
Promptable Game Models: Text-Guided Game Simulation via Masked
Diffusion Models
WILLI MENAPACE∗, University of Trento, Italy
ALIAKSANDR SIAROHIN, Snap Inc., USA
STÉPHANE LATHUILIÈRE, LTCI, Télécom Paris, Institut Polytechnique de Paris, France
PANOS ACHLIOPTAS, Snap Inc., USA
VLADISLAV GOLYANIK,MPI for Informatics, SIC, Germany
SERGEY TULYAKOV, Snap Inc., USA
ELISA RICCI, University of Trento, Fondazione Bruno Kessler, Italy

Promptable Game Model

"e player does not
catch the ball"

Conditioning
States & Actions

Generated
Environment States

A
n

im
atio

n
 M

o
d

el

S
y

n
th

esis M
o

d
el

S
y

n
th

esis M
o

d
el

Fig. 1. We propose Promptable Game Models (PGMs), controllable models of games that are learned from annotated videos. Our PGM enables the generation
of videos using prompts, a wide spectrum of conditioning signals such as player poses, object locations, and detailed textual actions (see) indicating what
each player should do. Our Animation Model uses this information to generate future, past, or interpolated environment states according to the learned game
dynamics. At this stage, the model is able to perform complex action reasoning such as generating a winning shot if the action “the [other] player does not
catch the ball” is specified, as shown in the figure. To accomplish this goal, the model decides that the bottom player should hit the ball with a “lob” shot,
sending the ball high above the opponent, who is unable to catch it. Our model renders the scene from a user-defined viewpoint (see) using a Synthesis
Model where the style of the scene (see) can be controlled explicitly.

∗Work performed while the author was an intern at Snap Inc.

Authors’ addresses: Willi Menapace, University of Trento, Italy, willi.menapace@unitn.
it; Aliaksandr Siarohin, Snap Inc., USA, asiarohin@snapchat.com; Stéphane Lathuilière,
LTCI, Télécom Paris, Institut Polytechnique de Paris, France, stephane.lathuiliere@
telecom-paris.fr; Panos Achlioptas, Snap Inc., USA, pachlioptas@gmail.com; Vladislav
Golyanik, MPI for Informatics, SIC, Germany, golyanik@mpi-inf.mpg.de; Sergey
Tulyakov, Snap Inc., USA, stulyakov@snapchat.com; Elisa Ricci, University of Trento,
Fondazione Bruno Kessler, Italy, e.ricci@unitn.it.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

Neural video game simulators emerged as powerful tools to generate and edit
videos. Their idea is to represent games as the evolution of an environment’s
state driven by the actions of its agents. While such a paradigm enables users
to play a game action-by-action, its rigidity precludesmore semantic forms of

on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/1-ART1 $15.00
https://doi.org/10.1145/3635705

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

ar
X

iv
:2

30
3.

13
47

2v
3

 [
cs

.C
V

]
 2

1
Ja

n
20

24

https://doi.org/10.1145/3635705

1:2 • Menapace, W. et al

control. To overcome this limitation, we augment game models with prompts
specified as a set of natural language actions and desired states. The result—a
Promptable Game Model (PGM)—makes it possible for a user to play the
game by prompting it with high- and low-level action sequences. Most capti-
vatingly, our PGM unlocks the director’s mode, where the game is played by
specifying goals for the agents in the form of a prompt. This requires learning
“game AI”, encapsulated by our animation model, to navigate the scene using
high-level constraints, play against an adversary, and devise a strategy to
win a point. To render the resulting state, we use a compositional NeRF rep-
resentation encapsulated in our synthesis model. To foster future research,
we present newly collected, annotated and calibrated Tennis and Minecraft
datasets. Our method significantly outperforms existing neural video game
simulators in terms of rendering quality and unlocks applications beyond
the capabilities of the current state of the art. Our framework, data, and
models are available at snap-research.github.io/promptable-game-models.

CCS Concepts: • Computing methodologies → Rendering; Animation.

Additional Key Words and Phrases: neural radiance fields, diffusion models,
human motion generation, language modeling

ACM Reference Format:
Willi Menapace, Aliaksandr Siarohin, Stéphane Lathuilière, Panos Achlioptas,
Vladislav Golyanik, Sergey Tulyakov, and Elisa Ricci. 2023. Promptable Game
Models: Text-Guided Game Simulation via Masked Diffusion Models. ACM
Trans. Graph. 1, 1, Article 1 (January 2023), 26 pages. https://doi.org/10.1145/
3635705

1 INTRODUCTION
Recent video generation methods, thanks to their training on exten-
sive web-scale datasets [Schuhmann et al. 2022], exhibit a remark-
able capacity for generating a vast amount of different concepts and
scenes [Blattmann et al. 2023; Ho et al. 2022a; Singer et al. 2022].
Despite this, their generic nature hinders their comprehension of
the dynamics of the modeled scenes. When generating or editing
videos of a game, such as a tennis match, this limitation impedes
their ability to attain precise control of the player movements or to
devise optimal strategies to reach desired states of the game, such
as victory over the opponent.

Neural video game simulators, a growing category of video gener-
ation methods, make an important step in this direction by focusing
on modeling the dynamics of an environment, often a sports or
computer game, with high fidelity and degree of control, and show
that annotated videos can be used to learn to generate videos in-
teractively [Davtyan and Favaro 2022; Huang et al. 2022; Kim et al.
2021, 2020; Menapace et al. 2021] and build 3D environments where
agents can be controlled through a set of discrete actions [Mena-
pace et al. 2022]. However, when applied to complex or real-world
environments, these works present several limitations: they do not
accurately model the game’s dynamics, do not model physical in-
teractions of objects in 3D space, do not learn precise controls, do
not allow for high-level goal-driven control of the game flow, and,
finally, do not model intelligent behavior of the agents, a capability
often referred to as “game AI”.

In this work, we overcome these limitations by introducing game
models trained on a set of annotated videos that support complex
prompts. Due to the versatility of the applications enabled by diverse
prompting methods (see Sec. 4), we call them Promptable Game
Models (PGMs). More formally, we define PGMs as those models
supporting a core set of game modeling and prompting functions

including rendering from a controllable viewpoint, modeling of
game’s dynamics, precise character control, high-level goal-driven
control of the game, and game AI. Making a first step towards the
realization of such models, we propose a framework that supports
these characteristics.

To overcome the limitations of [Davtyan and Favaro 2022; Huang
et al. 2022; Kim et al. 2021, 2020; Menapace et al. 2021, 2022], not
only we model the states of an environment, but we also consider
detailed textual representations of the actions taking place in it.
We argue that training on user commentaries describing detailed
actions of a game greatly facilitates learning the dynamics of the
game and game AI—important parts of PGMs—and that such com-
mentaries are a key component in enabling a series of important
model capabilities related to precise character control and high-level
goal-driven control of the game flow.

In its simplest form, for games like tennis, this enables controlling
each player in a precise manner with instructions such as “hit the
ball with a backhand and send it to the right service box”.
Moreover, language enables users to take the director’s mode

and prompt the model with high-level game-specific scenarios or
scripts, specified by means of natural language and desired states of
the environment. As an example, given desired starting and ending
states, our promptable game model can devise in-between scenarios
that led to the observed outcome. Most interestingly, as shown in
Fig. 1, given the initial states of a real tennis video in which a player
lost a point, our model prompted by the command “the [other] player
does not catch the ball” can perform the necessary action to win the
point.
Broadly speaking, a game maintains states of its environments

[Curtis et al. 2022; Stanton et al. 2016; Starke et al. 2019], renders
them using a controllable camera, and evolves them according to
user commands, actions of non-playable characters controlled by
the game AI, and the game’s dynamics. Our framework follows
this high-level structure highlighted in Fig. 1. Our synthesis model
maintains a state for every object and agent included in the game
and renders them in the image space using the compositional NeRF
of [Menapace et al. 2022] followed by a learnable enhancer for
superior rendering quality. To model the dynamics of games and
game AI that determine the evolution of the environment states,
we introduce an animation model. Specifically, inspired by [Han
et al. 2022], we train a non-autoregressive text-conditioned diffusion
model which leverages masked sequence modeling to express the
conditioning signals corresponding to a prompt. In particular, we
show that using text labels describing actions happening in a game
is instrumental in learning such capabilities. While certain prior
work [Kim et al. 2021, 2020; Menapace et al. 2021, 2022] explored
maintaining and rendering states of games, we are not aware of any
generative method that attempts to enable precise control, modeling
sophisticated goal-driven game dynamics, and learning game AI to
the extent explored in this paper.
The task of playing games and manipulating videos in the di-

rector’s mode has not been previously introduced in the literature.
With this work, we attempt to introduce the task and set up a solid
framework for future research. To do that, we collected two monoc-
ular video datasets. The first one is the Minecraft dataset containing

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://snap-research.github.io/promptable-game-models/
snap-research.github.io/promptable-game-models
https://doi.org/10.1145/3635705
https://doi.org/10.1145/3635705

Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion Models • 1:3

1.2 hours of videos, depicting a player moving in a complex environ-
ment. The second is a large-scale real-world dataset with 15.5 hours
of high-resolution professional tennis matches. For each frame in
these datasets, we provide accurate camera calibration, 3D player
poses, ball localization and, most importantly, diverse and rich text
descriptions of the actions performed by each player in each frame.
In summary, our work brings the following contributions:

• A framework for the creation of Promptable Game Models. It
supports detailed offline rendering of high-resolution, high-
frame rate videos of scenes with articulated objects from
controllable viewpoints. It can generate actions specified by
detailed text prompts, model opponents, and perform goal-
driven generation of complex action sequences. As far as we
are aware, no existing work provides this set of capabilities
under comparable data assumptions.

• A synthesis model, based on a compositional NeRF backed by
an efficient plane- and voxel-based object representation that
operates without upsampling. With respect to the upsampler-
based approach of [Menapace et al. 2022], it doubles the out-
put resolution, can synthesize small objects and does not
present checkerboard upsampling artifacts.

• An animation model, based on a text-conditioned diffusion
model with a masked training procedure, which is key to sup-
porting complex game dynamics, object interactions, game
AI, and understanding detailed actions. It unlocks applica-
tions currently out of reach of state-of-the-art neural video
game simulators (see Sec. 4).

• A large-scale 15h Tennis and a 1h Minecraft video datasets
with camera calibration, 3D player poses, 3D ball localization,
and detailed text captions.

2 RELATED WORK
Our Promptable Game Model relates to neural game simulation
literature, game engines, character animation, neural rendering,
sequential data generation, and text-based generation. We review
the most recent related works in this section.

2.1 Neural video game simulation
In the last few years, video game simulation using deep neural
networks has emerged as a new research trend [Davtyan and Favaro
2022; Huang et al. 2022; Kim et al. 2021, 2020; Menapace et al. 2021,
2022]. The objective is to train a neural network to synthesize videos
based on a specific type of prompt: a sequence of actions provided
at every time step.

This problem was first addressed using training videos annotated
with the corresponding action labels at each time step [Chiappa et al.
2017; Kim et al. 2020; Oh et al. 2015]. They consider a discrete action
representation that is difficult to define a priori for real-world envi-
ronments. More recently, [Kim et al. 2021] proposed a framework
that uses a continuous action representation to model real-world
driving scenarios. Devising a good continuous action representation
for an environment, however, is complex. To avoid this complex-
ity, [Menapace et al. 2021, 2022] propose to learn a discrete action
representation. [Huang et al. 2022] expands on this idea by mod-
eling actions as a learned set of geometric transformations, while

[Davtyan and Favaro 2022] represents actions by separating them
into a global shift component and a local discrete action component.

Differently from our PGM, previous works perform generation in
an autoregressive manner, conditioned on the actions and, therefore,
are unable to answer prompts entailing constraint- or goal-driven
generation for which non-sequential conditioning is necessary. We
find the proposed text-based action representation and masked
training procedure to be crucial to unlocking such applications.

Among these works, Playable environments [Menapace et al. 2022]
is the most closely related to ours. Rather than employing a 2D
model, they use a NeRF-based renderer [Mildenhall et al. 2020]
that enables them to represent complex 3D scenes. We follow this
high-level design but introduce a more efficient plane- and voxel-
based NeRF representation that enables the rendering of outputs
at double the original resolution without the use of upsampling
modules which we found to be the cause of checkerboard artifacts,
failures in rendering of small objects and to be prone to failure
when training at higher resolutions. In addition, the employed dis-
crete action representation shows limitations in complex scenarios
such as tennis, where it is only able to capture the main movement
directions of the players and does not model actions such as ball
hitting. In contrast, we employ a text action representation that
specifies actions at a fine level of granularity (i.e. which particular
ball-hitting action is being performed and where the ball is sent),
while remaining interpretable and intuitive for the user. Lastly, we
replace the adversarially-trained LSTM animation module with a
more capable masked diffusion transformer.

2.2 Game Engines
Game engines brought a revolution to game development by provid-
ing extensible and reusable software that can be employed to create
a wide range of game models [Gregory 2018]. Nowadays, a range
of game engines exists (Unity, Unreal, id Tech, Source, CRYENGINE,
Frostbite, RAGE) and have grown to become vast software ecosys-
tems. Modern game engines are organized into components includ-
ing a rendering engine [Müller et al. 2020], a resource manager, a
module for physics and collision, an animation manager and, im-
portantly, a gameplay foundation system that models the game
rules and encapsulates game AI functionalities [Gregory 2018]. The
presence of these components, coupled with the labor of a range of
trained experts including software engineers, artists (animators, 3D
modelers, texture and lighting artists) and game developers, enables
the construction of sophisticated game models supporting low-level
character control and scripted agent behavior. We show that monoc-
ular videos annotated with a fraction of the effort (see Appx. I.1)
can be used to learn models of games that support answering chal-
lenging prompts related to agent intelligence, a capability difficult
to achieve through scripted agent behavior.

2.3 Character Animation
Character animation is a long-standing problem in computer graph-
ics. Several recent methods have been proposed that produce high-
quality animations. Holden et al. [Holden et al. 2020] propose a
learnable version of Motion Matching [Büttner and Clavet 2015]

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:4 • Menapace, W. et al

that formulates character animation as retrieval of the closest mo-
tion from a motion database and supports interaction with other
characters or objects. Other approaches model the evolution of char-
acters using time series models conditioned on the preceding state
and control signals [Holden et al. 2017; Lee et al. 2018; Starke et al.
2019, 2020]. Starke et al. [Starke et al. 2019] propose a model based
on a mixture of experts that controls character locomotion and
object interactions, in a follow-up work [Starke et al. 2020] they
introduce local motion phases to model complex character motions
and interaction with a second character.

To produce high-quality animations the methods rely on difficult-
to-acquire motion capture data enriched with contact information
[Holden et al. 2020; Starke et al. 2019, 2020], motion phases [Starke
et al. 2019] or engineered action labels [Starke et al. 2019, 2020].
Additionally, handcrafted dataset-specific feature representations
and mappings from user controls to such representations are often
leveraged, and additional knowledge is injected through postpro-
cessing steps such as inverse kinematics or external physics models.
While these assumptions promote high-quality outputs, they come
at a significant effort. In contrast, our method sidesteps these re-
quirements by not using motion capture and basing user control
on natural language that is cheaper to acquire (see Appx. I.1) and
does not require manual engineering. Finally, character animation
methods support limited goal-driven control such as interacting
with a specific object while avoiding collisions [Starke et al. 2019].
In contrast, our method models complex game AI tasks such as
modeling strategies to defeat the opponent, which are instrumental
in answering complex user prompts.

