
mental conditions, is without significance unless the per-
fonnanee of the model is observed and recorded. The
process concept is ideally suited to the specification and
execution of observational processes. Each type of obser-
vation will specify the entity or entities to be observed and
the conditions under which measurements are to be taken.

3.2.4. Analysis and Output. Observed data may be
either retained with the simulation or placed on external
storage/'or subsequent analysis and processing, depending
upon the volulne of data collected. In either event, proc-
esses may be defined for analyzing the data and providing
reports to the user.

A central feature of the language is that there is no dis-
tinction between facilities for describing the system to be
simulated and facilities for describing the experiment to be
conducted with that model. In both instances the unit of
description is the process. For each type of process a char-
aeteristie behavior pattern is specified, and as each process
occurs its characteristic behavior pattern is executed.
Flexible referencing makes possible significant variations
between the behavior of processes of the same type, and it
facilitates the construction of generalized modules. Proc-
esses may be specified exclusively for experimental pur-
poses without affecting either the description or the per-
formanee of the model.

4. A Sample S imulat ion Study

The study of a simple problem by the use of simulation
will be used to help clarify and illustrate some of the fea-
tures of the language referred to in Section 3. The problem
concerns the relationship between decision rules employed
in the sequencing of orders and the resuIting load on specific
production facilities within a steel mill. This is clearIy only
a single aspect in the evaluation of decision rules. However,
it is a problem that, might validly be studied by simulation,
since a relatively straightforward experiment can be defined
for it. More complex problems would tend to require more
complex experimental processes, thereby utilizing the ca-
pabilities of the language more completely.

The model consists of a segment of a steel mill starting
front the open hearth furnaces and continuing through a
primary roiling mill operation. The experiment consists of
a simple block design evaluating three alternative sequenc-
ing rules over a range of three levels of order loads on the
steel mill (Figure 1).

I t is not the purpose of this paper to define or explain
the statements of the language in detail. The example is

MEAN INPUT LOAD, mill orders/week
Level 1 = 100 orders/week
Level 2 = 200 orders/week
Level 3 = 300 orders/week

OI%DER SEQUENCING RULE
Standard
Priority
Weighted

RESPONSE Mean contents of soaking pit

Mean input load
(orders/week)

100
200
300

Order sequencing rule

Standard Priority

Run 1 Run 2
Run 4 Run 5
Run 7 Run 8

Weighted

Run 3
Run 6
Run 9

BLOCK DESIGN

Fro. 1. Sample experiment

intended solely to serve as a vehicle for providing an over-
view and for pointing out some of the more interesting
features of the language. In addition, selected portions of
the language are listed in the Appendix.

4.1. A MODEL. The system to be described consists
of the initial processes in the making of steel, the facilities
involved in carrying out these processes, the materials on
which the processes are performed, and the mill orders used
to control the flow of materials through the mill.

The system operates as follows.
1. The furnaces are charged with raw material and

produce molten steel.
2. The molten steel is poured into molds.
3. The steel hardens in the molds to form ingots that

arc then heat treated in a facility called the
"soaking pit."

4. The heat-treated ingots are then rolled into slabs.
4.1.1. Component Description. Entity types that will

be considered in this model of a steel mill are specified for-
mally in the component description section of the model
(Figure 2). The identifiers assigned to the entity typos are
followed by a colon, which indicates that the specification
of the entity structure is to follow. This structure is defined
by identifying attributes that are to be associated with
each entity of this type. For example, the attribute
WEIGHT will be associated with each INGOT. Each
specification is terminated by a semicolon. The values of
these attributes collectively represent the status of a par-
ticular entity at a point in time, whereas the number of
attributes that are associated with any entity is determined
by the level of detail to which that entity is being modeled.
The modes of values that may be assigned to attributes
are: numeric, literal character strings, or the name of an
entity. Modes need not be specified explicitly; if not, they
are established automatically. The ability to manipulate
the name of an entity as a variable permits the formation
of complex structural relationships that may be modified
dynamically.

