
Tartare: Automatic Generation of C Pointer Statements
and Feedback

Géraldine Brieven
Université de Liège, Montefiore

Institute
Liège, Belgium

gbrieven@uliege.be

Valentin Baum
Université de Liège, Montefiore

Institute
Liège, Belgium

valentin.baum@student.uliege.be

Benoit Donnet
Université de Liège, Montefiore

Institute
Liège, Belgium

benoit.donnet@uliege.be

ABSTRACT

This paper addresses the difficulties students face when learning
and practicing pointers (i.e., variables storing the memory address
of another variable as its value) in a computer programming class.
To improve their understanding and practice, we have developed
Tartare, an automatic C pointer statement and feedback generator.
By creating statements with automatic feedback, students are given
the opportunity to practice at will, each time on a different instance.
In addition, if the statement must be done remotely and accounts
in the final grade, Tartare discourages academic dishonesty since
each student faces their own statement to solve.

This paper describes the techniques implemented in Tartare,
relying on a pattern template-based approach. The statement vari-
ety of Tartare is evaluated. Finally, current limitations and further
improvements are discussed. We believe our approach for Tartare
can be transposed for automatic exercises generation in various
other fields.

CCS CONCEPTS

• Social and professional topics → CS1; • Software and its

engineering → Source code generation.

KEYWORDS

C programming language, pointers, statement generation, Tartare

ACM Reference Format:

Géraldine Brieven, Valentin Baum, and Benoit Donnet. 2024. Tartare:
Automatic Generation of C Pointer Statements and Feedback. In Australian

Computing Education Conference (ACE 2024), January 29-February 2, 2024,

Sydney, NSW, Australia. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3636243.3636264

1 INTRODUCTION

Each year, we organize a computer programming class (hereafter
called CP class) in which students are exposed to specific C pro-
gramming language concepts and algorithmic aspects. Mastering
the C language requires a deep understanding of memory manage-
ment, a key skill that every computer scientist must acquire [9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1619-5/24/01. . . $15.00
https://doi.org/10.1145/3636243.3636264

For that purpose, one chapter of the course is dedicated to pointers

(i.e., variables storing the memory address of another variable as its
value). In regards to Goldman et al. [19] classification, pointers be-
longs to the “Memory model, references, pointers” class (abbreviated
as MMR). Compared to the other key concepts in Computer Science,
this topic appears among the most difficult ones for students [19],
which is confirmed by other studies [1, 12, 30] as well as through
our own teaching experience. Therefore, in our class, in addition
to traditional theoretical and exercise sessions, students have the
opportunity to practice pointers through an online homework that
is automatically corrected with feedback and feedforward [10, 28].

However, it often appears that the performances at the exam –
which contains a question identical, in its overall shape and con-
cept, to the pointer homework – do not match those of the remote
homework. Fig. 1 illustrates that observation by providing the cor-
relation between students’ performance in the remote homework
and the exam for academic years 2019 and 2022. We have identified
three potential explanations for this discrepancy: (𝑖) some students
miss practice because they do not have enough exercise instances
to train on (see Fig. 1, bottom left square – students who have
failed in both the homework and the exam would probably perform
better with more exercises and feedback); (𝑖𝑖) some students may
cheat [22] or collaborate to find solutions to their remote home-
work (see Fig. 1, bottom right square – students who succeeded in
their homework but failed at the exam); finally, (𝑖𝑖𝑖) some students
may rely on the help of the course material or even external tools
like ChatGpt [29], without fully grasping the concepts (see Fig. 1,
bottom right square).

To address those concerns, we believe each student must have
the possibility to practice as often as wanted, each of them solving
a new C pointer statement instance. However, manually creating
such statements, correcting them, and quickly providing feedback
does not scale, particularly for a large audience, as often met in
an introductory CP class. To address those issues, we wanted to
develop a tool for automatically generating C pointer statements
and providing personalized feedback. More precisely, our goals are:

Goal 1: Providing students with the ability to practise as much as
they want by automatically generating C pointer statements.

Goal 2: Supporting student improvement through feedback pro-
vided after an automatic correction of students’ answers.
This feedback must help students to identify and understand
their mistakes, so that they are not repeated.