2.4 Neural Rendering
Neural rendering was recently revolutionized by the advent of NeRF
[Mildenhall et al. 2020]. Several modifications of the NeRF frame-
work were proposed to model deformable objects [Li et al. 2022;
Park et al. 2021a,b; Tretschk et al. 2021; Weng et al. 2022], and de-
composed scene representations [Kundu et al. 2022; Menapace et al.
2022; Müller et al. 2022; Niemeyer and Geiger 2021; Ost et al. 2021].
In addition, several works improved the efficiency of the original
MLP representation of the radiance field [Mildenhall et al. 2020] by
employing octrees [Martel et al. 2021; Yu et al. 2021], voxel grids
[Fridovich-Keil et al. 2022], triplanes [Chan et al. 2022], hash tables
[Müller et al. 2022], or factorized representations [Chen et al. 2022].

Our framework is most related to that of [Weng et al. 2022], since
we model player deformations using an articulated 3D prior and
linear blend skinning (LBS) [Lewis et al. 2000]. Differently from
them, however, we consider scenes with multiple players and apply
our method to articulated objects with varied structures for their
kinematic trees. While similar to the rendering framework of [Mena-
pace et al. 2022], our framework does not adopt computationally-
inefficient MLP representations, using voxel [Fridovich-Keil et al.
2022] or plane representations instead, thus does not rely on upsam-
pler networks.

2.5 Sequential data generation with diffusion models
In prior work, sequential data generation was mainly addressed with
auto-regressive formulations combined with adversarial [Kwon and

Park 2019] or variational [Babaeizadeh et al. 2018; Fortuin et al.
2020] generative models. Recently, diffusion models have emerged
as a promising solution to this problem leading to impressive re-
sults in multiple applications such as audio [Chen et al. 2021; Kong
et al. 2020; Lam et al. 2022; Leng et al. 2022] and video synthe-
sis [Blattmann et al. 2023; Ho et al. 2022a,b; Singer et al. 2022], lan-
guage modeling [Dieleman et al. 2022], and humanmotion synthesis
[Dabral et al. 2023; Zhang et al. 2022]. Following this methodological
direction [Tashiro et al. 2021], introduces a score-based diffusion
model for imputing missing values in time series. They introduce
a training procedure based on masks that simulate missing data.
This approach motivates our choice of a similar masking strategy
to model the conditions entailed by the given prompt and generate
the unknown environment states. In this work, we show that mask-
based training is highly effective in modeling geometric properties
together with textual data modalities.

2.6 Text-based generation
In recent years, we have witnessed the emergence of works on
the problem of text-based generation. Several works address the
problem of generating images [Ramesh et al. 2022, 2021; Rombach
et al. 2021; Saharia et al. 2022] and videos with arbitrary content [Ho
et al. 2022a,b; Hong et al. 2022; Singer et al. 2022], and arbitrary 3D
shapes [Achlioptas et al. 2023; Jain et al. 2022; Lin et al. 2023].

Han et al. [Han et al. 2022] introduced a video generation frame-
work that can incorporate various conditioning modalities in ad-
dition to text, such as segmentation masks or partially occluded
images. Their approach employs a frozen RoBERTa [Liu et al. 2020]
language model and a sequence masking technique. Fu et al. [Fu et al.
2023] propose an analogous framework. Our animation framework
employs a similar masking strategy, but we model text conditioning
at each timestep in the sequence, use diffusion models which op-
erate on continuous rather than discrete data, and generate scenes
that can be rendered from arbitrary viewpoints.

More relevant to our work, several papers introduced models to
generate human motion sequences from text [Athanasiou et al. 2022;
Tevet et al. 2022]. Recently, diffusion models have shown strong
performance on this task [Dabral et al. 2023; Zhang et al. 2022]. In
these works, sequences of human poses are generated by a diffusion
model conditioned on the output of a frozen CLIP text encoder. It
is worth noting that these prior works model only a single human,
while our framework supports multiple human agents and objects,
and models their interactions with the environment.

3 METHOD
This section introduces our framework for the creation of Promptable
Game Models that allows the user to perform a range of dynamic
scene editing tasks, formulated as a set of conditioning prompts.
We divide our PGM into two modules: a synthesis model and an

animation model. The synthesis model generates an image given
the representation of the environment state. The animation model,
instead, aims at modeling the game’s dynamics, with player actions
and interactions, in the high-level space of the environment states.
Actions are modeled as text, which is an expressive, yet intuitive

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion Models • 1:5

Sampled
Properties

Conditioning

Animation Model

Diffusion Sampling

Synthesis Model

P1

P1

P2

P2

Ball

P1 P2 Ball P1 P2 Ball P1 P2 Ball

P1

P1

P2

P2

Ball P1

P1

P2

P2

Ball

FPS

(a) Model Overview

Conditioning

Noisy
Properties

Diffusion Loss

FPS

0

0

0

0

0

0

0

0

0+ + +

Masking

Time

(b) Animation model

Style

Camera

Framerate

Velocity

Location

Pose

Action

Ray
Casting

Ground Truth

Reconstruction
LossesFPS

}

(c) Synthesis model

Fig. 2. (a) Overview of our framework. The animation model produces states s based on user-provided conditioning signals, or prompts, s𝑐 , a𝑐 that are rendered
by the synthesis model. (b) The diffusion-based animation model predicts noise 𝝐𝑘 applied to the noisy states s𝑝

𝑘
conditioned on known states s𝑐 and actions

a𝑐 with the respective masks ms,ma, diffusion step 𝑘 and framerate 𝜈 . The text encoder T produces embedding for the textual actions, while the temporal
model A performs noise prediction. (c) The synthesis model renders the current state using a composition of neural radiance fields, one for each object. A style
encoder E extracts the appearance 𝝎 of each object. Each object is represented in its canonical pose by C and deformations of articulated objects are modeled
by the deformation model D. After integration and composition, the feature grid G is rendered to the final image using the feature enhancer F.

form of control for a wide range of tasks. The overview of our
framework is provided in Fig. 2a.

In more detail, our model defines the state of the entire environ-
ment as the combination of all individual object states. Consequently,
each individual state is the set of the object properties such as the
position of each object in the scene, their appearance, or their pose.
Formally, the environment state at time 𝑡 can be represented by
s𝑡 ∈ S = (R𝑛1 × ...×R𝑛𝑃), 𝑃 properties of variable length 𝑛𝑖 defined
as the union of the properties of each object. This state representa-
tion captures all variable aspects of each object in the environment,
thus it can be used by the synthesis model to generate the scene.
On the other hand, the animation model predicts the evolution

of an environment in time, which is represented by the sequence
of its states {s1, s2, . . . s𝑇 } = s ∈ S𝑇 , where 𝑇 is the length of the
sequence. The model provides control over sequence generation
with the help of user-defined conditioning signals, or prompts, that
can take two forms: explicit state manipulation and high-level text-
based editing. With respect to the former, the user could change
the position of the tennis ball at time step 𝑡 , and the model would
automatically adapt the position of the ball in other nearby states.

As far as the latter is concerned, users could provide high-level
text-based values of actions such as "The player takes several steps
to the right and hits the ball with a backhand" and the model would
generate the corresponding sequence of states (see Fig. 3). These
generic actions in the form of text are central to enabling high-level,
yet fine-grained control over the evolution of the environment.
To train our framework we assume a dataset of camera-calibrated
videos, where each video frame is annotated with the corresponding
states s and actions a.

3.1 Synthesis Model
In this section, we describe the synthesis model that renders states
from controllable viewpoints (see Fig. 2c). We build our model based
on a compositional NeRF [Menapace et al. 2022] framework which
enables explicit control over the camera and represents a scene as a
composition of different, independent objects. Thanks to the inde-
pendent representation of objects, each object property is directly
linked to an aspect of the respective object and can thus be easily
controlled and manipulated. The compositional NeRF framework
allows different, specialized NeRF architectures to be used for each

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:6 • Menapace, W. et al

object based on its type. To further improve quality, rather than
directly rendering RGB images with the NeRF models, we render
features and make use of a feature enhancer CNN to produce the
RGB output. In order to represent objects with different appearances,
we condition the NeRF and enhancer models on the style codes ex-
tracted with a dedicated style encoder [Menapace et al. 2022]. Our
model is trained using reconstruction as the main guiding signal.
In Sec. 3.1.1-3.1.6 we illustrate the main components of the syn-

thesis module and in Sec. 3.1.7 we describe the training procedure.

3.1.1 Scene Composition with NeRFs. Neural radiance fields rep-
resent a scene as a radiance field, a 5D function parametrized as a
neural network mapping the current position x and viewing direc-
tion d to density 𝜎 and radiance c.
To allow controllable generation of complex scenes, we adopt a

compositional strategy where each object in the scene is modeled
with a dedicated NeRF model [Menapace et al. 2022; Müller et al.
2022; Xu et al. 2022a]. The scene is rendered by sampling points
independently for each object and querying the respective object
radiance field C𝑖 . The results for all objects are then merged and
sorted by distance from the camera before being integrated.
All objects are assumed to be described by a set of properties

whose structure depends on the type of object, e.g. a player, the ball,
the background. We consider the following properties:

• Object location. Each object is containedwithin an axis-aligned
bounding box b3D

𝑖
which is defined by size and position. In

the case of the ball, we additionally consider its velocity to
model blur effects (Sec. 3.1.6).

• Object style. All objects have an appearance that may vary
in different sequences, thus we introduce a style code 𝝎𝑖 as
an additional property for all objects. Since it is difficult to
define such style information a priori, we assume it to be a
latent variable and learn it jointly during training.

• Object pose. Articulated objects such as humans require addi-
tional properties to model varying poses. We model the defor-
mation of articulated objects as a kinematic tree with 𝐽𝑖 joints
and consider as object properties the rotation R and transla-
tion tr parameters associated with each joint (Sec. 3.1.4).

From now on, we drop the object index 𝑖 to simplify notation.

3.1.2 Style Encoder. Representing the appearance of each object
is challenging since it changes based on the type of object and
illumination conditions. We treat the style 𝝎 for each object as a
latent variable that we regress using a convolutional style encoder
E. Given the current video frame I with 𝑂 objects, we compute 2D
bounding boxes b2D for each object. First, a set of residual blocks
is used to extract frame features which are later cropped around
each object according to b2D using RoI pooling [Girshick et al. 2013].
Later, a series of convolutional layers with a final projection is used
to predict the style code 𝝎 from the cropped feature maps.

3.1.3 Volume Modeling for Efficient Sampling. Radiance fields are
commonly parametrized using MLPs [Mildenhall et al. 2020] but
such representation requires a separate MLP evaluation for each
sampled point, making it computationally challenging to train high-
resolution models. To overcome such issue, we model the radiance

field C of each object in a canonical space using two alternative
parametrizations.
For three-dimensional objects, we make use of a voxel grid pa-

rametrization [Fridovich-Keil et al. 2022; Weng et al. 2022]. Starting
from a fixed noise tensor V′ ∈ R𝐹 ′×𝐻 ′

𝑉
×𝑊 ′

𝑉
×𝐷 ′

𝑉 , a series of 3D
convolutions produces a voxel V ∈ R𝐹+1×𝐻𝑉 ×𝑊𝑉 ×𝐷𝑉 containing
the features and density associated to each point in the bounded
space. Here, 𝐹 ′ and 𝐹 represent the number of features, while 𝐻𝑉 ,
𝑊𝑉 and 𝐷𝑉 represent the size of the voxel. Given a point in the
object canonical space x𝑐 , the associated features and density 𝜎
are retrieved using trilinear sampling on V. To model the different
appearance of each object, we adopt a small MLP conditioned on
the style 𝝎 to produce a stylized feature with the help of weight
demodulation [Karras et al. 2020].
For two-dimensional objects such as planar scene elements, we

make use of a similar parametrization where a fixed 2D noise tensor
P′ ∈ R𝐹 ′×𝐻 ′

𝑃
×𝑊 ′

𝑃 is mapped to a plane of features P ∈ R𝐹×𝐻𝑃 ×𝑊𝑃

using a series of 2D convolutions. Given a ray 𝑟 , we compute the
intersection point x between the plane and the ray which is used
to sample P using bilinear sampling. Similarly to the voxel case, a
small MLP is used to model object appearance according to 𝝎. We
assume planes to be fully opaque and assign a fixed density value
𝜎 to each sample. Thanks to this representation, a single point per
ray is sufficient to render the object.

3.1.4 Deformation Modeling. Since the radiance field C alone sup-
ports only rendering of rigid objects expressed in a canonical space,
to render articulated objects such as humans we introduce a de-
formation model D. Given an articulated object, we assume its
kinematic tree is known and that the transformation [R𝑗 |tr𝑗] from
each joint 𝑗 ∈ 1, ..., 𝐽 to the parent joint is part of the object’s prop-
erties. We then implement a deformation procedure based on linear
blend skinning (LBS) [Lewis et al. 2000] and inspired by Human-
NeRF [Weng et al. 2022] that employs the joint transformations
and a learned volume of blending weightsW ∈ R𝐽 +1×𝐻𝑊 ×𝑊𝑊 ×𝐷𝑊

to associate each point in the bounding box of the articulated ob-
ject to the corresponding one in the canonical volume. We present
additional details in Appx. C.

3.1.5 Enhancer. NeRF models are often parametrized to output ra-
diance c ∈ R3 and directly produce an image. However, we find that
such approach struggles to produce correct shading of the objects,
with details such as shadows being difficult to synthesize. Also, to
improve the computational efficiency of the method, we sample
a limited number of points per ray that may introduce subtle ar-
tifacts in the geometry. To address these issues, we parametrize
the model C to output features where the first three channels rep-
resent radiance and the subsequent represent learnable features.
Then, we produce a feature grid G ∈ R𝐹×𝐻×𝑊 and an RGB image
Ĩ ∈ R3×𝐻×𝑊 . We introduce an enhancer network F modeled as a
UNet [Ronneberger et al. 2015] architecture interleaved with weight
demodulation layers [Karras et al. 2020] that maps G and the style
codes 𝝎 to the final RGB output Î ∈ R3×𝐻×𝑊 .

3.1.6 Object-specific rendering. Our compositional approach allows
the use of object-specific techniques. In particular, in the case of
tennis, we detail in Appx. B how we can apply dedicated procedures

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion Models • 1:7

to enhance the rendering quality of the ball, the racket, and the 2D
user interfaces such as the scoreboards. The rendering of the tennis
ball is treated specially to render the blur that occurs in real videos in
the case of fast-moving objects. The racket can be inserted in a post-
processing stage to compensate for the difficulty of NeRFs to render
thin, fast-moving objects. Finally, the UI elements are removed from
the scene since they do not behave in a 3D consistent manner. For
Minecraft, we describe how the scene skybox is modeled.

3.1.7 Training. We train our model using reconstruction as the
main driving signal. Given a frame I and reconstructed frame Î, we
use a combination of L2 reconstruction loss and the perceptual loss
of Johnson et al. [Johnson et al. 2016] as our training loss. To mini-
mize the alterations introduced by the enhancer and improve view
consistency, we impose the same losses between I and Ĩ, the output
of the model before the feature enhancer. All losses are summed
without weighting to produce the final loss term. To minimize GPU
memory consumption, instead of rendering full images, we impose
the losses on sampled image patches instead [Menapace et al. 2022].

We train all the components of the synthesis model jointly using
Adam [Kingma and Ba 2015] for 300k steps with batch size 32. We
set the learning rate to 1𝑒 − 4 and exponentially decrease it to 1𝑒 − 5
at the end of training. The framework is trained on videos with
1024x576px resolution. We present additional details in Appx. D.1
and in Appx. E.1, and discuss inference details in Appx. F.