Volume 10 / Number 9 / September, 1967 Communications of the ACM 561

STEEL MILL: MODEZ;

FURNACE: STATUS;

INGOT: WEIGflT;

SOAKING PIT: STATUS, CONTENTS;

MILL ORDER: DUE-DATEr QUANTITY~ PRODUCT) G~DE;

CHARGE : PRO6'IfiiS'S;

STEEL~4AKING: PROCESS PROCESS.:rlNE, ORDER SEQDENCING) FURNACE;

SOAK: PROCESS1

ORDERGENERATION: P2?OCESS BACKLOG, LOAD;

STANDARD SEQ: PROC'ESS;

PRIORITYSEQ, PROCESS1

WEIGHTED S B Q : PROCESS;

END;

Fro. 2. Component description section of a STEEL MILL model

The specifications of types of entities that contain the
keyword, PROCESS, indicate that these entities possess
dynamic characteristics which will be specified subse-
quently in the behavior description section of the model.

4.1.2. Behavior Patterns. The operation of the steel
mill is described by specifying a behavior pattern for each
type of process. A behavior pattern is described by using
the statements of the language. These include control
statements for specifying relationships within a process
and interactions between processes.

The behavior pattern for ORDER__~ENERATION, a
simple process-type whose purpose is to introduce M I L L ~
ORDERs into the simulated steel mill, is shown in
Figure 3.

0RDER GENERATION: PROCESS LOCAL ORDER;

L1 ~ CREATE MILL ORDER f lAMED ORDER;

ORDER. GRADE ~ GRADE FUNCT(LOAD) ;

2,'ILE ORDER fin BACKLOG;

TAKE INTERARRIVAL (LOAD);

GO TO L1;

END ORDERGENERATION;

Fro. 3. Behavior deseription--OiRDER~GENERATION process.

The order generation process represents the influence
of processes that are external to the portion of the steel
mill that is being represented and would probably be a
fairly complicated process. For illustration, it will be suf-
ficient to think of order generation in a very simple way.
The process cart be assumed to involve the creation of a

562 Communications of the ACM

sJngte mill order to which the grade of material to be pro-
dueed is assigned before it is filed in a SET of orders n~med
BACKLOG.

To discuss order generation, we will assume that a SET
has been created and that the name of that SET has been
assigned as tile value of the attribute, BACKLOG, .~t the
time that an O R D E R ~ G E N E R A T I O N process was
started.

A local attribute ORDER is defined for use within, the
behavior block. Each statement (step in the process) is
terminated by a selnieolon. As with entity specifications,
a free-field format is used for writing and punching; state-
ment labels are optional.

The CREATE statement enters a MILI ORDER
into the model and assigns its name as the vMue of OR-
DER. This name is then used, in the next statement, to
assign a value to the GRADE attribute of that M I L L ~
ORDER. In addition to identifying an entity, a name
value indicates the type of that entity; thus, it is possible
to ask if ORDER is a MILL ORDER. A name may be
assigned as the value of any attribute. In the ORDER__
GENERATION process the attribute BACKLOG has
as its value the name of a SET; it is used in the FfLE
statement to identify the particular SET in which the
MILL__ORDER is to be placed. The statement ~eords
the name of the MILL.~ORDER, given by ORDER, in
the SET named BACKLOG. Other statements allow for
selecting subsets of entitles in a set, based on logical con-
ditions, and executing one or more statements each time
an entity is selected.

The TAKE statement specifies the length of simulated
time between the arrivM of orders at the steel mill.

The STEEL__MAKING process illustrates a somewhat
more complex behavior pattern. The process of making
steel from raw materials in a single furnace is a continu-
ing process; i.e., once started, it continues indefinitely
until it is stopped. While steel making is taking place it
interacts with other processes in various ways; e.g., it
uses the charge process as a subprocess and it controls
the stai~ of the order sequencing and soak processes.
Once started, the latter two processes take place concur-
rently with the steel making process.