Goal 3: Reducing the possibility of cheating by giving each student
a different set of statements of the same difficulty level.

Goal 4: Reducing the workload of the supervisors by defining a
scalable system.

https://orcid.org/0000-0003-1410-1470
https://orcid.org/0009-0002-5582-3867
https://orcid.org/0000-0002-0651-3398
https://doi.org/10.1145/3636243.3636264
https://doi.org/10.1145/3636243.3636264
https://doi.org/10.1145/3636243.3636264

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia Brieven et al.

0 2 4 6 8 10 12 14 16 18 20
Homework Grade

0

2

4

6

8

10

12

14

16

18

20

E
x
a
m

G
ra

d
e

r=0.31, p=6.04e-03

0

25

0 10

Figure 1: Correlation between results for online homework

and exam for academic years 2019 and 2022. Students who

did not participate in one or both activities are not ac-

counted in this graph. Years 2020 and 2021 are not reported

since exams were organized remotely due to CoVID-19 pan-

demic [13] and results would not be representative. A stu-

dent succeeds a C pointer statement if the mark is greater

or equal to 10. 𝑁2019 = 44 and 𝑁2022 = 32.

These goals are achievable if statements always follow a pre-
defined schema so that it can then be modeled and implemented.
Furthermore, this modeling can be used to anticipate students’
possible answers and match them to pre-defined misconceptions,
enabling personalized feedback.

In this paper we instantiate this process for C pointer statements.
In particular, an analysis of the composition of past C pointer state-
ments in our CP class is conducted in order to derive patterns from
which new instances can be automatically generated. Those pat-
terns are then used as input to Tartare (auTomAtic C pointeR
statemenT generAtoR with fEedback), our automatic C pointer
statement generator. Tartare can be parameterized to constrain
the C pointer statement generation. Besides statement generation,
in order to provide personalized feedback to students, a collection
of possible erroneous answers is computed by Tartare, on the
basis of common predefined pointers misconceptions.

We assess Tartare’s quality along two dimensions: its ability
to generate unique C pointer statements and its ability to generate
a variety of expressions within a C pointer statement. Finally, the
paper also shows that the generated C pointer statements are rele-
vant, with a level of difficulty requiring a deep understanding of
pointers.

The remainder of this paper is organized as follows: Sec. 2 models
the C pointer statements in our programming homework and final
exam; Sec. 3 introduces Tartare; Sec. 4 evaluates its performance;
Sec. 5 discusses our generated patterns relevance; Sec. 6 positions
this work with respect to the state of the art; Sec. 7 discusses current
Tartare’s limits and various directions for future works; finally,
Sec. 8 concludes this paper by summarizing its main achievements.

2 C POINTER STATEMENT FRAMEWORK

This section describes the general framework used to define a
C pointer statement in our CP class. The statement framework
comprises three parts: (𝑖) the variable declarations (Sec. 2.1), (𝑖𝑖) the
memory state (Sec. 2.2), and (𝑖𝑖𝑖) the list of expressions to evaluate
(Sec. 2.3). A complete example of a C pointer statement is provided
in Appendix A. It will be referenced throughout this section.

Given a C pointer statement, the students must evaluate each
expression (i.e., rvalue-expression) using the memory state and
variable declarations. If an expression evaluation leads to an address
that is outside the range of addresses provided by the memory state,
students must respond that the expression evaluation returns a
segmentation fault (symbolized by SF). It is assumed that each
expression is evaluated with respect to the initial given memory
state, to avoid the waterfall effect in case of an error.

Students have been exposed to such statements between 2016 and
2022, through online homework and exams. A total of 24 statements
have been manually created during this period. In this section, all
those past statements are analyzed (see Fig. 2) and their general
shape is described.

2.1 Variable Declaration

First, the variable declarations are provided to students. The
general shape of such declarations is illustrated in Listing 1.

Listing 1: General view of variables declaration.

1 #include <stdio.h>
2 in t var1;
3 in t *var2 = &var1;
4 in t var3[] = {...};
5 char *var4 = "...";

These declarations introduce all the required variables for the
statement, some of them being initialized. Only integer data types
(i.e., int and all its variations) and arrays (of int or char) are
considered. The declarations also provides the #include directive
for allowing input/output (typically, a call to printf()). In the
example in Appendix A, w and v are declared as integer variables, b
is declared as a pointer containing the address of variable v, and a
and l are strings initialized to “Invariant” and “ariant” respectively.