3.2 Animation Model
In this section, we describe the animation model (see Fig. 2b), whose
task is that of generating sequences of states s ∈ S𝑇 according to user
inputs. The animation model allows users to specify conditioning
signals, or prompts, in two forms. First, conditional signals can
take the form of values that the user wants to impose on some
object properties in the sequence, such as the player position at a
certain time step. This signal is represented by a sequence s𝑐 ∈ S𝑇 .
This form of conditioning allows fine control over the sequence
to generate but requires directly specifying values of properties.
Second, to allow high-level, yet granular control over the sequence,
we introduce actions in the form of text a𝑐 ∈ L𝐴×𝑇 that specify
the behavior of each of the 𝐴 actionable objects at each timestep in
the sequence, where L is the set of all strings of text. To maximize
the flexibility of the framework, we consider all values in s𝑐 and
a𝑐 to be optional, thus we introduce their respective masks ms ∈
{0, 1}𝑃×𝑇 and ma ∈ {0, 1}𝐴×𝑇 that are set to 1 when the respective
conditioning signal is present. We assume elements where the mask
is not set to be equal to 0. The animation model predicts s𝑝 ∈ S𝑇
conditioned on s𝑐 and a𝑐 such that:

s = s𝑝 + s𝑐 , (1)

where we consider the entries in s𝑝 and s𝑐 to be mutually exclusive,
i.e. an element of s𝑝 is 0 if the corresponding conditioning signal in
s𝑐 is present according to ms. Note that the prediction of actions is
not necessary, since s is sufficient for rendering.
We adopt a temporal model A based on a non-autoregressive

masked transformer design and leverage the knowledge of a pre-
trained language model in a text encoder T to model action condi-
tioning information [Han et al. 2022]. The masked design provides

support for the optional conditioning signals and is trained using
masked sequence modeling, where we samplems andma according
to various strategies that emulate desired inference tasks.

In Sec. 3.2.1 we define our text encoder, Sec. 3.2.2 defines the diffu-
sion backbone, and in Sec. 3.2.3 we describe the training procedure.

3.2.1 Text Encoder. We introduce a text encoder T that encodes
textual actions into a sequence of fixed-size text embeddings:

aemb = T (a𝑐) ∈ R𝐴×𝑇×𝑁𝑡 , (2)

where 𝑁𝑡 is the size of the embedding for the individual sentence.
Given a textual action, we leverage a pretrained T5 text model
[Raffel et al. 2022] Tenc that tokenizes the sequence and produces an
output feature for each token. Successively, a feature aggregatorTagg
modeled as a transformer encoder [Vaswani et al. 2017] produces
the aggregated text embedding from the text model features. To
retain existing knowledge into Tenc, we keep it frozen and only train
the feature aggregator Tagg.

3.2.2 Temporal Modeling. In this section, we introduce the tem-
poral model A that predicts the sequence of states s conditioned
on known state values s𝑐 , action embeddings aemb, and the respec-
tive masks ms and ma. Since only unknown state values need to
be predicted, the model predicts s𝑝 and the complete sequence of
states is obtained as s = s𝑝 + s𝑐 , following Eq. (1). Diffusion models
have recently shown state-of-the-art performance on several tasks
closely related to our setting such as sequence modeling [Tashiro
et al. 2021] and text-conditioned human motion generation [Dabral
et al. 2023; Zhang et al. 2022]. Thus, we follow the DDPM [Ho et al.
2020] diffusion framework, and we frame the prediction of s𝑝 = s𝑝0
as a progressive denoising process s𝑝0 , ..., s

𝑝

𝐾
, where we introduce

the diffusion timestep index 𝑘 ∈ 0, ..., 𝐾 . The temporal modelA acts
as a noise estimator that predicts the Gaussian noise 𝝐𝑘 in the noisy
sequence of unknown states s𝑝

𝑘
at diffusion timestep 𝑘 :

𝝐
𝑝

𝑘
= A(s𝑝

𝑘
|s𝑐 , aemb,ms,ma, 𝑘) . (3)

An illustration of the proposed diffusion model is shown in Fig. 2b.
We realize A using a transformer encoder [Vaswani et al. 2017].

To prepare the transformer’s input sequence, we employ linear pro-
jection layers P with separate parameters for each object property.
Since corresponding entries in s𝑝

𝑘
and s𝑐 are mutually exclusive, we

only consider the one that is present as input to the transformer and
we employ different projection parameters to enable the model to
easily distinguish between the two. An analogous projection is per-
formed for aemb and, subsequently, the projection outputs for states
and actions are concatenated into a single sequence e ∈ R𝑃+𝐴×𝑇×𝐸 ,
which constitutes the input to the transformer. An output projection
layer with separate weights for each object property produces the
prediction 𝝐

𝑝

𝑘
at the original dimensionality. To condition the model

on the diffusion time-step 𝑘 , we introduce a weight demodulation
layer [Karras et al. 2020] after each self-attention and feedforward
block [Zhang et al. 2022].
To model long sequences while keeping reasonable computa-

tional complexity and preserving the ability to model long-term
relationships between sequence elements, it is desirable to build
the sequences using states sampled at a low framerate. However,

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:8 • Menapace, W. et al

this strategy would not allow the model to generate content at the
original framerate and would prevent it from understanding dy-
namics such as limb movements that are clear only when observing
sequences sampled at high framerates. To address this issue, we use
the weight demodulation layers to further condition our model on
the sampling framerate 𝜈 to enable a progressive increase of the
framerate at inference time (see Appx. F.2.1).

3.2.3 Training. To train our model, we sample a sequence s with
corresponding actions a from a video in the dataset at a uniformly
sampled framerate 𝜈 . Successively, we obtain masks ms and ma

according to masking strategies we detail in Appx. E.2. The sequence
for training are obtained following s𝑝0 = s⊙ (1−ms) and s𝑐 = s⊙ms,
and actions as a𝑐 = a⊙ma, where ⊙ denotes the Hadamard product.
We train our model by minimizing the DDPM [Ho et al. 2020]

training objective:

E𝑘∼U(1,𝐾),𝜖∼N(0,𝐼) | |𝝐
𝑝

𝑘
− 𝝐𝑘 | |, (4)

where 𝝐𝑝
𝑘
is the noise estimated by the temporal model A accord-

ing to Eq. (3). Note that the loss is not applied to positions in the
sequence corresponding to conditioning signals [Tashiro et al. 2021].
Our model is trained using the Adam [Kingma and Ba 2015]

optimizer with a learning rate of 1𝑒 − 4, cosine schedule, and with
10k warmup steps. We train the model for a total of 2.5M steps and
a batch size of 32. We set the length of the training sequences to
𝑇 = 16. The number of diffusion timesteps is set to 𝐾 = 1000 and
we adopt a linear noise schedule [Ho et al. 2020]. Additional details
are presented in Appx. D.2 and Appx. F.

4 APPLICATIONS
Our framework enables a series of applications that are unlocked by
its expressive state representation, the possibility to render it using a
3D-aware synthesis model, and the ability to generate sequences of
states with an animationmodel that understands the game dynamics
and can be conditioned on a wide range of signals In the following,
we demonstrate a set of selected applications.

Our state representation is modular, where the style is one of the
components. Style swapping is enabled by swapping the style of the
desired object 𝝎 in the original image with the one from a target
image. Similarly to a traditional game engine, our synthesis model
renders the current state of the environment from a user-defined
perspective. This enables our model to perform novel view synthesis.
We show in Appx. G examples of both these capabilities.

We now show a set of applications enabled by the animation
model. In Fig. 3, we show results for generating different sequences
using textual actions starting from a common initial state. Thanks
to the textual action representation, it is possible to gain fine control
over the generated results and to make use of referential language.
Our animation model, however, is not limited to generate se-

quences given step-by-step actions. Thanks to its understanding of
the game’s dynamics, the model can tackle more complex tasks such
as modeling an opponent against which a user-controlled player
can play (see Fig. 4), or even controlling all players without user
intervention (see Fig. 5), in a way similar to a “game AI”.
The animation model also unlocks the "director’s mode", where

the user can generate sequences by specifying prompts consisting

in a desired set of high-level constraints or goals. The model is
able to reason on actions to find a solution satisfying the given
constraints. As a first example, Fig. 6 demonstrates results for a
navigation problem, where the user specifies a desired initial and
final player position in the scene, and the model devises a path
between them. Notably, the user can also constrain the solution
on intermediate waypoints by means of natural language. As a
second example, Fig. 7 shows that the model is capable of devising
strategies to defeat an opponent. Given an original sequence where
the player commits a mistake and loses, the model can devise which
actions the player should have taken to win. Notably, these model
capabilities are learned by just observing sequences annotated with
textual actions.

5 EVALUATION
In this section, we introduce our Tennis and Minecraft datasets
(Sec. 5.1), describe our experimental protocol (Sec. 5.2), and perform
evaluation of both the synthesis model (Sec. 5.3) and the animation
model (Sec. 5.4). Additional evaluation results are shown in Appx. H.

5.1 Datasets
We collect two datasets to evaluate our method. Both datasets and
the employed data collection tools are publicly available. In the
following, we describe their structure and the available annotations.

5.1.1 Tennis dataset. We collect a dataset of broadcast tennismatches
starting from the videos in [Menapace et al. 2022]. The dataset de-
picts matches between two professional players from major tennis
tournaments, captured with a single, static bird’s eye camera.
To enable the construction of PGMs, we collect a wide range of

annotations with a combination of manual and automatic methods
(see Appx. A.1):

• For each frame, we perform camera calibration.
• For each of the two players, we perform tracking and collect
full SMPL [Loper et al. 2015] body parameters. Note that in
our work we only use a subset of the parameters: rotation
and translation associated with each joint, and the location
of the root joint in the scene.

• For each player and frame, we manually annotate textual
descriptions of the action being performed. We structure
captions so that each includes information on where and
how the player is moving, the particular type of tennis shot
being performed, and the location where the shot is aimed
(see Appx. A.4). Captions make use of technical terms to
describe shot types and field locations. In contrast to other
video-text datasets that contain a single video-level [Bain et al.
2021] or high-level action descriptions weakly aligned with
video content [Miech et al. 2019], the captions in our dataset
are separate for each object and constitute a fine-grained
description of the actions taking place in the frame.

• For the ball, we perform 3D tracking and provide its position
in the scene and its velocity vector indicating the speed and
direction of movement.

We collect 7112 video sequences in 1920x1080px resolution and
25fps starting from the videos in [Menapace et al. 2022] for a total
duration of 15.5h. The dataset features 1.12M fully-annotated frames

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion Models • 1:9

"e player jumps on the low
pillar in the beginning zone"

t=3t=0 t=7 t=11 t=15

Prediction 1

Prediction 2

Prediction 1

Prediction 2

"e player jumps on
the birch wood pillar"

"e player jumps on
the birch wood pillar"

"e player sprints and jumps
on the dark wooden pillar"

"e player sprints and jumps
on the wall in the start area"

"e player slightly moves
forward while waiting

for the opponent's serve"

"e player slightly moves
forward while waiting

for the opponent's serve"

"e player hits the
ball with a forehand"

"e player waits for
the opponent response"

"e player takes some steps to
the right but does not catch the ball"

"e player serves the ball
to the right service box"

"e player serves the ball
to the right service box"

"e player takes several steps
to the right and hits the
ball with a backhand"

"e player stops in the
middle behind the baseline"

"e player moves to the
le while the ball flies by"

"e player runs forward to the
right service box and hits a

volley to the right service box"

"e player runs forward to the
right service box and hits a

volley to the right service box"
"e player takes a step to the le"

"e player takes two steps to
the le and waits for the response"

"e player hits the ball with a
powerful forehand that sends
the ball to the no man's land"

"e player hits the ball with a
powerful forehand that sends
the ball to the no man's land"

"e player runs south" "e player jumps on
the highest pillar"

"e player jumps on
the highest pillar"

S

N

E

W

Fig. 3. Different sequences predicted on the Tennis and Minecraft datasets starting from the same initial state and altering the text conditioning. Our model
moves players and designates shot targets using domain-specific referential language (eg. "right service box", "no man’s land", "baseline"). The model supports
fine-grained control over the various tennis shots using technical terms (eg. “forehand”, “backhand”, “volley”).

"e player runs to the right and
performs another backhand to the

le side of the field"
"e player moves slightly to the le"

"e player takes steps to the right and
sends the ball to the right side of no man's

land with a backhand"
"e player starts moving to the le"

"e player jumps to the le and sends the
ball to the le part of the service line with

a backhand"

"e player jumps diagonally backwards to
the le and waits for the ball"

Game AI Actions (Top player)

Game AI Actions (Boom player)

"e player moves forward and sends the
ball to the right service box with a

backhand"

"e player moves to the right for the hit
but the game is ended"

Fig. 4. Sequences generated by specifying actions for one of the players and letting the model act as the game AI and take control of the opponent. The game
AI successfully responds to the actions of the player by running to the right (see top sequence) or towards the net (see bottom sequence), following two
challenging shots of the user-controlled player.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:10 • Menapace, W. et al

Fig. 5. Sequences generated without any user conditioning signal. The actions of all players are controlled by the model that acts as the game AI. In tennis,
the players produce a realistic exchange, with the bottom player advancing aggressively toward the net and the top player defeating him with a shot along the
right sideline. The Minecraft player and tennis ball trajectories are highlighted for better visualization.

"Jump on the gold pillar"
"Run to the stairs"

+ "Jump on the gold pillar""Run to the stairs"Initial State Final State

Fig. 6. Given an initial and a final state, we generate all the states in between. We repeat the generation multiple times conditioning it using different actions
indicating the desired intermediate waypoints.

Initial State

Original Losing Sequence

Winning Sequence

"e player
does not catch
the ball"

"e player
does not catch
the ball"

"e player
does not catch
the ball"

Fig. 7. Given a sequence where the bottom player loses (see top), we ask the model to modify it such that the bottom player wins instead (see bottom). To do
so, we condition the top player on the action "The player does not catch the ball". While in the original sequence the bottom player aims its response to the
center of the field where the opponent is waiting, the model now successfully generates a winning set of moves for the bottom player that sends the ball along
the left sideline, too far for the top player to be reached.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion Models • 1:11

ablations

ground
truthours

ours
smallPE+PE

baselines our method

ours w/o
enhancer

ours w/o
explicit deformation in

ours w/o
voxels in

ours w/o
planes in

ours w/o
our encoder

Fig. 8. Synthesis model qualitative results on the Tennis dataset. Compared to PE [Menapace et al. 2022], our model generates sharper players and static scene
elements. Our ablation study shows corruption of the player geometry when voxels or our deformation model are not used. When removing our canonical
plane representation, static scene elements appear blurry. When our feature enhancer is removed, the model does not generate shadows and players lose
quality.

and 25.5k unique captions with 915 unique words. We highlight key
statistics of the dataset and show samples in Appx. A.

We note that broadcast Tennis videos are monocular and do not
feature camera movements other than rotation, thus the dataset does
not make it possible to recover the 3D geometry of static objects
[Menapace et al. 2022].

5.1.2 Minecraft dataset. We collect a synthetic dataset from the
Minecraft video game. This dataset depicts a player performing
a series of complex movements in a static Minecraft world that
include walking, sprinting, jumping, and climbing on various world
structures such as platforms, pillars, stairs, and ladders. A single,
monocular camera that slowly orbits around the scene center is used
to capture the scenes. We collect a range of synthetic annotations
using a game add-on we develop starting from [ReplayMod 2022]:

• Camera calibration for each frame.
• Player rotation and translation parameters associated with
each joint in the Minecraft kinematic tree format, and the
location of the root joint in the scene (see Appx. A.2).

• A synthetically-generated text caption describing the action
being performed by the player. We assign varied, descriptive
names to each element of the scene and build captions that de-
scribe scene elements or directions towards which the player
is moving. Additionally, our captions capture how movement
is happening i.e. by jumping, sprinting, walking, climbing, or

falling. We adopt a stochastic caption generation procedure
that generates multiple alternative captions for each frame.