Assuming that the steel malting process has been started
with a particular furnace, the status of the furnace is
checked to see whether it is available, and if so, the charge
operation is performed. The order sequencing process
selects the orders to be applied to the output of this fur-
nace. Steel making is simulated by taking processing time:.
When this is complete, heat, treatment of the group of
ingots that has been produced begins by starting the soak
process. Then the status of the furnace is again checked.
The specification of this behavior pattern is shown in
Figure 4.

The steel making process has three attributes : PROC-
ESS__TIME, ORDER_SEQUENCING, and Ii'UR-

Volume 10 / Number 9 / September, 11967

STEEi~blAKING : P.'?0C£%5"

Si : ZF FURNACE,STATUS EQ 0

THEN BEGIN

WAIT 6'tIAIIGE (FURNACE,STATUS)

GO TO SI;

for purposes of experimentation. The experirnentM en-
tities and processes for the steel mill study are shown
Figure 5. These would appear in the component descrip-
tion section (Figure 2). The RUN_CONDITION entity
carries test data and results unique to each run of the ex-
periment. The EXPERIMENT, INITIALIZATION
and OBSERVATION processes are discussed below.

FIG. 4.

END ;

22EtEFORM CHARGE ;

START ORDER SEQUENCING;

flAKE PROCESSTIME;

5~A., 'T SOAK;

GO TO S1;

LWD STEEL~iAKING;

Behavior desoription--STEEL__MAKING process

RUNCONDITION: LOAD, RULE, RESPONSE, TIME ;

EXPERINENT: .PROCESS;

INITIALIZATION: PROCESS RUN;

OBSERVATION: PROCESS QUEUE, IqEIGflTED SUM~ I,AST CHANGEr
LASTCONTENTS, MEAN;

CLEAR : PROCESS ;

RUNANALYSIS: PROCESS RUN;

FINALANALYSIS: PROCESS;

Fro. 5. Experimental entities

NACE, which were assigned when the steel making proc-
ess was started. (See Initialization, Figure 7 .) T h e
statement labeled $1 tests the status of the furnace by in-
terrogating the value of its attribute, STATUS. The W A I T
CHANGE statement will cause the steel making process to
be suspended until a new value has been assigned to FUR-
NACE. STATUS. At this time, the GO TO S1 statement
will be executed. The PERFORM CHARGE statement ini-
tiates a charge process and causes the steel making process
to be suspended until that process has been completed. The
START ORDER__SEQUENCING statement initiates
an order sequencing process to be run in parallel with the
steel making process. The value of the ORDER__SE-
QUENCING attribute is the name of a type of process
which will be a decision rule, e.g., STANDARD__SEQ.
The TAKE PROCESS TIME statement simulates the
making of steel from raw materials.

4.2. AN EXPEaIMENT. The block design of the ex-
periment shown in Figure 1 requires nine runs covering
all possible combinations of mean input loads and order
sequencing rules. The performance measure for this ex-
periment will be a statistic concerning the contents of the
soaking pit, e.g., the average number of ingots in the soak-
ing pit during the run, or the maximum number of ingots
in the pit at any one time. Mill orders entering the system
are sampled from a stationary distribution whose mean is
the mean input load of the run. Observations of the con-
tents of the soaldng pit will be made whenever the con-
tents change, in order to generate the necessary response
statistic.

The formal description of the experiment requires the
definition of experimental entities and processes. How-
ever, no explicit distinction need be made between en-
tities employed within the model and entities used only

In the steel mill study the EXPERIMENT process
(Figure 6) controls the entire experiment, providing for
initialization at the statl of each run and data analysis
following each run, as well as at the end of the experiment.
In this case only one such process is required. It is staked
at the outset and continues throughout the simulation,
finally causing the end of the simulation by the statement
TERMINATE MODEL.