More generally, Fig. 2a gives some insight about the amount of
variables and the distribution of their types over the past statements.
It shows that about 56% of statements introduced five variables
(solid purple line). Among them, the integers are the most frequent
ones (dotted red line rightmost). It varies from two to four occur-
rences. On the opposite, arrays were declared less frequently (only
25% of the past statements introduced at least one array).

2.2 Memory State

Fig. 3 outlines the general representation of a memory state in
our C pointer statement. It covers a specific range of addresses
([lower bound, upper bound] – [20, (1008+3)] in Appendix A). Not
all addresses in the range are necessarily present. In such a sit-
uation, the memory is divided in several blocks. For instance, in
Appendix A, there are two blocks, [20, 36+3] and [1000, 1008+3].
Variables (first column) are mapped to addresses (second column –
they are represented in decimal for simplicity), and variables may
have a defined value (third column). If the value at a given address

Tartare: Automatic Generation of C Pointer Statements

and Feedback ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

0 2 4 6 8
Number

0.00

0.25

0.50

0.75

1.00

C
D

F arrays

strings

pointers

int

variables

(a) Distribution of variable types

0 2 4 6 8 10 12 14 16
Number

0.00

0.25

0.50

0.75

1.00

C
D

F

blocks

variables mapped

addresses

(b) Distribution of the number of explicit ad-

dresses and blocks in memory.

Easy Array PtrAIncDec Cast CDef String

Category

0
1
2
3
4
5
6
7
8
9

10

M
e
a
n

R
a
w

N
u

m
b

e
r

(c) Distribution of various categories of expres-

sions among 20 expressions.

Figure 2: Analysis of past C pointer statements. Students were exposed to 24 statements (homework or exams) from 2016 to

2022.

Variable: Address: Value:
upper bound . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .
lower bound . . .

Figure 3: General view of the memory state.

is undefined, it is represented by "??" (see address 1008 in Appen-
dix A). Usually, we store values on 32 bits, and addresses are aligned
to the word size, meaning that they are multiples of four.

All the declared variables (see Sec. 2.1) may not necessarily be
mapped to memory. Typically, to evaluate the expressions, if simple
variables (i.e., int) are initialized upon declaration, only their value
should matter, not their address. On the contrary, if a variable
is not initialized upon declaration, it means both its address and
value have to be considered when evaluating the expressions. In
such a situation, the variable is mapped to the memory and some
random value is assigned to it (see for example w, in Appendix A,
that is mapped to address 1004 with value 28). Finally, all pointers
are initialized at declaration time (b receives the address of v in
Appendix A).

It is worth noticing that this memory shape does not reflect the
actual memory organization, as it does not show the stack, the heap,
BSS, and so on, and does not position variables in a realistic way.
The objective here is not to be realistic, but rather to allow students
to improve their understanding of pointers and memory arithmetic
by relying on a simplified memory model.

Fig. 2b analyzes the memory framework from previous C pointer
statements. In most of the cases (nearly 75% of the cases), the mem-
ory is divided in two blocks (the maximum being four – see the
blue line). The number of addresses explicitly shown oscillates from
seven (nearly half of the case) to fifteen (see the green dotted line).
Finally, two to four variables that have been declared are explicitely
mapped to a memory address (see the orange dotted line).

2.3 Expressions to Evaluate

The last part of a C pointer statement exhibits the different
expressions students have to evaluate according to the variable
declaration and the memory state. A statement is always made
of twenty rvalue-expressions (see Appendix A).1 The objective of
those expressions is to practice pointers and memory arithmetic,
even through expression that do not follow good programming
practice rules (see Expression 2 in Appendix A).

We model each expression as belonging to a given category (see
Sec. 2.3.1). Within each category, we have identified patterns. A
pattern is composed of variables (with a specific type), specific
kinds of operations and casting. Patterns allow to generalize all the
expressions that have been defined in the past.

2.3.1 Categories. Seven categories emerge from the analysis of the
previous C pointer statements:

• Easy: Refers to basic notions of variable, address, and value
of a variable. See for example Expression 1 in Appendix A.