A total of 61 videos are collected in 1024x576px resolution and
20fps for a total duration of 1.21h. The dataset contains 68.5k fully
annotated frames and 1.24k unique captions with 117 unique words.
We highlight key statistics for the dataset in Appx. A.

5.2 Evaluation Protocol
We evaluate the synthesis and the animation models separately,
following a similar evaluation protocol. We divide the test dataset
into non-overlapping sequences of 16 frames sampled at 5fps and
4fps respectively for the Minecraft and Tennis datasets and make
use of the synthesis or animation model to reconstruct them. In
the case of the synthesis model, we directly reconstruct the video
frames and compute the following metrics:

• LPIPS [Zhang et al. 2018] is a standard metric for evaluating
the reconstruction quality of the generated images

• FID [Heusel et al. 2017] is a widely-used metric for image
generation quality

• FVD [Unterthiner et al. 2018] is a standardmetric for assessing
the quality of generated videos

• Average Detection Distance (ADD) [Menapace et al. 2021] mea-
sures the average distance in pixels between the bounding box
centers of ground truth bounding boxes and bounding boxes

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:12 • Menapace, W. et al

obtained from the generated sequences through a pretrained
detector [Ren et al. 2015]

• Missing Detection Rate (MDR) [Menapace et al. 2021] estimates
the rate of bounding boxes that are present in the ground
truth, but that are missing in the generated videos

For the animation model, we evaluate reconstruction of the ob-
ject properties. Note that different strategies for masking affect the
behavior of the model and the nature of the reconstruction task,
thus we separately evaluate different masking configurations cor-
responding to different inference tasks. We compute metrics that
address both the fidelity of the reconstruction and the realism of
the produced sequences:

• L2 computes the fidelity of the reconstruction by measuring
the distance between the ground truth and reconstructed
object properties along the sequence

• Fréchet Distance (FD) [Fréchet 1957] measures the realism
of each object property by computing the Fréchet Distance
between the distribution of real sequences of a certain object
property and of generated ones.

We select different reconstruction tasks for evaluation:
• Video prediction conditioned on actions consists in reconstruct-
ing the complete sequence starting from the initial state while
the actions are specified for all timesteps. This setting corre-
sponds to the evaluation setting of [Menapace et al. 2022].

• Unconditioned video prediction consists in reconstructing the
complete sequence starting from the first state only.

• Opponent modeling consists in reconstructing the object prop-
erties of an unknown player, based on the state of the other
player, with actions specified only on the known player. Good
performance in this task indicates the ability to model an op-
ponent against which a user can play.

• Sequence completion consists in reconstructing a sequence
where 8 consecutive states are missing. No actions are spec-
ified for the missing states. Good performance in this task
indicates ability in reasoning on how it is possible to reach a
certain goal state starting from the current one.

5.3 Synthesis Model Evaluation
In this section, we evaluate the performance of the synthesis model.

5.3.1 Comparison to Baselines. We evaluate our method against
Playable Environments (PE) [Menapace et al. 2022], the work most
related to ours in that it builds a controllable 3D environment repre-
sentation that is rendered with a compositional NeRF model where
the position of each object is given and pose parameters are treated
as a latent variable. Since the original method supports only out-
puts at 512x288px resolution, we produce baselines trained at both
512x288px and 1024x576px resolution which we name PE and PE+
respectively. For a fair comparison, we also introduce in the baselines
our same mechanism for representing ball blur and train a variant
of our model using the same amount of computational resources as
the baselines (Ours Small).

Results of the comparison are shown in Tab. 1, while qualitative
results are shown in Fig. 8. Our method scores best in terms of
LPIPS, ADD and MDR. Compared to PE+, our method produces

Table 1. Comparison with baselines and ablation of the synthesis model.
MDR in %, ADD in pixels. Note that FID and FVD are computed on images
downscaled to the feature extractor training resolution, thus blurriness in
the PE baseline caused by its reduced resolution is not captured by these
metrics. LPIPS correctly reflects lack of sharpness in the PE results (see
Fig. 8). † denotes output in 512x288px rather than 1024x576px resolution.

Tennis LPIPS↓ FID↓ FVD↓ ADD↓ MDR↓

PE† [Menapace et al. 2022] 0.188 11.5 349 3.74 0.200
PE+ [Menapace et al. 2022] 0.232 40.4 2432 132.3 49.7

w/o enhancer F 0.167 15.6 570 3.02 0.0728
w/o explicit deformation in D 0.156 13.3 524 3.10 0.0587
w/o planes in C 0.241 30.4 1064 2.94 0.0611
w/o voxels in C 0.170 17.1 757 3.03 0.0399
w/o our encoder E 0.174 15.0 600 3.18 0.0564

Ours Small 0.156 13.4 523 2.88 0.0470
Ours 0.152 12.8 516 2.88 0.0423

Minecraft LPIPS↓ FID↓ FVD↓ ADD↓ MDR↓

PE† [Menapace et al. 2022] 0.0235 13.9 21.5 5.77 0.0412
PE+ [Menapace et al. 2022] 0.0238 15.5 51.7 120.6 0.939

Ours Small 0.00996 3.56 8.83 2.02 0.0529
Ours 0.00814 2.81 7.08 1.98 0.0508

significantly better FID and FVD scores. As shown in Fig. 8, PE
and PE+ produce checkerboard artifacts that are particularly no-
ticeable on static scene elements such as judge stands, while our
method produces sharp details. We attribute this difference to our
ray sampling scheme and feature enhancer design that, in contrast
to PE, do not sample rays at low resolution and perform upsampling,
but rather directly operate on high resolution. In addition, thanks
to our deformation and canonical space modeling strategies, and
higher resolution, our method produces more detailed players with
respect to PE, where they frequently appear with missing limbs
and blurred clothing. Finally, our model produces a realistic ball,
while PE struggles to correctly model small objects, presumably
due to its upsampling strategy that causes rays to be sampled more
sparsely and thus do not intersect with the ball frequently enough
to correctly render its blur effect.

5.3.2 Ablation. To validate our design choices, we produce several
variations of our method, each produced by removing one of our
proposed architectural elements: we remove the enhancer F and
directly consider Ĩ as our output; we remove the explicit deformation
modeling procedure in D of Sec. 3.1.4 and substitute it with an
MLP directly predicting the deformation using a learnable pose
code as in [Menapace et al. 2022; Tretschk et al. 2021]; we remove
the plane-based canonical volume representation in C for planar
objects and use an MLP instead; we remove the voxel-based volume
representation in C and use an MLP instead; we substitute our style
encoder E with an ad-hoc encoder for each object in the scene,
following [Menapace et al. 2022].

We perform the ablation on the Tennis dataset and show results
in Tab. 1 and Fig. 8. To reduce computation, we train the ablation
models using the same hyperparameters as the “Ours Small” model.
When removing the enhancer F , our model produces players

with fewer details and does not generate shadow effects below
players (see first row in Fig. 8). When our deformation modeling

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion Models • 1:13

procedure is not employed, the method produces comparable LPIPS,
FID, and FVD scores, but an analysis of the qualitatives shows that
players may appear with corrupted limbs (see last row in Fig. 8). In
addition, the use of such learned pose representation would reduce
the controllability of the synthesis model with respect to the use
of an explicit kinematic tree. When plane-based or voxel-based
canonical modeling is removed, we notice artifacts in the static
scene elements, such as corrupted logos, and in the players, such
as detached or doubled limbs. Finally, when we replace our style
encoder design with the one of [Menapace et al. 2022], we notice
fewer details in scene elements.

5.4 Animation Model Evaluation
In this section, we evaluate the performance of the animation model.

5.4.1 Comparison to Baselines. Similarly to the synthesis model,
we compare our animation model against the one of Playable Envi-
ronments (PE) [Menapace et al. 2022], the most related to our work
since it operates on a similar environment representation. While
the baseline jointly learns discrete actions and generates sequences
conditioned on such actions, we assume the text action represen-
tations to be available in our task, so, for fairness of evaluation,
we introduce our same text encoder T in the baseline to make use
of the action information. To reduce computation, we perform the
comparison using half of the computational resources and a reduced
training schedule, consequently, we also retrain our model, produc-
ing a reduced variant (Ours Small). To render results we always
make use of our synthesis model.
We show results averaged over all inference tasks in Tab. 2 and

report the results for each task in Appx. H.2. Our method outper-
forms the baseline in all evaluation tasks according to both L2 and
FD metrics. From the qualitative results in Fig. 9 and in accordance
with the FD metrics, we notice that our method produces more
realistic player poses with respect to PE that tends to keep player
poses close to the average pose and to slide the players on the scene.
We attribute this difference to the use of the diffusion framework in
our method. Consider the example of generating a player walking
forward. It is equally probable that the player moves the left or right
leg first. In the case of a reconstruction-based training objective
such as the main one of PE, the model is encouraged to produce an
average leg movement result that consists in not moving the legs
at all. On the other hand, diffusion models learn the multimodal
distributions of the motion, thus they are able to sample one of the
possible motions without averaging its predictions.

5.4.2 Ablation. To validate this hypothesis and demonstrate the
benefits of our diffusion formulation, we produce two variations of
our method. The first substitutes the diffusion framework with a
reconstruction objective, keeping the transformer-based architec-
ture unaltered. The second in addition to using the reconstruction
objective models A using an LSTM, similarly to the PE baseline.
Differently from the PE baseline, however, this variant does not
make use of adversarial training and employs a single LSTM model
for all objects, rather than a separate model for each.
We show results in Tab. 2. Our model consistently outperforms

the baselines in terms of FD, showing a better ability to capture

ground
truth

ours

ours
small

rec.
LSTM

rec.
transf.

PE

our method

baselines

t=7

t=0

t=15

"e player steps to the
le and sends the ball
to the right part of the
no man's land with a
forehand"

"e player rushes
and leaps to the
right"

"e player
sidesteps to
the right,
waiting for
the response"

"e player moves
diagonally backwards
to the right across the
baseline and waits for
the ball"

Fig. 9. Qualitative results on the Tennis dataset. Sequences are produced
in a video prediction setting that uses the first frame object properties and
all actions as conditioning. The location of players is consistently closer to
the ground truth for our method. Our method captures the multimodal
distribution of player poses and generates vivid limb movements, while
the baselines produce poses as the average of the distribution, resulting
in reduced limb movement and tilted root joints. Additional samples are
shown in Appx. H.2.

realistic sequences. Consistently with our assessment in Sec. 5.4.1,
Fig. 9 shows that our method trained with a reconstruction objective
produces player movement with noticeable artifacts analogously to
PE, validating the choice of the diffusion framework.

5.5 Limitations
Since the model is trained on a dataset showing only plausible
actions, the model’s behavior is not defined when an implausible
action is specified, such as hitting a ball while moving in the wrong

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:14 • Menapace, W. et al

"e player jumps on the oak pillar"

"e player sidesteps to the right and performs a forehand
that sends the ball to the right side of no man's land"

"e player rushes to the le and hits with another
forehand to the le side of no man's land"

Fig. 10. Behavior of the model when implausible actions are provided. In the left example, the model generates an irrealistic long jump to reach the specified
pillar. In the right example, the bottom player is instructed to move left to intercept a ball coming to his right. In this case, the left movement command is
ignored by the model to produce the closest plausible outcome.

Table 2. Animation model comparison with baselines and ablation with
results averaged over all inference tasks. Position and Joints 3D in meters,
Root angle in axis-angle representation.

Tennis Position Root angle Joints 3D
L2↓ FD↓ L2↓ FD↓ L2↓ FD↓

PE 3.291 229.112 1.126 15.953 0.303 53.242
Rec. LSTM 1.597 7.253 0.907 7.051 0.193 16.735
Rec. Transf. 1.074 4.402 0.767 6.838 0.175 14.845
Ours Small 1.380 1.443 1.014 0.560 0.148 1.253
Ours 1.099 0.929 0.844 0.356 0.129 0.836

Minecraft Position Root angle Joints 3D
L2↓ FD↓ L2↓ FD↓ L2↓ FD↓

PE 2.739 105.973 1.620 31.232 0.311 39.572
Rec. LSTM 2.292 47.296 1.702 49.971 0.489 99.843
Rec. Transf. 2.154 53.198 1.430 36.123 0.385 69.977
Ours Small 1.084 4.461 1.077 6.016 0.140 3.590
Ours 1.065 4.815 0.956 4.083 0.132 3.360

direction to intercept it or jumping on a pillar that is out of reach.
In these cases, we find the model to ignore the implausible part of
the command and produce the closest plausible command or, less
frequently, to produce implausible outcomes such as irrealistic long
jumps (see Fig. 10). In addition, the model does not generate actions
extremely out of distribution such as performing a backflip or doing
a push-up. This aspect could be addressed by jointly training the
animation model on multiple diverse datasets, which we consider
an interesting future direction.
While our Tennis dataset contains varied text annotations that

allow the model to generalize to text inputs with varied structure,
our Minecraft dataset’s synthetic text annotations are less varied
and the fixed synthetic structure of sentences tends to be memorized,
making the model less effective if a different syntax is used (see
Sec. H.1). To address this issue, a more sophisticated algorithm can
be employed to generate action annotation on the Minecraft dataset.
Our model learns to associate referential language to scene co-

ordinates rather than the appearance of the referred object, and
the model memorizes the position of contact surfaces. While tennis
scenes always have the same structure, for Minecraft the model can-
not generalize to different scenes. This concern can be addressed by
conditioning the animation model on the scene’s geometry, which
we leave as future work.

We find our animation model to overfit to the Tennis dataset
when less than 60% of the training data is used (see Appx. H.4). We

leave as an interesting avenue of future work the investigation of
regularization techniques such as dropout or weight decay that have
the potential to reduce overfitting in this scenario.
Our animation model outperforms baselines that operate un-

der the same data assumptions [Menapace et al. 2022] in terms
of animation quality. With respect to recent character animation
methods [Holden et al. 2020; Starke et al. 2019, 2020] making use
of richly annotated motion capture data and dataset-specific hand-
crafted optimizations (see Sec. 2.3), our method demonstrates more
advanced game dynamics and game AI modeling capabilities, but
produces foot sliding artifacts. We expect continuous improvements
in diffusion models to alleviate such artifacts and expect further
improvements by considering different parametrizations of pose
parameters taking into consideration the distance of limbs from the
terrain, which we will explore in future work.

Lastly, our animation model does not yet produce results in real-
time. We discuss inference speed and strategies to make the model
real-time in Appx. F.1. Improving the sampling speed of diffusion
models is an actively investigated problem [Meng et al. 2022; Sali-
mans and Ho 2022; Song et al. 2021] that is orthogonal to ours.

6 CONCLUSIONS
In this paper, we demonstrate the feasibility of learning gamemodels
able to answer challenging user prompts and show that textual
action representations are critical for unlocking fine-grained control
over the generation process, and enabling compelling constraint-
and goal-driven generation applications. These results, jointly with
two richly-annotated text-video datasets, pave the way towards
learning game models for complex, real-world scenes.

7 ACKNOWLEDGEMENTS
We would like to thank Christian Theobalt for his feedback on the
manuscript draft, Denys Poluyanov, Eugene Shevchuk and Olek-
sandr Pyshchenko for the useful discussion and validation of the use
cases of PGMs, Maryna Diakonova for her support in data labeling,
and Anton Kuzmenko and Vadym Hrebennyk for their assistance
in creating the accompanying video.
This work was partially supported by the EU HEU AI4TRUST

(101070190) project.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion Models • 1:15

REFERENCES
Panos Achlioptas, Ian Huang, Minhyuk Sung, Sergey Tulyakov, and Leonidas Guibas.