INITIALIZATION (Figure 7) provides the means for
establishing a reasonable initial state for an experimental
run, including the processes which are active at tile start
of the run. The conditions for the run are read in, includ-
ing a process-type (RUN.RULE) as well as numeric data
such as RUN.TIME. In this manner it is possible to con-
trol the type of activity undertaken by the model in re-
sponse to information read in during simulation. Initial-
ization of the ORDER__GENERATION process pro-
vides necessary data to that process and also CREATES
a SET (BACKLOG) which will henceforth be associated
with it. The number of FURNACEs is fixed for the dura-
tion of the run. So they are all created at once and a
STEEL__MAKING process is started on each FUR-
NACE. This is accomplished with the FOR EACH
statement which provides for repetition of the statement
following the DO over all or any desired subset of the
FURNACEs. Note that the value assigned to the OR-
DER_SEQUENCING attribute of STEEL_MAKING
is the type of decision (process) to be tested in this run.
The desired decision rule will be called during STEEL__
MAKING by the START ORDER__SEQUENCING
statement (see Figure 4). Hence it is possible for different
STEEL__MAKING processes to employ different de-
cision rules, Mthough they share the same behavior de-
scription.

The final process to be initialized is the OBSERVA-

Volume 10 / Number 9 / September, 1967 Communications of the ACM 563

TION process. This is an "experimental" process, rather
than a "model" process, but one such process will be utiL
ized for each run. The name of the OBSEI{", A.TION
process is assigned to the RESPONSE attribul~e of a
RUN__CONDITION to facilitate m~intahfing &Ira on
the results of the run, within the process. Mthough not
necessary, it is a convenient option in this case. The OB-
SERVATION process, described in Figure 8, collects
data concerning model behavior without altering the be-
havior description in any way. This is accomplished
through the use of automatic signaling (as specified by
the W A I T CHANGE statement). Every time an INGOT
is added to or removed from the SOAKING__PIT, a sig-
nal is received by the OBSERVATION process. At these
times the appropriate statistics are updated, and the OB-
SERVATION process again revei%s to a waiting status.
This process has also been generalized to gather queue

EXPERIblENT: PROCESS LOCAL R, I , #RUNS;

/ * READ RUN LENGTH * /

aE2 2y2i~] (#_RUNS) ;

/* EXECUTE TIIE EXPERIMENT */

EOR I = 1 TO #--RUNS DO

IN FI'IALIZATiON: PROCESS:

LOCAL N> B, t:~ PIT ;

/ * READ RUN CONDIT[ONS * /

GET SYSIN (RUN.LOAD, RUN,RULE, RUN.TIMEr N) ;

/ * INITIALIZE ORDER GENERAT[0N PROCIiSS +7

(d?EA_TE SET NAMED g ;

START ORDER GENERATION

WHER6' LOAD = RUN. LOAD, BACKLOG = B ;

/* INI'I'IAt, IZE STEELbIAKING PROCESS * /

CREATi'; ALL N 0N FURNACE;

FOR EACH F OP FURNACE D0

BEGIN F.STATUS = I ;

START STEEl. blAKING WNg~E

PROCESS~'IblE = 8,

FURNACE = F,

ORDER SEQUENCING = RUN,RULE ;

END ;

/* INITIALIZE OBSERVATION PROCESS */

CREATE SOAKING PIT NAMED PIT;

CREATE SET NAMED PIT.CONTENTS;

START OBSERVATION NAMED lION.RESPONSE WIlg~E

QUEUE = PIT.CONH'ENTS ;

END INITIALIZATION ;

Fro. 7, Behavior descripdoIl--INITIALIZATION process

BEGIN

CREATE RUN CONDITION flAMED R;

PERFORM INITIALIZATION WHERE RUN = R;

TAKE R.TIME;,

PERFORM RUN .k\ALYSIS WHERE RUN = R;

PERFORM CLEAR;

END;

PERFORM F INAL~NALYS IS;

2ERMINATE MODRL ;

EiVD EXPERIMENT;

Fro. 6. Behavior descr ipt ion--EXPERIMENT p r o c e s s

statistics on any SET. Many such observations could,
of course, be conducted in parallel.

l?igure 9 summarizes the format of the source code for
the STEEL__MILL model. The EXECUTE statement,
following the behavior descriptions, specifies the first
proeess to be started. The data is supplied as required by
the experiment outlined in Figure 1, and is read in by the
GET statements in the experiment and initialization
processes.