• Array: Refers to continuous addresses in memory. As men-
tioned in Sec. 2.1, arrays are unusual in our statements and
Appendix A does not exhibit an expression belonging to this
category.

• PtrA: Refers to operations between an address and a value
or another address. See for instance Expression 10 in Appen-
dix A.

• IncDec: Refers to the manipulation of the increment and
decrement operators. See for instance Expression 7 in Ap-
pendix A.

• Cast: Refers to the transformation of an address of one type
to an address of another type (i.e., casting operation). See,
for instance, Expression 14 in Appendix A.

• CDef: Refers to dereferencing addresses that are obtained
from other expressions. See for instance Expression 6 in
Appendix A.

• String: Refers to character access (from array) and differ-
ence between characters. See for instance Expression 16 in
Appendix A.

Fig. 2c illustrates the average frequency (with standard devia-
tion) of the categories across all the previous C pointer statements.

1In the following text, we will use “expression” and “rvalue-expression”
interchangeably.

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia Brieven et al.

Table 1: Notations supporting the expressions.

(Pattern) Component Meaning

data simple variable
ptr pointer variable
tab array variable
cTab string variable
let char variable
val integer value
unOp unary operation (++ or --)
binOp binary operation (+ or -)
(type *) casting ((short *) or (long *))

From one statement to another, on average, seven (±2) expressions
were part of the Easy category. For the other categories, that aver-
age ranges between one and four, except for the Array category.
This last type of expression has been introduced later in our C
pointer statements, explaining why it is less frequent when all the
statements (from 2016 to 2022) are taken into account.

2.3.2 Patterns. Within each category, one can model the expres-
sions through patterns. Since only the variable type matters to build
expressions, the various variable names are represented through
notations introduced in Table 1. Similarly, some notations are also
defined to represent various kinds of operations and casting.

It is worth noting that some variables must have specific values
for some expressions to make sense when they are evaluated. This is
discussed further in Sec. 3 where pattern components replacement
is described.

Table 2 maps the expression patterns from the previous C pointer
statements to the different categories. The patterns in bold are those
from which the 20 expressions in Appendix A were derived.

The patterns described in Table 2 cover a subset of the C pro-
gramming language. This subset excludes exotic expressions such
as x++ + ++x whose evaluation is not defined by the standard.
Further, the restriction also ensures that the produced expressions
are valid in C and can be compiled without any warning.

3 TARTARE

This section introduces Tartare (auTomAtic C pointeR state-
menT generAtoR with fEedback). As illustrated in Fig. 4, Tartare
is made up of two main components: the statement generation
(Sec. 3.1) in charge of creating the C pointer statement (see an
example in Appendix A) and the feedback generation (Sec. 3.2)
responsible for identifying a set of possible student answers and
mapping them to some predefined pointers misconception.

3.1 Statement Generation

The statement generation is depicted in Fig. 4 (top rectangle). It
relies on patterns defined beforehand (see Table 2).

Before running the statement generator, the educational team
can customize several parameters: (𝑖) the number of statements
(one per student typically); (𝑖𝑖) the variable distribution (set to two
integers, one pointer, and two strings by default, as suggested by
Fig. 2a); (𝑖𝑖𝑖) the number of memory blocks (set to two by default, as
suggested by Fig. 2b); (𝑣𝑖) the number of visible addresses (set to ten
by default, as suggested by Fig. 2b); (𝑣) the memory interval (set to

Table 2: Classification of patterns. Each pattern is uniquely

identified through its category and a number. See Table 1 for

the notations meaning in the various patterns. Patterns in

bold are present in the C pointer statement in Appendix A.