2023. ChangeIt3D: Language-Assisted 3D Shape Edits and Deformations. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Nikos Athanasiou, Mathis Petrovich, Michael J. Black, and Gül Varol. 2022. TEACH:
Temporal Action Compositions for 3D Humans. In International Conference on 3D
Vision (3DV).

Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell, and Sergey
Levine. 2018. Stochastic Variational Video Prediction. In International Conference on
Learning Representations (ICLR).

Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. 2021. Frozen in Time: A
Joint Video and Image Encoder for End-to-End Retrieval. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV).

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim,
Sanja Fidler, and Karsten Kreis. 2023. Align your Latents: High-Resolution Video
Synthesis with Latent Diffusion Models. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Michael Büttner and Simon Clavet. 2015. Motion Matching - The Road to Next Gen
Animation. In In Proceedings of Nucl.ai 2015.

Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De
Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. 2022. Efficient Geometry-aware 3D Generative
Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF:
Tensorial Radiance Fields. In European Conference on Computer Vision (ECCV).

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William
Chan. 2021. WaveGrad: Estimating Gradients for Waveform Generation. In Interna-
tional Conference on Learning Representations (ICLR).

Silvia Chiappa, Sébastien Racanière, Daan Wierstra, and Shakir Mohamed. 2017. Re-
current Environment Simulators. arXiv (2017).

Hongsuk Choi, Gyeongsik Moon, JoonKyu Park, and Kyoung Mu Lee. 2022. Learning to
Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes. In Conference
on Computer Vision and Pattern Recognition (CVPR).

Robert L. Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed Ray Tracing.
SIGGRAPH Comput. Graph. (1984).

Cassidy Curtis, Sigurdur Orn Adalgeirsson, Horia Stefan Ciurdar, Peter McDermott, JD
Velásquez, W. Bradley Knox, Alonso Martinez, Dei Gaztelumendi, Norberto Adrian
Goussies, Tianyu Liu, and Palash Nandy. 2022. Toward Believable Acting for Au-
tonomous Animated Characters. In Proceedings of the 15th ACM SIGGRAPH Confer-
ence on Motion, Interaction and Games.

Rishabh Dabral, Muhammad Hamza Mughal, Vladislav Golyanik, and Christian
Theobalt. 2023. Mofusion: A Framework for Denoising-Diffusion-Based Motion
Synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Aram Davtyan and Paolo Favaro. 2022. Controllable Video Generation through Global
and Local Motion Dynamics. In Proceedings of the European Conference of Computer
Vision (ECCV).

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin,
Pierre H. Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Cur-
tis Hawthorne, Rémi Leblond, Will Grathwohl, and Jonas Adler. 2022. Continuous
diffusion for categorical data. arXiv (2022).

Dirk Farin, Susanne Krabbe, Peter H. N. de With, andWolfgang Effelsberg. 2003. Robust
camera calibration for sport videos using court models. In IS&T/SPIE Electronic
Imaging.

Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. 2020. Gp-vae:
Deep probabilistic time series imputation. In International conference on artificial
intelligence and statistics. PMLR.

Maurice Fréchet. 1957. Sur la distance de deux lois de probabilité. Comptes Rendus
Hebdomadaires des Seances de L Academie des Sciences (1957).

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields without Neural Networks. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Tsu-Jui Fu, Licheng Yu, Ning Zhang, Cheng-Yang Fu, Jong-Chyi Su, William Yang
Wang, and Sean Bell. 2023. Tell Me What Happened: Unifying Text-Guided Video
Completion viaMultimodalMaskedVideoGeneration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2013. Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation. Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).

Jason Gregory. 2018. Game Engine Architecture. CRC Press.
Ligong Han, Jian Ren, Hsin-Ying Lee, Francesco Barbieri, Kyle Olszewski, Shervin

Minaee, Dimitris Metaxas, and Sergey Tulyakov. 2022. Show Me What and Tell
Me How: Video Synthesis via Multimodal Conditioning. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. 2017. GANs Trained by a Two Time-Scale Update Rule Converge to
a Local Nash Equilibrium. In Advances in Neural Information Processing Systems
(NeurIPS).

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Grit-
senko, Diederik P. Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim
Salimans. 2022a. Imagen Video: High Definition Video Generation with Diffusion
Models. arXiv (2022).

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising Diffusion Probabilistic
Models. In Advances in Neural Information Processing Systems (NeurIPS).

Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi,
and David J. Fleet. 2022b. Video Diffusion Models. In ICLR Workshop on Deep
Generative Models for Highly Structured Data.

Daniel Holden, Oussama Kanoun, Maksym Perepichka, and Tiberiu Popa. 2020. Learned
Motion Matching. ACM Transactions on Graphics (TOG) (2020).

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks
for character control. ACM Transactions on Graphics (TOG) (2017).

Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. 2022. CogVideo:
Large-scale Pretraining for Text-to-Video Generation via Transformers. arXiv
(2022).

Jiahui Huang, Yuhe Jin, Kwang Moo Yi, and Leonid Sigal. 2022. Layered Controllable
Video Generation. In "Proceedings of the European Conference of Computer Vision
(ECCV)".

Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter Abbeel, and Ben Poole. 2022.
Zero-Shot Text-Guided Object Generation with Dream Fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-time
style transfer and super-resolution. In Proceedings of the European Conference of
Computer Vision (ECCV).

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. 2020. Analyzing and Improving the Image Quality of StyleGAN. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Seung Wook Kim, Jonah Philion, Antonio Torralba, and Sanja Fidler. 2021. DriveGAN:
Towards a Controllable High-Quality Neural Simulation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Torralba, and Sanja Fidler. 2020.
Learning to Simulate Dynamic Environments with GameGAN. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
arXiv (2015).

Zhifeng Kong,Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. 2020. DiffWave:
A Versatile Diffusion Model for Audio Synthesis. In International Conference on
Learning Representations (ICLR).

Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Caroline Pantofaru, Leonidas J.
Guibas, Andrea Tagliasacchi, Frank Dellaert, and Thomas A. Funkhouser. 2022.
Panoptic Neural Fields: A Semantic Object-Aware Neural Scene Representation.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2022).

Yong-Hoon Kwon andMin-Gyu Park. 2019. Predicting future frames using retrospective
cycle gan. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Max W. Y. Lam, Jun Wang, Dan Su, and Dong Yu. 2022. BDDM: Bilateral Denoising
Diffusion Models for Fast and High-Quality Speech Synthesis. In International
Conference on Learning Representations (ICLR).

Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive Character Animation by
Learning Multi-Objective Control. ACM Transactions on Graphics (TOG) (2018).

Yichong Leng, Zehua Chen, Junliang Guo, Haohe Liu, Jiawei Chen, Xu Tan, Danilo
Mandic, Lei He, Xiangyang Li, Tao Qin, sheng zhao, and Tie-Yan Liu. 2022. Binau-
ralGrad: A Two-Stage Conditional Diffusion Probabilistic Model for Binaural Audio
Synthesis. In Advances in Neural Information Processing Systems (NeurIPS).

Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. 2009. EPnP: An Accurate
O(n) Solution to the PnP Problem. (2009).

J. P. Lewis, Matt Cordner, and Nickson Fong. 2000. Pose Space Deformation: A Unified
Approach to Shape Interpolation and Skeleton-Driven Deformation. In SIGGRAPH.

Ruilong Li, Julian Tanke, Minh Vo, Michael Zollhofer, Jurgen Gall, Angjoo Kanazawa,
and Christoph Lassner. 2022. TAVA: Template-free animatable volumetric actors. In
Proceedings of the European Conference of Computer Vision (ECCV).

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang,
Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. 2023. Magic3D: High-
Resolution Text-to-3D Content Creation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Ro{BERT}a: A Robustly

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:16 • Menapace, W. et al

Optimized {BERT} Pretraining Approach. In International Conference on Learning
Representations (ICLR).

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM Transactions on
Graphics (TOG) (2015).

Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and
Gordon Wetzstein. 2021. Acorn: Adaptive Coordinate Networks for Neural Scene
Representation. ACM Trans. Graph. (2021).

Willi Menapace, Stephane Lathuiliere, Sergey Tulyakov, Aliaksandr Siarohin, and Elisa
Ricci. 2021. Playable Video Generation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Willi Menapace, Stéphane Lathuilière, Aliaksandr Siarohin, Christian Theobalt, Sergey
Tulyakov, Vladislav Golyanik, and Elisa Ricci. 2022. Playable Environments: Video
Manipulation in Space and Time. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

ChenlinMeng, Ruiqi Gao, Diederik P Kingma, Stefano Ermon, Jonathan Ho, and Tim Sal-
imans. 2022. On Distillation of Guided Diffusion Models. In NeurIPS 2022 Workshop
on Score-Based Methods.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev,
and Josef Sivic. 2019. HowTo100M: Learning a Text-Video Embedding by Watching
Hundred Million Narrated Video Clips. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis. In Proceedings of the European Conference of Computer Vision
(ECCV).

Norman Müller, Andrea Simonelli, Lorenzo Porzi, Samuel Rota Bulò, Matthias Nießner,
and Peter Kontschieder. 2022. AutoRF: Learning 3D Object Radiance Fields from
Single View Observations. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant Neu-
ral Graphics Primitives with a Multiresolution Hash Encoding. ACM Transactions
on Graphics (TOG) (2022).

Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. Neural
Control Variates. ACM Trans. Graph. (2020).

Michael Niemeyer and Andreas Geiger. 2021. GIRAFFE: Representing Scenes As Com-
positional Generative Neural Feature Fields. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. 2015.
Action-conditional video prediction using deep networks in atari games. InAdvances
in Neural Information Processing Systems (NeurIPS).

Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. 2021. Neural
Scene Graphs for Dynamic Scenes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman,
Steven M. Seitz, and Ricardo Martin-Brualla. 2021a. Nerfies: Deformable Neural
Radiance Fields. Proceedings of the IEEE International Conference on Computer Vision
(ICCV) (2021).

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz,
Dan B Goldman, Ricardo Martin-Brualla, and Steven M. Seitz. 2021b. HyperNeRF:
A Higher-Dimensional Representation for Topologically Varying Neural Radiance
Fields. ACM Transactions on Graphics (TOG) (2021).

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models From
Natural Language Supervision. In International Conference on Machine Learning
(ICML).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2022. Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning
Research (JMLR) (2022).

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022.
Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv (2022).

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. 2021. Zero-Shot Text-to-Image Generation. In
Proceedings of the 38th International Conference on Machine Learning (ICML).

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks. In Advances in Neural
Information Processing Systems (NeurIPS).

ReplayMod. 2022. ReplayMod. https://github.com/ReplayMod/ReplayMod. Accessed:
2021-11-12.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
2021. High-Resolution Image Synthesis with Latent Diffusion Models. arXiv (2021).

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In Medical Image Computing and
Computer-Assisted Intervention (MICCAI).

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton,
Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, Seyedeh Sara Mahdavi,
Raphael Gontijo Lopes, Tim Salimans, Jonathan Ho, David J. Fleet, and Mohammad
Norouzi. 2022. Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding. arXiv (2022).

Tim Salimans and Jonathan Ho. 2022. Progressive Distillation for Fast Sampling of
Diffusion Models. In International Conference on Learning Representations (ICLR).

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross
Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell
Wortsman, Patrick Schramowski, Srivatsa R Kundurthy, Katherine Crowson, Ludwig
Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. 2022. LAION-5B: An open large-scale
dataset for training next generation image-text models. In Conference on Neural
Information Processing Systems (NeurIPS) Datasets and Benchmarks Track.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-Attention with Rela-
tive Position Representations. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan
Hu, Harry Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv
Taigman. 2022. Make-A-Video: Text-to-Video Generation without Text-Video Data.
arXiv (2022).

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2021. Denoising Diffusion Implicit
Models. In International Conference on Learning Representations (ICLR).

Matt Stanton, Sascha Geddert, Adrian Blumer, Paul Hormis, Andy Nealen, Seth Cooper,
and Adrien Treuille. 2016. Large-Scale Finite State Game Engines. In Eurographics/
ACM SIGGRAPH Symposium on Computer Animation.

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural State Machine
for Character-Scene Interactions. ACM Transactions on Graphics (TOG) (2019).

Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. 2020. Local Motion
Phases for Learning Multi-Contact Character Movements. ACM Transactions on
Graphics (TOG) (2020).

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. 2021. CSDI: Conditional
Score-based Diffusion Models for Probabilistic Time Series Imputation. In Advances
in Neural Information Processing Systems (NeurIPS).

Guy Tevet, Brian Gordon, Amir Hertz, Amit H. Bermano, and Daniel Cohen-Or. 2022.
MotionCLIP: Exposing Human Motion Generation to CLIP Space. In Proceedings of
the European Conference of Computer Vision (ECCV).

Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lass-
ner, and Christian Theobalt. 2021. Non-Rigid Neural Radiance Fields: Reconstruction
and Novel View Synthesis of a Dynamic Scene FromMonocular Video. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV).

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphael Marinier, Marcin
Michalski, and Sylvain Gelly. 2018. Towards Accurate Generative Models of Video:
A New Metric & Challenges. arXiv (2018).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In
Advances in Neural Information Processing Systems (NeurIPS).

Chung-Yi Weng, Brian Curless, Pratul P. Srinivasan, Jonathan T. Barron, and Ira
Kemelmacher-Shlizerman. 2022. HumanNeRF: Free-Viewpoint Rendering of Moving
People FromMonocular Video. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Yinghao Xu, Menglei Chai, Zifan Shi, Sida Peng, Skorokhodov Ivan, Siarohin Aliaksandr,
Ceyuan Yang, Yujun Shen, Hsin-Ying Lee, Bolei Zhou, and Tulyakov Sergy. 2022a.
DiscoScene: Spatially Disentangled Generative Radiance Field for Controllable 3D-
aware Scene Synthesis. arxiv (2022).

Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. 2022b. ViTPose: Simple
Vision Transformer Baselines for Human Pose Estimation. In Advances in Neural
Information Processing Systems (NeurIPS).

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021.
PlenOctrees for Real-time Rendering of Neural Radiance Fields. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV).

Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang,
and Ziwei Liu. 2022. MotionDiffuse: Text-Driven Human Motion Generation with
Diffusion Model. arXiv (2022).

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018. The
unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, and Jiaya Jia. 2018. ICNet
for Real-Time Semantic Segmentation on High-Resolution Images. In "Proceedings
of the European Conference of Computer Vision (ECCV)".

Yi Zhou, Connelly Barnes, Lu Jingwan, Yang Jimei, and Li Hao. 2019. On the Continuity
of Rotation Representations in Neural Networks. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://github.com/ReplayMod/ReplayMod

Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion Models • 1:17

A DATASETS
In this section, we give additional details on the dataset, includ-
ing the dataset collection process, Minecraft 3D skeleton format,
additional dataset statistics, and dataset samples.

A.1 Tennis Dataset Collection
We build our tennis dataset starting from the one of [Menapace
et al. 2022]. However, we notice that such dataset has an imprecise
camera calibration and lacks information such as 3D player poses
and 3D localization of the ball. Thus, we only retain the original
videos and acquire new annotations. We describe the process in the
following sections and release all code related to dataset creation.

A.1.1 Camera Calibration. To improve camera calibration, we no-
tice that the original dataset bases its camera calibration on field
keypoints detected using [Farin et al. 2003], but such keypoint esti-
mates are noisy. To overcome this issue, we manually annotate a
subset of 10569 frames with field keypoint information and train
a keypoint detection model inspired by ICNet [Zhao et al. 2018],
which we choose due to its reduced memory footprint which allows
us to train the model in full 1920x1080px resolution for best results.
The detected keypoints are filtered and used to produce camera
calibration. Compared to the camera calibration of [Menapace et al.
2022], we notice less jitter and are able to successfully perform
camera calibration on a larger number of video instances.