5. Highlights of the Language

5.1. DXTA ST~¢VCTVI~ES. There are three modes of
data. The vMue of an attribute may be a character, a num-
ber, or the name of an entity. Values may be assigned to

variables. A variable is a single-valued attribute or arl
element in an array. A group of attributes is associated
directly with the model, which itself can be viewed as a~l
entity. When an entity is created it is assigned a name
which both identifies it and indicates what type of entity
it is. Relationships between mltities are established by
assigning the name of one as the value of an attribute of
another.

The ability to create and destroy entities and to manipu-
late their names permits complex relationships to be
formed dynamically. Observation and maintenance of in-
terrelated entities is facilitated by the ability to ask about
the nature of an entity.

The FILE and REMOVE statements and such generic
expressions as FIRST, LAST, and A N Y provide a flex-
ible facility for constructing and utilizing SETs of en-
tities.

5.2. PROGRAM STRUCTURES. Each statement repre-
sents a step in the behavior pattern of a process. A block
of statements may be combined to function as a single
statement in two ways: first, by delimiting the block by
BEGIN...END; and second, by delimiting the block by
FUNCTION...END;. In either case, local variables may
be defined for use within the block of statements. A BE..
GIN block is executed in line, while a FUNCTION may
be cMled from many places, each time with different
parameters. The name of a FUNCTION may be manipu-
lated in the same manner as arty enti ty name. A FUNC-
TION is called by referencing a variable whose vMue is
the name of that FUNCTION. For example, consider
the following sequence of statements, where PR1 and

564 C o m m u n i c a t i o n s of t i le ACM Volume 10 / Number 9 / September , 1967

OBSERVATION: PROCb,5'S

L i : t¢A1T 571A~IG33: (QUEUE.I,IST.COUNT) ;

WEIGII'I'ED_~SUH = WEIGIPI'ED SUM + LAST CONTENTS *

((/LOCK - LAST C}IANGE) ;

LAST CHAN(;E = CLOCK;

LASTCONTENTS = QUEUE,LIST~OUNT;

GO TO L1;

E}~'D OBSERVATION;

Fro. 8. Behavior descriptlon--OBSERVATION process

STEEL~IILL: MODEL;

/* COMPONENT DESCRIPTIONS */

END ;

/* BEHAVIOR DESCRIPTIONS */

EXECD'TE EXPERIMENT ;

/* #RUNS */

/*RUN_#

/* 1 */

/* 2 */

/* s */

/* 4 */

/* 5"*/

/* 6 */

/* 7 */

1 . 8 * /

[* 9 * /

/* DATA */

9

LOAD RULE TIME NUMBER FURNACES */

100 STANEARDSEQ 400 5

lO0 PRIORITY SEQ 400 5

i00 WEIGi~EDSEQ 400 5

200 STANDARD SEQ 400 S

200 PRIORIT~SEQ 400 S

200 WmDHTED_SEq 400 S

300 S'P&NDARDSEQ 400 5

SOD PRIORITY SEQ 400 S

500 WEIGHTED SEQ 400 S

FiG. 9. Summary of STEEL MILL model

PR2 are FUNCTIONs:

TEST A EQ B
THEN X = PR1;
ELSE X = Pt~2;

$2: K = X(ARG);

The FUNCTION that is called by statement $2 is
determined by the outcome of the test. FUNCTIONs
may be reeursive. FUNCTION arguments may be an
expression or a reference to any attribute.