Expression

Patterns

Category

Easy

(E.1) data
(E.2) *(int *)data
(E.3) &data
(E.4) &*ptr
(E.5) *(int *)*ptr

Array

(AR.1) tab[val]
(AR.2) ptr[data]
(AR.3) ptr[val] binOp ptr[val]
(AR.4) ptr[tab[val] binOp tab[val]]
(AR.5) ptr[ptr[val] binOp val]

PtrA

(PA.1) &data binOp ptr
(PA.2) &data binOp val
(PA.3) ptr binOp data
(PA.4) (int*)data binOp val
(PA.5) ptr unOp binOp unOp data

IncDec

(ID.1) unOp *ptr
(ID.2) *unOp ptr
(ID.3) (*ptr) unOp
(ID.4) *ptr unOp
(ID.5) *(unOp ptr)

Cast

(C.1) data binOp (type *) ptr
(C.2) (type *) &data binOp val
(C.3) (type *) ptr binOp val
(C.4) (int *)ptr binOp ptr[val]

CDef

(CD.1) unOp ptr binOp *(&data binOp val)
(CD.2) *(ptr= ptr)
(CD.3) *(&data binOp data)
(CD.4) *(ptr binOp val)
(CD.5) &*(ptr binOp val)

String

(S.1) *cTab
(S.2) cTab binOp cTab binOp
(S.3) printf("%s", cTab)
(S.4) cTab[let - let]
(S.5) cTab[val] - cTab[val]

[4;2000] by default); (𝑣𝑖) the number of expressions per statement
(𝑁) (set to 20 by default); (𝑣𝑖𝑖) the category distribution (set to
35% of Easy expressions, 15% of PtrA expressions, 15% of IncDec
expressions, 5% of Cast expressions, 15% of CDef expressions and
15% of String expressions by default, in accordance with the means
given by Fig. 2c.); (𝑣𝑖𝑖𝑖) the maximum number of Segmentation Fault
over the 𝑁 expressions (set to one by default). The default values
of those parameters are determined based on the analysis of the
previous statements.

Once those parameters have been fixed, statements can be gen-
erated, as illustrated in the top rectangle of Fig. 4. For a given
statement, first, variables are declared (and initialized), with respect
to the variable distribution parameter. Next, considering those vari-
ables, a memory state is generated based on the number of memory
blocks, the number of visible addresses, and the memory interval
that are specified through the parameters. After this, 𝑁 different

Tartare: Automatic Generation of C Pointer Statements

and Feedback ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

 Variables (1) Variable
Declaration Creation

(2) Memory
State Creation

Possible solutions
Generation

PATTERNS

Patterns
PatternID

Category
Probability
Pattern Text
Difficulty

Patterns
Creation

Statem
ent G

eneration

Statement

 p
ar

am
et

er
s

N times

Pattern
Selection

Pattern
component
replacement

No: another pattern
should be picked

 Yes

Valid ?

Yes: next expression
should be created

 M
em

ory State

 Variables

(3) Expressions Creation

pa
ra

m

Misconception
Library

No

All nodes instantiated?

Fe
ed

ba
ck

 G
en

er
at

io
n

Figure 4: Tartare high level overview. It is made of two

parts: (𝑖) the statement generation (top rectangle) and (𝑖𝑖) the

feedback generation (bottom rectangle).

expressions can be created. The pattern selection is controlled by
the category distribution. Once a pattern is selected, the pattern
components (listed in Table 1) must be instantiated. To do so, the
pattern is represented through a tree, as depicted in Fig. 5. The
leaves are variables while the internal nodes either stand for op-
erations or casting. If a variable needs to be selected, it must be
one of the variables declared in the first step. For all nodes, if the
dereferencing operator applies (this information is attached to the
node) and a Segmentation Fault already occurs once as expected
answer, the value of that node must be within the memory range
defined in the previous step. If those restrictions make the selection
impossible, a new pattern is selected and the process is repeated
until a feasible expression is obtained. Fig. 5 illustrates the pattern
component selection, with respect to a given pattern tree.

3.2 Feedback Generation

Once the 𝑁 expressions have been generated, a corresponding
feedback dictionary can be produced. The feedback consists of the
student’s possible answers, including both correct and incorrect
ones, with potential feedforward to the course material.

The most intuitive way to generate a correct answer would
be to run some C piece of code that would evaluate the different
expressions. However, this approach has two main drawbacks:

(1) We do not have direct control over the allocated memory
addresses. This poses a challenge in assigning values to the

ptr

(type *) val

binOp
Select
a value

Select a pointer
variable

 Select (short *)
or (long *)

Select a binary operator (+ or -)

Figure 5: Example of patternCD.3 ((type *) ptrbinOp val) rep-
resented as a tree (in black) and the selection process (in red).