A.1.2 3D Ball Localization. To produce 3D ball localization, we
first build a 2D ball detector following the same approach used for
field keypoints localization, starting from 17330 manually annotated
frames. In addition to 2D ball localization, we manually annotate the
projection of the ball on the field plane for a set of keyframes defined
as the frames where contact between the ball and an object different
than the field happens or the first and last frames of the video with
a visible ball. The field plane projections of the ball in conjunction
with the camera calibration results and 2D ball detections can be
used to recover the 3D ball position in those frames.
We assume that between the keyframes, no contact happens

that significantly alters the horizontal speed of the ball apart from
air drag. In practice, contact between the ball and the field during
bounces does affect ball speed, and we take account of it in a second,
refinement phase. We thus model the horizontal ball position on
the line between the ball positions at two consecutive keyframes by
solving the linear motion equation under air drag:

x(𝑡) = x0
log(1 +𝐶v0𝑡)

𝐶
, (5)

where x0 is the initial position, v0 is the initial velocity, 𝑡 is time
and 𝐶 is an estimated coefficient summarizing fluid viscosity, drag
coefficient, and shape of the ball. Note that the effects of gravity
are ignored in the equation. 𝐶 can be estimated by inverting Eq. (5),
based on initial ball speed measurements for v0 that can be extracted
from the videos thanks to the service ball speed radars installed on
tennis fields, and the positions the ball at keyframes. Given the ball’s
horizontal position on the line joining the 3D ball position at the
preceding and succeeding keyframes, we can recover its 3D position
by intersecting the camera ray passing from the 2D projection of the

ball on that frame with the plane parallel to the net that intersects
with the ball’s horizontal position.

To improve the precision of results and account for horizontal
ball speed changes during bounces, in a second phase we detect
bounces between the ball and the field and impose that the ball
touches the field at those positions, by considering them as addi-
tional keyframes and repeating the procedure. Finally, to calibrate
frames with missing 2D ball detections (eg. ball thrown high above
the camera frames or heavy blur and image compression artifacts),
we recover the ball position by fitting a ballistic trajectory using 3D
ball localization from neighboring frames.

A.1.3 3D Player Poses. To recover 3D player poses, we rely on the
3DCrowdNet pose estimator [Choi et al. 2022] which we find robust
to the presence of frequent overlaps between players and referees,
player limbs blur, and low player resolution. 3DCrowdNet assumes
2D joint locations to be given as input, so we produce them using the
state-of-the-art 2D pose estimator VitPose [Xu et al. 2022b] which
we find robust to blur, reduced player size, and occlusions. The
extracted 3D skeletons however are expressed under the coordinate
system of a framework-predicted camera. We make use of a PnP
[Lepetit et al. 2009] procedure to register the 3D skeletons to our
calibrated camera and reduce depth estimation errors by placing the
estimated 3D skeletons with their feet touching the ground. Note
that, while 3DCrowdNet regresses full SMPL [Loper et al. 2015]
parameters and meshes, we only make use of 3D joint locations and
joint angles. SMPL body shape parameters are nevertheless included
in the dataset to support its different use cases.

A.1.4 Text Action Annotation. Wemanually annotate each video se-
quence using a text caption for each player and frame. Each caption
focuses on the action being performed by the player in that instant
and captures several aspects of the action. The caption captures
where the player is moving and how the player is moving, i.e. the
player is running, walking, sliding, or falling, the player is moving
to its left, towards the net, across the baseline. When a player is
performing a ball-hitting action, the particular type of tennis shot
being performed is presented, e.g. a smash, a serve, a lob, a back-
hand, a volley, and the location where the ball is aimed is described.
We report text annotation statistics in Tab. 3.

A.1.5 UI Elements Annotation. We manually annotate each video
sequence with a set of 2D bounding boxes indicating the places
where 2D UI elements such as scoreboards or tournament logos
may appear during the sequence.

A.2 Minecraft Skeleton Format
We adopt a skeletal player representation that divides the Minecraft
body into 6 parts: head, torso, left and right arm, and left and right
leg. We place 6 corresponding joints at the bottom of the head, top
of the torso, shoulders, and top of the legs. Following the internal
Minecraft skeletal representation, a root joint is added that is the
parent of the 6 joints. We extend this representation by introducing
6 additional joints at the top of the head, top of the torso, bottom
of the arms, and bottom of the legs. The additional joints have as
parents the original joint positioned on the same body part. While
the additional 6 joints are always associated with a zero rotation,

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:18 • Menapace, W. et al

we find their introduction convenient for skeleton visualization
purposes. Fig. 11 provides a visualization of such skeletons.

A.3 Additional Dataset Statistics
We provide the main dataset statistics in Tab. 3, with additional
ones in Fig. 12, where we plot the distribution of video lengths in
the dataset and the average number of words in each caption. The
Tennis dataset features manually-annotated captions which contain
a greater number of words with respect to the synthetic annotations
in the Minecraft dataset.

A.4 Dataset Samples
We show samples from the Minecraft and Tennis dataset in Fig. 11.

We now show a non-curated set of captions extracted from the
Tennis dataset:

• “the player prepares to hit the ball but stops, opponent hits the
net”

• “the player starts to move to the left when the opponent sends
the ball out of the field”

• “the player moves diagonally to the right and forward to the
right side of the baseline and sends the ball to the right side of
no man’s land with a forehand

• “the player takes sidestep to the right and hits the ball with a
backhand that sends the ball to the right side of the no man’s
land

• “the player moves left to hit the ball but stops halfway
• “the player sidesteps to the left and stops, because the ball goes
out of bounds

We report a set of peculiar words extracted from the set of words
with the lowest frequency on the Tennis dataset: “scratching”, “iner-
tia”, “previously”, “realize”, “understands”, “succeed”, “bind”, “touched”,
“circling”, “approaching”, “bolting”, “entering”, “ducks”, “reaction”, “re-
peat”, “wipes”, “abruptly”, “preparation”, “dramatic”, “soft”, “celebrat-
ing”, “losing”, “strides”, “dart”, “reacts”, “block”, “sideway”, “ending”,
“becomes”, “dismissively”, “continuous”, “squat”, “says”, “intends”, “ric-
ochet”, “delays”, “night”, “guess”, “manage”, “already”, “correctly”,
“anticipation”, “unsuccessfully”, “inaccurate”, “deflection”, “properly”,
“swinging”.

We show a non-curated set of captions extracted from theMinecraft
dataset:

• “the player falls on the birch pillar”
• “the player moves fast north, jumps”
• “the player jumps on the intermediate wooden pillar”
• “the player falls on the platform opposite to the stairs”
• “the player runs to the big stone platform”
• “the player climbs down and does not rotate”
• “the player moves south east, jumps and rotates counterclock-
wise”

• “the player runs to the red decorated block”
We list a set of peculiar words from the Minecraft dataset: “noth-

ing”, “facing”, “space”, “level”, “map”, “leading”, “opposite”, “edge”.

B OBJECT-SPECIFIC SYNTHESIS MODEL TECHNIQUES
The compositional nature of the synthesis module makes it possible
to adopt object-specific techniques to model particular objects. In

Table 3. Dataset statistics for the Tennis and Minecraft datasets.

Tennis Minecraft

Sequences: 7112 61
train 5690 51
validation 711 5
test 711 5

Duration: 15.5h 1.21h
train 12.4h 0.952h
validation 1.59h 0.16h
test 1.52h 0.101

Annotated frames: 1.12M 68.5k
train 1.05M 64.5k
validation 135k 11.2k
test 130k 7.06k

Resolution 1920x1080px 1024x576px
Framerate 25fps 20fps

Captions 84.1k 818k
of which unique 25.5k 1.24k

Unique words 915 117
Avg. words 13.8 5.85
Avg. span 1.32s 0.500s
Parts of sentence:
Nouns 32.3% 36.2%
Verbs 11.9% 17.4%
Adjectives 3.08% 6.48%
Adverbs 2.70% 11.7%
Pronouns 0.18% 0.00%
Articles 26.4% 8.03%
Prepositions 7.89% 6.98%
Numerals 0.11% 0.03%
Particles 9.28% 1.50%
Punctuation 1.76% 1.12%
Others 0.00% 0.00%

the following, we describe the techniques adopted to model balls
(Appx. B.1), rackets (Appx. B.2), 2D UI elements (Appx. B.3), and
skyboxes (Appx. B.4).

B.1 Ball Modeling
Fast-moving objects may appear blurred in real video sequences.
This effect is frequent in ball objects found in sports videos and
is thus desirable to model this effect. To model them, we adopt a
procedure inspired by [Cook et al. 1984], which distributes multiple
rays in time to model blur effects. We extend the object properties
of the ball object to also include a velocity vector v. Given the ball
radius 𝑟 and an estimate for the shutter speed 𝑡𝑐 of the camera, we
can compute in closed form the probability 𝑝 that a given point in
space intersects with the ball object while the ball moves during the
time the camera shutter remains open to capture the current frame.
To model blur, we assign to each point a fixed density multiplied
by 𝑝 . Modeling 𝑝 in closed form avoids the need to sample multiple
rays in time, improving performance.
To compute 𝑝 (see Fig. 13), we first use the velocity vector v

to estimate the rotation R𝑏 that maps each point x𝑏 in the ball
bounding box to a canonical space x𝑐 in which the ball velocity
vector is aligned to the positive 𝑦-axis x𝑐 = R𝑏x𝑏 . Then we compute
the distance traveled by the ball while the shutter remains open
𝑑 = | |v| |2𝑡𝑐 . We then compute the useful cross-section of the ball
𝑑𝑦 that can intersect with x𝑐 as the diameter of the circumference
originating from the intersection between the ball and a plane with

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion Models • 1:19

Fig. 11. Sampled frames from the Tennis (left) and Minecraft (right) datasets. 3D skeletons are annotated in blue, while the 3D ball is visualized in green.

0 20 40 60 80 100
Video duration (s)

0

500

1000

1500

2000

Nu
m

be
r o

f v
id

eo
s

(a) Distribution of video durations
in the Tennis dataset.

0 100 200 300
Video duration (s)

0

2

4

6

Nu
m

be
r o

f v
id

eo
s

(b) Distribution of video durations
in the Minecraft dataset.

10 20 30 40
Caption words count

0

2000

4000

6000

8000

Co
un

t

(c) Distribution of words per cap-
tion in the Tennis dataset.

5 10
Caption words count

0

50000

100000

150000

200000

250000

Co
un

t

(d) Distribution of words per cap-
tion in the Minecraft dataset.

Fig. 12. Dataset statistics for the Tennis and Minecraft datasets.

a distance from the ball center 𝑟𝑦 equal to the distance of x𝑐 from
the 𝑦-axis:

𝑑𝑦 =

{
2𝑟 sin

(
arccos

(
𝑟𝑦
𝑟

))
if 𝑟𝑦 ≤ 𝑟

0 otherwise
. (6)

Finally, 𝑝 equals the probability that an interval with size equal to
the cross-section, positioned in a random portion of space contained
inside an interval of size 𝑑 + 𝑑𝑦 , that represents the length of the
space that has been touched by the ball while the shutter stays open,
contains our point x𝑐 :

𝑝 (x𝑐) = max
(
0,min

(
min

(
𝑑𝑦

𝑑
, 1
)
,
1
2
+
𝑑𝑦

2𝑑
− |x𝑦𝑐 |

𝑑

))
, (7)

where x𝑦𝑐 is the 𝑦-axis coordinate of x𝑐 .

B.2 Racket Modeling
Modeling the scene as a composition of neural radiance fields allows
applications such as the insertion of user-defined watertight 3D

Fig. 13. Visualization of the quantities involved in the computation of the
probability 𝑝 that the ball intersects with a certain point in space during
a randomly sampled time instant in the interval from the opening to the
closing of the shutter of the camera to capture the current frame. The
leftmost and rightmost balls depict the ball position at the times the camera
shutter opens and closes respectively. For simplicity, we represent the space
where the velocity vector of the ball is aligned with the 𝑦-axis.

ra
ck

et
 m

o
d

el
in

g
w

/o
 r

ac
k

et
 m

o
d

el
in

g

Fig. 14. Examples of tennis scenes with and without inserted rackets.

meshes into the scene. To do so, we first define the 3D bounding
box for the mesh. Then, we extract the signed distance function
(SDF) of the 3D mesh. To allow fast retrieval of SDF values during
rendering, we sample SDF values along an enclosing voxel grid so
that subsequently they can be efficiently retrieved using trilinear
sampling. During neural rendering, when a sampled point intersects
with the object’s bounding box, we query its SDF function and
assign a fixed, high density to points that fall inside the object. For
simplicity, we assume the object has a uniform appearance and
assign a fixed feature vector to such points. To attach the mesh to an
articulated object, we align it to its desired position in the object’s

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:20 • Menapace, W. et al

canonical space, select which joint the mesh should move according
to, and we modify blending weights W for the desired joint to have
a high value in the region corresponding to the mesh (see Eq. (9)).
We employ this technique on the Tennis dataset to manually

insert rackets in the scene that cannot be easily learned since they
appear frequently blurred and have no ground truth pose available.
After the synthesis model is trained, we use this technique to insert
a racket mesh in the hand of each player and configure it to move
it according to the elbow joint. Fig. 14 shows examples of rackets
inserted in tennis scenes.

When inserting additional objects at inference time, we find the
enhancer model F may introduce artifacts at the contours of the
inserted object. For this reason, we modify F with a masking mech-
anism that directly uses values from the NeRF-rendered RGB image
Ĩ before the enhancer rather than the enhanced image Î for pixels
corresponding to the inserted object and its contour region.

B.3 2D UI Elements
The presence of 2D user interfaces, such as scoreboards, in the train-
ing frames may cause artifacts in the final outputs due to attempts
of the synthesis model to model these view-inconsistent elements
[Menapace et al. 2022]. To address this issue, we assume that the
potential regions where such interfaces may be present are known
and we never sample training patches that intersect with these re-
gions. In this way, the model does not attempt to generate such UI
elements and instead models the underlying portion of the 3D scene
using data from different views.

B.4 Skybox Modeling
TheMinecraft background is represented as a skybox that is modeled
by extending the planar object modeling mechanism of Sec. 3.1.3. In
more detail, we sample the feature plane P according to the ray’s yaw
and pitch of the current ray, which can be interpreted as querying
points on the surface of a sphere with a radius approaching infinity.