Each process behavior description is a sequence of
statements which may include BEGIN blocks and tune-

Volume 10 / Number 9 / September, 1967

tion calls. A process may interrupt itself until certain
conditions exist, or it may delay the completion of another
process irx the system. One process may perform another
process as a subprocess, or it may start other processes
tha t will operate simultaneously. Many processes of the
same type may be taking place at the same time, i.e.,
following tile same behavior pattern, bull they need not
be synchronized.

5.3. CONTROL OF PROCEssEs. The control statements
provide a means for specifying the relationships between
actions in a process and relationships between two or more
processes. Two statements, S T A R T and PERFORM,
initiate a process and establish its relationship with the
initiating process. The S T A R T statement causes the initi-
ating and initiated processes to proceed concurrently.
The PERFORM statement causes the initiating process
to suspend further action until the performed process
has terminated. These statements permit the assigmnent
of values to any or all of the attributes of the process being
initiated. While the process exists in the model, its at-
tr ibutes may be referenced by any other process tha t has
access to its name. A W A I T statement can interrupt a
process until one or more of a list of attributes changes,
or until one or more of a list of processes has terminated.
Further, S U S P E N D and R E L E A S E statements can be
used by one process to control the progress of another,
and the T E R M I N A T E statement can be used to termi-
nate either the issuing process, another process, or the
experiment. The T A K E statement simulates processing
time.

5.4. OBSERVATm~¢. The concept of a process tha t
exists over time greatly facilitates the gathering of data,
about an experiment. Observation processes can be writ-
ten to gather data periodically or when certain changes of
state occur. Automatic signaling, specified by a W A I T
CHANGE or W A I T END statement, permits the con-
struction of an observation process independently of the
process being observed.

5.5. INPUT/OuTPUT. ExternM storage is utilized for
input files, output files, files of entities, and files of pro-
grams. The input and output files are regarded as a con-
tinuous stream of fields. Each field may be an integer, a
real number, an ent i ty type name, or a character string.
Each auxiliary file may contain entities of one type.
Program files may contain the behavior pat tern for any
process or function.

5.6. LANGUAGE EXTENSIONS. The language may be
extended through the use of a macro facility tha t permits
the definition of new statements and expressions in terms
of those already defined (see [10]). Some of the statements
tha t have been discussed (S T A R T , PERFORM) and
some generic expressions (FIRST, LAST, MEAN, VARI -
ANCE) are macros that are defined in terms of other
s tatements and expressions. ~br example, in the state-
ment,

ORDER = FIRST ORDER OF BACKLOG WITH ORDER.
GRADE EQ 2;

C o m m u n i c a t i o n s o f the ACM 565

the expression following " = " is an expression macro,
identified by FIRST , that is defined in terms of a FOR
E A C H statement. The function of the macro is to select
the first entity in a SET that satisfies the specified condi-
tion, with the name of the selected entity being the vahle
of the expression.

A macro is specified in two parts: (1) by the macro
structure, which describes the syntax of the new statement
or expression in terms of a set of syntatie units, e.g., vari-
able or expression, and (2) by the macro definition,
which describes the semantics of the new statement or
expression in terms of statements in the language or pre-
viously defined macros.

6. S u m m a r y

This paper has attempted to identify the major ele-
ments of a simulation study and to indicate the manner
in which the language deals with these dements. The
language has not been described in detail, but some of its
features have been illustrated by a simple example. The
major orientation of the language is toward:

(1) A unified approach to simulation in which the
facilities of the language are equally suitable for the de-
scription of a system and for the description of an experi~
ment to be carried out upon tha t model.

(2) A "world view" for system description which ex-
plicitly embodies the notion of process for describing
dynamic behavior. The process is seen as an ideal vehicle
for describing either systems behavior or experimental
procedures. A process exists as an entity in the model
while simulation is taking place. The process may directly
change the state of an entity; it may create or destroy
entities, freely rearrange the groupings (set memberships)
of entities, specify interactions within and between proc-
esses in either a time-dependent or a state-dependent
manner, and it may execute complex logical decisions.

(3) A modular capability for modeling and experi-
mentation. The ability of a process to exist within the
model for any desired period of simulated time makes
possible the construction of behavior modules whose
scope can be dictated entirely by the requirements of the
problem. Systematic attacks on particular problems or
classes of problems can be mounted by building general
purpose modules to sei~e as the building blocks for a
variety of models and experiments.

I t is premature to assess fully the utili ty of the language
features discussed in this paper. Further s tudy of the lan-
guage and of its experimental implementation is planned.

Acknowle@ment. The language described in this
paper was developed at the Advanced Systems Develop-
ment Division of IBM. The group included K. R. Blake,
B. M. Leavenworth, and S. C. Pierce, ASDD; and G. P.
Blunden, IBM United Kingdom (presently with C E I R
Ltd.).

RECEIVED JANUARY, 1966; REVISED JULY, 1966

566 Communications of the ACM

APPENDIX

The following is ~ description of selected portions of the
language. The notation used in this description is:

1. Lower-ease letters are used for metavariables.
2. [] are used to enclose options.
3. { } indicate tha t one of the enclosed constructions

m~st be used.

A l\,Io:D:rm

/* COlV[PONENT D:ESCR[PTION SECTION */
[identifier:] MODEL

[model-attribute-declarations];
entity-type-declarations

.END [identifierl ;
/* BEHAVIOR DESCRIPTION SECTION */

behavior-descriptions
EXECUTE process-name ;

COMPONENT DESCRIPTION SECTION

Attribute-Declaration

identifier [<dimensions>]

Entity- Type-Declaration

I{[/slze/] INTEGER I
"~ REAL []

NAME

identifier: attribute-declarations ;
identifier: PROCESS [attribute-declarations] ;

BEHAVIOR DESCRIPTION SECTION

Behavior-Description

identifier: PROCESS [(parameter-list)] [;]
[LOCAL attribute~declarations ;]
statement-list

END [identifier] ;

Statements

attribute-reference = expression ;
CREATE type-name [NAMED attribute]

group] ;
DESTROY entity-name ;

F ;BEFORE name) -]
IJAFTER name [/

FILE name IN set | AT ;1
L[AT TAIL JJ

REMOVE name FROM set ;
FOR [EACH] repetitive-assignment DO statement
IF expression THEN statement
TEST expression THEN statement ELSE statement
START process-type [(argument-group)]

[-f AT l expression] [NAMED attribute] L[AFTERJ
[WHERE assign-group] ;

PERFORM process-type [(argument-group)] [NAMED attribute]
[WtIERE assign-group] ;

TAKE [UNTIL] expression ;
SUSPEND process-name [expression [TIMES]] ;

E ~ [{expression},] R LEASE process-name ALL [TIMES] ;

WAIT CIIANGE [expression] (attribute-references) ;
WAIT END [expression] (name-attribute-references) ;
,r l~p ~ ~ ,,, ~,F)'pr°cess-name/1
. L [MODEL f A ;

[WHERE assign-

Volume l0 / Number 9 / September, 1967

GET data-set (input-list) ;
PUT data-set (output-list) ;

B1/CfN- E N D .Bloc/c

.BE(JIN [;]
[I_Z)CA L at~;r'ibute-declaratior~s ;]

s ta temen t--lis t
END [identifier] ;

F U N C T [O N Description
identifier: FUNCTION [(parameterqist)] [;]

[LOCAL attribute=declarations ;]
s ~a tementqis t

END [identifier] ;

REFERENCES

1. BLAKE, K. R., AND GORDON, G. Systems simulation with
digital computers. IBM Sys. J. 3, 1, (1964), 14.

2. BLUNDEN, (~. P., AND KRASNOW, H. S. The process concept
as a basis for simulation modeling. Paper, 28th Nat. Meeting
ORSA, Houston, Texas, Nov. 4-5, 1965.