C DEFORMATION MODELING
In this section, we present additional details on the deformation
model D used to render articulated objects such as humans. Given
an articulated object, we assume its kinematic tree is known and
that the transformation [R𝑗 |tr𝑗] from each joint 𝑗 ∈ 1, ..., 𝐽 to the
parent joint is part of the object’s properties. From these we can
follow the kinematic tree to derive transformations [R′

𝑗
|tr′
𝑗
] for each

joint from the bounding box coordinate system to the canonical
coordinate system. Intuitively, these transformations represent how
to map a point x𝑏 in the bounding box coordinate system belonging
to the joint 𝑗 to the corresponding point x𝑐 in the canonical space.
We implement a deformation procedure based on linear blend

skinning (LBS) [Lewis et al. 2000] that establishes correspondences
between points in the canonical space x𝑐 and in the deformed bound-
ing box space x𝑏 by introducing blending weights w for each point
in the canonical space. These weights can be interpreted as the
degree to which that point moves according to the transformation

associated with that joint.

x𝑏 =

𝐽∑︁
𝑗=1

𝑤 𝑗 (x𝑐)
(
R′−1𝑗 x𝑐 − R′−1𝑗 tr′𝑗

)
. (8)

During volumetric rendering, however, we sample points x𝑏 in
the bounding box space and query the canonical volume in the
corresponding canonical space point x𝑐 . Doing so requires solving
Eq. (8) for x𝑐 , which is prohibitively expensive [Li et al. 2022]. In-
spired by HumanNeRF [Weng et al. 2022], instead of modeling LBS
weights w, we introduce inverse linear blending weights w𝑏 :

w𝑏𝑗 (x𝑏) =
w𝑗 (R′𝑗x𝑏 + tr′

𝑗
)∑𝐽

𝑗=1w𝑗 (R′𝑝x𝑏 + tr′
𝑗
)
. (9)

such that the canonical point can be approximated as:

x𝑐 =
𝐽∑︁
𝑗=1

w𝑏𝑗 (x𝑏)
(
R′𝑗x𝑏 + tr′𝑗

)
. (10)

We parametrize the function w mapping spatial locations in the
canonical space to blending weights as a neural network. Simi-
larly to C, we employ 3D convolutions to map a fixed noise vol-
ume W′ ∈ R𝐹 ′×𝐻 ′

𝑊
×𝑊 ′

𝑊
×𝐷 ′

𝑊 to a volume of blending weights
W ∈ R𝐽 +1×𝐻𝑊 ×𝑊𝑊 ×𝐷𝑊 , where each channel represents the blend-
ing weights for each part, with an extra weight modeling the back-
ground. The volume channels are normalized using softmax, so
that they sum to one, and can efficiently be queried using trilinear
sampling. To facilitate convergence, we exploit the known kine-
matic tree to build a prior over the blending weights that increases
blending weights in the area surrounding each limb [Weng et al.
2022].

D IMPLEMENTATION DETAILS

D.1 Synthesis Model
We model Minecraft scenes considering as objects the player, the
scene, and the background. To model Tennis scenes, we consider
as separate objects the two players, the ball, the field plane, and
the vertical backplate at the end of the field. Both players share the
same canonical representation. Note that the field and backplate are
modeled as planar objects due to the lack of camera translation on
the tennis dataset, which does not make it possible to reconstruct
the geometry of static objects [Menapace et al. 2022].
For each ray, we uniformly sample 32 points for players, 16 for

the ball, 48 for the Minecraft scene, and 1 for all remaining objects
that are modeled as planes. We do not employ hierarchical sampling,
which we empirically found not to improve results. A patch size
of 180x180px and of 128x128px are employed respectively for the
Tennis and Minecraft datasets.

We model the initial blocks of the style encoder E as the first
two residual blocks of a pretrained ResNet 18 [He et al. 2016]. To
prevent players from being modeled as part of the background, we
always sample images in pairs from each video and randomly swap
the style codes 𝝎 of corresponding objects [Menapace et al. 2022].

To represent the player canonical radiance fields, we use a voxel
V with 𝐹 = 64 features and 𝐻𝑉 =𝑊𝑉 = 𝐷𝑉 = 32. Deformations are
represented using blending weightsW with 𝐻𝑊 =𝑊𝑊 = 𝐷𝑊 = 32.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion Models • 1:21

For the Minecraft scene, the size of the voxel V is increased to
𝐻𝑉 =𝑊𝑉 = 𝐷𝑉 = 128. The Minecraft skybox is represented with
feature planes P with 𝐹 = 64 features and size 𝐻𝑃 =𝑊𝑃 = 256. Due
to their increased complexity and variety of styles, in the Tennis
dataset feature planes Pwith 𝐹 = 512 features are adopted. TheMLPs
performing stylization of the canonical field features are modeled
using 2 layers with a hidden dimension of 64, with a final number
of output features 𝐹 = 19, where the first 3 channels represent
radiance.

D.2 Animation Model
For the text encoder, we model Tenc as a frozen T5-Large [Raffel
et al. 2022] model and Tagg as a transformer encoder [Vaswani
et al. 2017] with 4 layers, 8 heads, and a feature size of 1024. For
each sequence, the output aemb of T is the transformer encoder
output corresponding to the position of the end-of-sentence token
in the input sequence. We experimented with mean pooling and
a learnable class token with comparable results. Consistent with
[Saharia et al. 2022], we found alternative choices for Tenc (T5-Small,
T5-Base [Raffel et al. 2022] and the CLIP text encoder [Radford et al.
2021]) to underperform T5-Large.
For the temporal model A, we employ a transformer encoder

with 12 layers, 12 heads, and 768 features. To favor generalization
to sequences of different lengths at inference time, we adopt rela-
tive positional encodings [Shaw et al. 2018] that specify positional
encodings based on the relative distance in the sequence between se-
quence elements. We produce embeddings for the diffusion timestep
𝑘 and framerate 𝜈 using sinusoidal position encodings [Vaswani
et al. 2017]. Additionally, to enable the model to better distinguish
between noisy sequence entries and conditioning signals, we find it
beneficial to condition also on ms and ma using the same weight
demodulation layer.

The temporal model receives a flattened sequence of object prop-
erties grouped and encoded as follows: the position of objects as
the bounding box center point; the player poses expressed with
joint translations and rotations separately, with rotations expressed
in axis-angle representation, which we find to produce more re-
alistic animations with respect to the 6D representation of [Zhou
et al. 2019]; the ball speed vector expressed as its orientation in
axis-angle representation and norm. Separating positions from joint
translations and rotations has the practical implication that these
properties can be independently used as conditioning signals during
inference. This enables applications such as generating realistic joint
rotations and translations given a sequence of object positions in
time describing the object movement trajectory. We assume style to
remain constant in the sequence, thus we do not include it as input
to the model.

E TRAINING DETAILS
In this section, we discuss training details for our synthesis model
(Sec. E.1) and animation model (Sec. E.2). In addition, we provide
training cost estimates1 for the different model variants.

1Cost estimate from lambdalabs.com GPU Cloud service

E.1 Synthesis Model
We employ a reduced learning rate of 1𝑒 − 5 for the 3D CNNs that
model the canonical radiance field voxels V and blending weightsW
that we find important to improve the learned geometry and avoid
artifacts such as holes.
We train our full model on 8 A100 40GB GPUs for 4 days (844$)

and 2 days (422$) respectively on the tennis and Minecraft datasets.
We train the reduced version of our model (Ours Small) on 4 A100
40GB GPUs for 3 days (317$) and 2 days (211$) respectively for the
Tennis and Minecraft datasets.

E.2 Animation Model
We create masks ms and ma by randomly selecting one of the fol-
lowing masking strategies:

i randomly mask each sequence element with a probability
0.25

ii randomly mask each sequence element with a probability 0.5
iii mask all sequence elements corresponding to a block of con-

secutive timesteps of random length
iv the complement of (iii)
v mask all sequence elements corresponding to the last timesteps
of the sequence

vi mask all sequence elements corresponding to a randomly
chosen set of object properties

With probability 0.5, we set ma = 1, excluding actions from the
masking operation, so that the model can learn to solve (ii), (iii),
(iv) also in the scenario where text guidance is provided. We design
the masking strategies to mimic masking configurations that are
relevant to inference problems such as autoregressive generation
(v), unconditional generation (vi), generating opponent responses
to user actions (vi), sequence inpainting (iii), sequence outpainting
(iv) and framerate increase (iii).

We train our full model on 8 A100 40GB GPUs for 15 days (3168$)
and 10 days (2112$) respectively on the tennis andMinecraft datasets.
We train the reduced version of our model (Ours Small) on 2 A100
40GB GPUs for 6 days (317$) and 4 days (211$) respectively for the
Tennis and Minecraft datasets.

F INFERENCE DETAILS

F.1 Inference Speed
Our synthesis model renders images at 2.96fps over a single A100
GPU. We can parallelize inference by generating batches of 8 con-
secutive frames on separate GPUs for 23.7fps. The animation model
has a throughput of 1.08fps using 1000 diffusion sampling timesteps,
measured by dividing the number of generated frames by the com-
putation time at the end of the diffusion process. Meng et al. [Meng
et al. 2022] show that a reduction to 16 timesteps is possible with
no or minimal loss in quality for a projected performance of 67.5fps.
Hence, we believe our framework can be made real-time, which is a
scope for future works.

F.2 Animation Model Inference Details
At inference time, the user is presented with a fully-masked, empty
sequence s𝑐 = 0, ms = 0, a𝑐 = “”, ma = 0. Any object property can

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

lambdalabs.com

1:22 • Menapace, W. et al

be specified as a conditioning signal in s𝑐 and text action descrip-
tions for any sequence timesteps can be provided in a𝑐 , with masks
updated accordingly. The desired framerate 𝜈 is also specified.

The text encoder T produces text embeddings aemb as in Eq. (2).
Successively, the reverse process is started at diffusion time 𝑘 = 𝐾 ,
with s𝑝

𝐾
sampled from the normal distribution. The DDPM sampler

[Ho et al. 2020] queries the temporal model according to Eq. (3) to
progressively denoise s𝑝

𝑘
and obtain the predicted sequence s𝑝 = s𝑝0 .

The final sequence is obtained as s = s𝑝 + s𝑐 , following Eq. (1).

F.2.1 High Framerate Generation. To produce sequences at the
dataset framerate, we devise a two-stage sampling procedure de-
signed to prevent an excessive increase in the sequence length. In the
first stage, we sample the desired sequence at a low framerate 𝜈1. In
the second stage, we exploit the masking mechanism and framerate
conditioning to increase the framerate and, consequently, the length
of the generated sequence. After the first stage, we consider a higher
framerate 𝜈2 and extend the sampled sequence s with new states
between existing ones, that we call keyframes, until the sequence
length corresponding to 𝜈2 is reached. This sequence constitutes the
new s𝑐 . Any previous action conditioning is copied in a new a𝑐 in
the corresponding keyframe locations. Masks are updated to be 1 in
the position of the keyframes and 0 elsewhere. The sampling process
is then repeated with the new conditioning signals and a sequence
s is produced at the final framerate 𝜈2. To avoid an explosion in the
length of the sequence, we exploit keyframes to divide the sequence
into shorter chunks beginning and terminating at a keyframe, and
sampling is performed separately on each chunk.

F.2.2 Autoregressive Generation. Our masking mechanism can be
used to produce predictions autoregressively, enabling long se-
quence generation. Autoregressive generation can be obtained by
considering a sequence s𝑐 and removing the states corresponding
to the first 𝑡 timesteps. 𝑡 timesteps are then added at the end of the
sequence and a mask ms is created to zero out these additional 𝑡
steps. Conditioning signals can then be specified as desired for the
last 𝑡 timesteps. When sampling s𝑝 , a prediction is produced for the
additional timesteps and the procedure can be repeated.

G APPLICATIONS
To demonstrate style swapping capabilities, in Fig. 15 we swap the
style of the player𝝎 in the original image with the one from a target
image. In addition, our synthesis model renders the current state of
the environment from a user-defined perspective, similarly to the
rendering component of a game engine. This enables our QGE to
perform novel view synthesis as shown in Fig. 16.

H ADDITIONAL EVALUATION

H.1 Robustness to prompt variations
We perform a study on the Tennis dataset to evaluate the capability
of our animation model to support diverse language prompts. We
randomly sampled 50 prompts from our tennis dataset and asked
ChatGPT to “Produce a semantically equivalent reformulation of the
prompt ‘<prompt>”’. The sentence similarity between original and
reformulated prompts measured by Jaccard similarity on their 3-
grams is 0.390, while it is 0.203 for random dataset prompt pairs,

indicating high diversity. As an example, the prompt “the player stops
and quickly runs to the right and hits the ball with a backhand towards
the center of no man’s land” is reformulated to “The player comes to a
stop and rapidly sprints towards the right before executing a backhand
stroke that directs the ball towards the center of no man’s land”, and
prompt “the player prepares to hit the ball but stops, returning ball
hits the net” is transformed to “The player readies themselves to strike
the ball, but abruptly halts and as a result, the returned ball collides
with the net”.

Successively, we run an AMT user study. Users are shown a video
and two prompts (the true prompt used to produce the video, and a
random negative prompt) and they are asked to recognize which
of two prompts is the one used to produce a certain video. The
average accuracy over 500 responses is 74.4% and 77.1% for videos
produced using reformulated and dataset prompts respectively, indi-
cating capability of the model to generate videos matching prompts
independently from the form of the used language.
The model trained on Minecraft allows for limited prompt vari-

ation due to the synthetic nature of the training language whose
limited variation does not enable the model to learn generalization
capabilities to different sentence structures as the ones acquired
for Tennis. This limitation could be addressed by improving the
synthetic language generation process, which we leave as future
work.

H.2 Animation Model Evaluation
In Tab. 4 and Tab. 5 we show evaluation results for each inference
task respectively on the Tennis and Minecraft datasets. In Fig. 17
we show qualitative results on the Minecraft dataset.

H.3 Animation Model Masking Strategies Ablation
In Tab. 6, we ablate the contribution of the animation model training
masking strategies (see Sec. E.2) on the Tennis dataset. We group the
masking strategies in four groups of semantically-related strategies:
“Random” (i + ii) which masks random sequence elements, “Block”
(iii + iv) which masks blocks of contiguous timesteps, “Last” (v)
which masks the last timesteps of the sequence, “Opponent” (vi) that
masks a randomly chosen set of properties in the whole sequence.
The use of only the “Random” masking strategy results in the

worst performance as the model only learns to interpolate between
adjacent values and fails on tasks requiring long predictions. Adding
the “Block” strategy enables the model to learn how to interpolate
between values separated by larger gaps, producing good results in
the sequence completion task. The addition of the “Last” training
strategy enables the model to learn how to produce future states
from a given initial one, improving the results on both video predic-
tion tasks. The “Opponent” masking strategy enables the model to
recover properties that are missing in the whole sequence, enabling
best performance on the opponent modeling task. Finally, combin-
ing all masking strategies enables the model to jointly learn these
capabilities, producing the best results.

H.4 Animation Model Dataset Size Ablation
In Tab. 7, we analyze the performance of the animation model as a
function of the available portion of the training data on the Tennis

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion Models • 1:23

Source Style Swapped Style

Source Style

Source Style Swapped Style

Swapped Style

Target Style

Target Style

Fig. 15. Style swap results on the Tennis and Minecraft datasets. We produce the central image by swapping the style code 𝝎 for the players on the leftmost
image with the ones from the rightmost image. Minecraft results are cropped for better visualization.

Original camera Manipulated camera Manipulated camera depth

Fig. 16. Camera manipulation results on the Tennis and Minecraft datasets. The lack of camera translation on the Tennis dataset does not allow to capture the
3D geometry of static objects, which is replaced by a prior [Menapace et al. 2022]. Minecraft results are cropped for better visualization.

dataset. The model performance gradually reduces as the amount of
training data shrinks. When the amount of available training data
falls below 60% of the original dataset size, the model overfits to the
training data, yielding poor performance.

H.5 Alternative Samplers
In this section, we evaluate our animation model using the DDIM
[Song et al. 2021] sampler with a varying number of timesteps and
show results in Fig. 18. The DDIM sampler produces samples with a
lower number of sampling timesteps with respect to the DDPM [Ho
et al. 2020] sampler at the cost of higher FD scores, thus providing a

tradeoff between inference speed and sample quality. We note that
several techniques exist that speed up diffusion model sampling
[Meng et al. 2022; Salimans and Ho 2022] and that these efforts are
orthogonal to our work.

I DISCUSSION

I.1 Cost-Quality Tradeoff and Game Developers Validation
Building video games is an extremely expensive process. Our PGM,
being a fully learnable solution, requiring only annotated monocular
videos and supporting a core set of game functions has potential
applications aimed at reducing game development effort.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:24 • Menapace, W. et al

Table 4. Animation model comparison with baselines and ablation on the
Tennis dataset. Position and Joints 3D in meters, Root angle in axis-angle
representation.