3. BUXTON, J. N., AND LASKI, J. G. Control and simulation
language. Comput. J. 5, 3 (Oct. 1962), 194-199.

4. DAHL, O., AND NYGAARD, I~. SIMULA--an ALGOL-based
simulation language. Comm. ACM 9, 9 (Sept., 1966), 671-678.

5. EFRON, R., AND GORDON, G. A general purpose digital simu-
lator and examples of its application: Part Z--description
of tile simulator. IBM Sys. J. 3, 1 (1964), 22.

6. iKNuTH, D. E., AND McNELE¥, J. L. SOL--A symbolic
language for general purpose systems simulation. IEEE
Trans., EC-18, 4 (Aug. 1964), 401--408.

7. KR~SNOW, If. S. Dynamic representat, ionia discrete inter-
action simulation languages. Digital Simulation in Opera-
tional Research. The English Universities Press Ltd., Lon-
don, 1967, pp. 77-92.

g. I~RA.SNOW, :H. S. Highlights of a dynamic system description
language. Paper, 29th Nat. Meeting ORSA, Los Angeles,
Calif., May 1966.

9. Kt~ASNOW, H. S., AND MERIKA.LLIO, i~. A. Tile past, present
and future of general simulation languages. Man. Sci. 11,
2 (Nov. 1964), 236-267.

10. LEAVENWORTH, B.M. Syntax macros and extended transla-
tion. Comm. ACM 9, 11 (Nov. 1966), 790-793.

11. LEAVENWORTH, B. M., AND PARENTE, R. J. Structure of
sequencing algorithms in simulation languages. Information
Processing 1965; Proe. IFIP Congress 65, Vol. 2, Spartan
Books, Washington, D.C., 1965.

12. MARKOWITZ, H. M., E'r AL. SIMSCRIPT, A Simulation Pro-
gramming Language. Prentice-tIall, Inc., Englewood Cliffs,
N. J., 1963.

13. TOeHEa, K.D. A review of simulation languages. Oper. Res.
Quart. 16, 2 (June 1965), 189-217.

14. TOCHER, I~. D., &ND HOPKINS, D.A. Handbook of the Gen-
eral Simulation Program, Mk. II. United Steel Companies
Ltd., Sheffield, England, June 1964.

An Algorithm for Class Scheduling
With Section Preference

VINCENT A. BusA~*

Computer Sciences Corp., El Segundo, Calif.

An algorithm for assignment of students to classes in a fixed
time schedule that allows students to give a preference for
sections within courses is given. If consistent with the objective
of balanced sections, these preferences will be honored. The
algorithm is more stochastic than Monte Carlo in nature. Re-
sults are given that compare it to a nonpreference assignment
algolithm.

1. Introduction

Various a t t empts have been made at developing pro-
grams which will schedule students in classes [1-3]. The
common goal seems to be, given the students ' requests
for classes, to schedule them in sections such tha t : (1)
students are given a nonconflicting class sehedule, if one is

* Research performed at, Washington State University, Pullman,
Washington

available, and (2) sections are filled as evenly as possible.
Algorithms used have achieved the objective fairly well.

With one exception [3], programs schedule students in
classes based only on course requests and do not allow
section preference. This is a common criticism of machine
sectioning, since the student loses all chance of choosing a
convenient t ime and/or room location schedule or of
picldng sections taught by favorite instructors.

This paper describes an 'algorithm tha t allows a large
degree of section Preference while maintaining the original
two objectives of machine registration. This algorithm was
tested using the entire registration for one semester at
Washington State University. A comparison of the results
achieved by a nonpreference algorithm and the preference
algorithm is given.

2. Nonpreference Alogrithm

At Washington State University, the student fills out
one request card for each class he wishes to take. No
al ternate choices are allowed except for Physical Educa-
t ion (PE) classes, where two alternates are also given. A
general description of the data collection procedure and
conflict resolution used is given by Faulkner [1].

The algorithm cmTently used at WSU orders each
s tudent ' s courses according to the number of sections still

Volume IO / Number 9 / September, 1967 Communications of the ACM 567