Position Root angle Joints 3D
L2↓ FD↓ L2↓ FD↓ L2↓ FD↓

Action conditioned video prediction

PE 3.117 87.688 1.182 12.627 0.277 30.711
Rec. LSTM 1.753 7.413 1.100 8.416 0.234 18.455
Rec. Transf. 1.183 2.996 0.913 7.566 0.212 15.976
Ours Small 1.244 1.071 1.187 0.601 0.178 1.570
Ours 1.064 0.846 0.961 0.421 0.153 1.049

Unconditional video prediction

PE 3.973 146.019 1.604 30.448 0.437 78.835
Rec. LSTM 2.064 11.283 1.224 14.860 0.264 28.736
Rec. Transf. 1.649 10.514 1.123 15.648 0.251 27.258
Ours Small 2.352 2.271 1.455 0.781 0.213 1.827
Ours 1.925 1.377 1.277 0.518 0.192 1.261

Opponent modeling

PE 4.353 641.976 0.903 13.955 0.251 62.981
Rec. LSTM 1.581 5.507 0.697 2.517 0.143 10.443
Rec. Transf. 1.169 3.735 0.631 2.514 0.138 10.519
Ours Small 1.578 2.243 0.832 0.560 0.114 0.851
Ours 1.153 1.349 0.703 0.288 0.101 0.558

Sequence completion

PE 1.720 40.766 0.814 6.783 0.246 40.441
Rec. LSTM 0.990 4.809 0.606 2.411 0.132 9.305
Rec. Transf. 0.294 0.364 0.403 1.623 0.100 5.628
Ours Small 0.344 0.187 0.581 0.301 0.088 0.765
Ours 0.252 0.143 0.437 0.198 0.069 0.478

Average

PE 3.291 229.112 1.126 15.953 0.303 53.242
Rec. LSTM 1.597 7.253 0.907 7.051 0.193 16.735
Rec. Transf. 1.074 4.402 0.767 6.838 0.175 14.845
Ours Small 1.380 1.443 1.014 0.560 0.148 1.253
Ours 1.099 0.929 0.844 0.356 0.129 0.836

This research direction is a step towards creating games and
editing videos without expensive equipment, data, 3D assets, so-
phisticated software and manual labor of trained experts. We do not
aim to surpass the quality of high-cost techniques ($100k-$1M, see
below) that require such resources.

Evaluation of PGMs in such context necessarily needs to be per-
formed under the light of a Pareto curve representing the tradeoff
between development cost and output quality. We analyze three
points on this curve for tennis:

• Our scenario: Neural video game simulation (10k$ cost range,
medium quality) We annotate monocular videos with granu-
lar text through a hired professional labeling team for 883$/video-
hour, totaling 13,672$, and spend a comparable amount of
compute for the remaining annotation and training our mod-
els. The model produces renderings of higher quality than
state-of-the-art works operating under the same data and cost
assumptions [Menapace et al. 2022], learns a capable game
AI, and is based on rapidly improving NeRF and diffusion
techniques.

• Traditional game development (1M$ cost range, high qual-
ity). We interviewed three game development experts with
backgrounds in real-time graphics, 3D models and animation,

Table 5. Animation model comparison with baselines and ablation on the
Minecraft dataset. Position and Joints 3D in meters, Root angle in axis-angle
representation.

Position Root angle Joints 3D
L2↓ FD↓ L2↓ FD↓ L2↓ FD↓

Action conditioned video prediction

PE 2.720 90.904 1.822 23.949 0.365 47.956
Rec. LSTM 2.623 54.927 2.040 62.363 0.579 118.592
Rec. Transf. 2.798 76.582 1.794 52.677 0.506 100.731
Ours Small 0.533 2.494 0.901 5.624 0.145 4.083
Ours 0.523 2.582 0.749 4.578 0.135 3.794

Unconditional video prediction

PE 3.994 197.434 2.111 59.112 0.370 46.665
Rec. LSTM 2.850 68.915 1.999 69.886 0.581 121.187
Rec. Transf. 2.834 76.780 1.795 50.871 0.480 87.584
Ours Small 2.341 9.795 1.814 8.969 0.199 4.422
Ours 2.330 11.032 1.685 5.648 0.197 4.385

Sequence completion

PE 1.504 29.582 0.926 10.634 0.197 24.096
Rec. LSTM 1.401 18.044 1.066 17.664 0.309 59.750
Rec. Transf. 0.830 6.232 0.700 4.822 0.170 21.615
Ours Small 0.379 1.095 0.516 3.456 0.077 2.265
Ours 0.343 0.830 0.433 2.022 0.065 1.899

Average

PE 2.739 105.973 1.620 31.232 0.311 39.572
Rec. LSTM 2.292 47.296 1.702 49.971 0.489 99.843
Rec. Transf. 2.154 53.198 1.430 36.123 0.385 69.977
Ours Small 1.084 4.461 1.077 6.016 0.140 3.590
Ours 1.065 4.815 0.956 4.083 0.132 3.360

and game development management with 45 years of com-
bined experience. We invited the experts to discuss the recent
“AO Tennis 2” game and compare it with our method. Their
cost estimates for building AO Tennis 2 using existing game
engines were respectively of $100k-500k (in the US), $600k
(45-person-years in Ukraine), and of $1M (3-person-years in
the US), including software licenses, equipment and assets.
They noted that “[our model’s] game AI is very valuable and
it’s going to be the hardest part of developing tennis” and that
our model’s game AI has the potential to be “game changer”
for tasks such as realistically modeling the behavior of ani-
mals inserted in a game. With regards to graphics, they noted
that “[our model’s graphics] is more realistic” and that “[our
model’s output] looks like a real video” when not zoomed in,
but commented that users may prefer a less-realistic game-
like graphics because they are more accustomed to its look.
The users highlighted the value of the generated animated 3D
assets, remarking that high-quality 3D assets of real players
are expensive. When asked about possible immediate uses
of the model in game production they reported that while
the model is “impressive” it is not yet “mind-blowing” when
speaking about building products using our method. In par-
ticular, the model’s output may present artifacts that would
require correction, preventing direct use of the model in a
production environment. An interviewee highlighted that the
framework could be called a “limited game engine” and would
be “awesome” to use to create a new type of “promo games”

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion Models • 1:25

"jumps on the
metal pillar"

"sprints north, jumps
and rotates clockwise"

ground
truth

ours

ours
small

rec.
LSTM

rec.
transf.

PE

our method

baselines

t=7

t=0

t=15

Fig. 17. Qualitatives results on the Minecraft dataset. Sequences are pro-
duced in a video prediction setting that uses the first frame object properties
and all actions as conditioning.

such as Superbowl or Nascar games that can be released at
low cost immediately after the sport season, leveraging the
captured footage. Given the significantly lower cost of our
method and the rapid evolution in neural rendering and dif-
fusion models on which our framework is based, we consider
these comments an encouraging validation of this research
direction.

• Specialized CG techniques (100k$ cost range, high quality). Spe-
cialized character animation techniques [Holden et al. 2020;
Starke et al. 2019, 2020] produce high-quality animations.
However, they come at higher cost. The sole requirement of
motion capture data entails a professional multicamera sys-
tem (1k-10k$ per camera * 10s of cameras), motion capture

Table 6. Ablation on the Tennis dataset of different training masking strate-
gies of Sec. E.2: “Random” (i + ii), “Block” (iii + iv), “Last” (v), “Opponent” (vi).
Position and Joints 3D in meters, Root angle in axis-angle representation.

Position Root angle Joints 3D
L2↓ FD↓ L2↓ FD↓ L2↓ FD↓

Action conditioned video prediction

Random 3.350 78.825 1.703 5.455 0.241 6.242
Random + Block 1.814 1.906 1.458 1.069 0.203 2.033
Random + Last 1.335 1.005 1.241 0.783 0.186 1.764
Random + Opponent 1.355 1.279 1.225 0.687 0.185 1.681
All 1.244 1.071 1.187 0.601 0.178 1.570

Unconditional video prediction

Random 4.583 227.295 1.663 5.814 0.287 12.649
Random + Block 2.621 3.995 1.569 0.988 0.221 2.371
Random + Last 2.229 2.296 1.503 0.960 0.215 2.099
Random + Opponent 3.358 13.365 1.661 0.992 0.238 2.364
All 2.352 2.271 1.455 0.781 0.213 1.827

Opponent modeling

Random 2.246 12.463 0.882 1.040 0.125 1.411
Random + Block 2.031 4.768 0.901 0.333 0.123 0.934
Random + Last 1.965 4.623 0.861 0.631 0.125 1.143
Random + Opponent 1.486 1.191 0.823 0.359 0.115 0.755
All 1.578 2.243 0.832 0.560 0.114 0.851

Sequence completion

Random 0.581 2.030 0.670 0.503 0.104 1.199
Random + Block 0.364 0.223 0.590 0.331 0.090 0.825
Random + Last 0.414 0.387 0.614 0.350 0.093 0.904
Random + Opponent 0.494 0.608 0.659 0.403 0.096 0.896
All 0.344 0.187 0.581 0.301 0.088 0.765

Average

Random 2.690 80.153 1.229 3.203 0.189 5.375
Random + Block 1.707 2.723 1.129 0.680 0.159 1.541
Random + Last 1.486 2.078 1.055 0.681 0.155 1.477
Random + Opponent 1.673 4.111 1.092 0.610 0.158 1.424
All 1.380 1.443 1.014 0.560 0.148 1.253

25 50 100 150 250 500
DDIM steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Positions
Root angle
Joints 3d

Fig. 18. Evaluation results for our method on the Tennis dataset using DDIM
sampler with a varying number of sampling steps.

software licenses (1k-10k$/year), an HPC system with TBs of
storage (»10k$), dedicated engineers (10k-100k$/year), studio
space, inviting professional actors or players (10-100$/h). In

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:26 • Menapace, W. et al

Table 7. Animation model performance as a function of the dataset size on
the Tennis dataset. Position and Joints 3D in meters, Root angle in axis-angle
representation.

Position Root angle Joints 3D
L2↓ FD↓ L2↓ FD↓ L2↓ FD↓

Action conditioned video prediction

20% 4.237 425.180 1.645 10.917 0.251 14.293
40% 3.723 244.390 1.543 6.925 0.236 9.027
60% 1.331 1.403 1.236 0.954 0.189 1.869
80% 1.283 1.024 1.207 0.714 0.183 1.607
100% 1.244 1.071 1.187 0.601 0.178 1.570

Unconditional video prediction

20% 4.391 445.758 1.736 12.150 0.260 15.167
40% 4.287 323.800 1.701 6.922 0.254 10.196
60% 2.446 4.059 1.537 1.216 0.222 2.257
80% 2.402 2.475 1.510 0.955 0.216 1.892
100% 2.352 2.271 1.455 0.781 0.213 1.827

Opponent modeling

20% 3.829 321.502 0.993 2.212 0.130 2.469
40% 3.086 170.115 0.937 1.771 0.129 1.979
60% 1.673 2.094 0.837 0.416 0.119 0.862
80% 1.550 1.606 0.817 0.450 0.114 0.749
100% 1.578 2.243 0.832 0.560 0.114 0.851

Sequence completion

20% 1.456 71.621 0.738 2.809 0.118 3.492
40% 1.184 37.588 0.706 1.808 0.111 2.633
60% 0.370 0.228 0.608 0.291 0.094 0.853
80% 0.372 0.237 0.589 0.231 0.090 0.773
100% 0.344 0.187 0.581 0.301 0.088 0.765

Average

20% 3.478 316.015 1.278 7.022 0.190 8.855
40% 3.070 193.973 1.222 4.357 0.183 5.959
60% 1.455 1.946 1.054 0.719 0.156 1.460
80% 1.402 1.335 1.031 0.588 0.151 1.255
100% 1.380 1.443 1.014 0.560 0.148 1.253

addition, they do not model the complete game’s dynamics
and only learn basic game AI elements, making their integra-
tion into a unified, learnable framework nontrivial.

I.2 Choice of Hyperparameters
The composable nature of our framework allows each object in the
environment to be represented and parametrized independently
from the other objects. While this offers flexibility, it introduces
several hyperparameters to be set. To ease the configuration of the
framework for new datasets, in the following, we summarize the
main hyperparameters to be configured and the rationale on how
to configure them:

• The set of objects to model. This is typically strongly sug-
gested by the scene and the number of contained agents.

• The dimension of the bounding boxes in meters for each
object. This is typically known a priori for each object.

• The structure of the kinematic tree of deformable objects.
This is typically known a priori based on the method used
to obtain the 3D pose estimates (SMPL for humans, internal
Minecraft representation for Minecraft)

• The type of NeRF canonical volume representation C to use
for each object (see Sec. 3.1.3). This is typically strongly sug-
gested by the structure of the object to be modeled, i.e. 2D
feature plane for objects well approximated by planes such
as the tennis field, 3D feature grids for non-planar objects,
and the skybox representation for the sky.

• Dimension and number of features for the chosen represen-
tation of C (see Appx. D.1). Despite the large differences
between players in the Tennis and Minecraft dataset, we use
the same hyperparameters, thus believe they can generalize
well across datasets. Feature planes for the tennis field and
skyboxes are computationally inexpensive, thus we set a high
resolution for them without tuning and assign a larger num-
ber of features to Tennis planes due to their higher level of
detail. Due to the large dimension of the Minecraft scene, we
assign it a larger-resolution feature grid 128x128x128 rather
than the 32x32x32 used for players. These values can be raised
in case of increased geometric complexity and level of detail
in the object with respect to the showcased datasets.

• Number of points to sample for each object category (see
Appx. D.1). For bothMinecraft and Tennis we use 32 points for
players, thus we believe the value can generalize to articulated
objects in different datasets. For planar objects and skyboxes a
single point must be sampled. For the Minecraft scene, we use
48 due to its larger dimension. These values can be reduced
or increased based on the size and geometric complexity of
the objects in the dataset of interest.

I.3 Ethics
The techniques described in this work fall in the category of video
editing methods and could potentially be used to nefariously alter
existing videos. The design of our method assumes multiple camera-
calibrated observations of a single scene to be available for training,
and that the desired edit is shown at least once in the training data.
This provides protection against applying the method to tamper a
single video, for which the quantity of data would not be sufficient
and the desired edit would likely not be shown.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Neural video game simulation
	2.2 Game Engines
	2.3 Character Animation
	2.4 Neural Rendering
	2.5 Sequential data generation with diffusion models
	2.6 Text-based generation

	3 Method
	3.1 Synthesis Model
	3.2 Animation Model

	4 Applications
	5 Evaluation
	5.1 Datasets
	5.2 Evaluation Protocol
	5.3 Synthesis Model Evaluation
	5.4 Animation Model Evaluation
	5.5 Limitations

	6 Conclusions
	7 Acknowledgements
	References
	A Datasets
	A.1 Tennis Dataset Collection
	A.2 Minecraft Skeleton Format
	A.3 Additional Dataset Statistics
	A.4 Dataset Samples

	B Object-Specific Synthesis Model Techniques
	B.1 Ball Modeling
	B.2 Racket Modeling
	B.3 2D UI Elements
	B.4 Skybox Modeling

	C Deformation Modeling
	D Implementation Details
	D.1 Synthesis Model
	D.2 Animation Model

	E Training Details
	E.1 Synthesis Model
	E.2 Animation Model

	F Inference Details
	F.1 Inference Speed
	F.2 Animation Model Inference Details

	G Applications
	H Additional Evaluation
	H.1 Robustness to prompt variations
	H.2 Animation Model Evaluation
	H.3 Animation Model Masking Strategies Ablation
	H.4 Animation Model Dataset Size Ablation
	H.5 Alternative Samplers

	I Discussion
	I.1 Cost-Quality Tradeoff and Game Developers Validation
	I.2 Choice of Hyperparameters
	I.3 Ethics