&w-16 = 1004 - 4* 16 = 940
&w-16 = 1004 - 4* 16 = 988
&w-16 = 1004 - 4* 16 = 1004
&w-16 = 28 - 4* 16 = 28
&w-16 = 28 - 4* 16 = -36
&w-16 = 28 - 4* 16 = 12

& w = 1004
& w = 28

16

&w-16 = 1004 - 4* 16 = 940
&w-16 = 1004 - 4* 16 = 988
&w-16 = 1004 - 4* 16 = 1004
&w-16 = 28 - 4* 16 = 28
&w-16 = 28 - 4* 16 = -36
&w-16 = 28 - 4* 16 = 12

& w = 1004
& w = 28

16

Figure 6: Example of feedback production based on the sim-

ulation of errors on the different intermediate terms. The

example is built based on Expression 11 in Appendix A.

memory. All values in the memory are of type int but some
values may need to be casted into addresses. We need to
modify these values to correspond to the allocated addresses,
rather than the value specified in the statement. From a
student perspective, it is then difficult to simply print the ex-
pressions results as they would have to replicate the memory
in some way beforehand.

(2) We cannot easily simulate students’ reasoning based on some
given pointers misconceptions to map some wrong solutions
to a suitable feedback.

Those limitations are overcome by reusing the tree structure of
each pattern that supported the expressions generation.

To find the correct answer, we run through the whole tree and
compute the correct value for each node, starting from the leaves.
To compute a node value, four pieces of information are required: (𝑖)
the result values the children are carrying; (𝑖𝑖) the current address;
(𝑖𝑖𝑖) the type (to know if it can be dereferenced); (𝑖𝑣) the address
size (as it could have been altered by some previous casting).

Besides this, to identify the common wrong solutions, we fol-
low a similar process, except that miscomputations are simulated
in such a way that some nodes carry wrong values. Each time a
miscomputation is performed, the corresponding misconception is
attached to the resulting wrong value, as illustrated in Fig. 6. Finally,
based on those misconceptions, an appropriate text feedback can
be built for each final value, depending on the miscomputations

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia Brieven et al.

1 "11": {
2 "940": "The answer is correct.",
3 "988": "You made one mistake. You should check the
4 formula to compute the difference between an address
5 and a value.",
6 "1004": "You made one mistake. It seems that you forgot
7 to compute the difference.",
8 "28": "You made one mistake. The value of w shouldn 't
9 be involved here , we take the address.",
10 "12": "You made two mistakes. (1) You seem confused
11 with the referencing operator (&). It means that you
12 take the address of the variable. (2) You should
13 check the formula to compute the difference between
14 an address and a value.",
15 " -36": "You made one mistake. You seem confused
16 with the referencing operator (&). It means that you
17 take the address of the variable.",
18 "default":"Your answer is incorrect."
19 }

Figure 7: Example of a generated feedback for Expression 11

in Appendix A. The produced dictionary mapped potential

answers of students with the associated feedback.

Table 3: Examples of errors related to pointersmanagement.

Error Code Feedback Message

PTR_numValChar A character holds an ASCII value. For
example, the ASCII value of ’A’ is 65.

PTR_arith_addrVal Check the formula to compute the dif-
ference between an address and a value.

PTR_op_ref You seem confused with the referencing
operator (&). It means that you take the
address of the variable.

PTR_op_deref You seem confused with the dereferenc-
ing (*). It means that you take the value
at the address stored in the variable.

they cumulated (see Fig. 7). This output can be interpreted by our
learning platform [10], which supports automatic correction and
feedback. For “simple” questions, the tool simply tries to match
the student’s answer with one of the answers identified by the
generator. If there is a match, the appropriate feedback is sent to
the student. Otherwise, a standard feedback message is addressed
to the student, informing them that their answer is incorrect.

To implement such a process, a misconception library needs
to be defined beforehand. Such a library contains the predefined
feedback texts that are associated to common errors. Typical errors
made by students in past C pointer statements (i.e., during online
homework and exams from 2016 to 2022) are used to populate this
library. Some examples of errors are presented in Table 3.

To substantiate our library, Fig. 8 shows to which extend we
could cover students’ errors by simulating the misconceptions we
have identified so far. We confront the resulting potential students’
answers with incorrect answers students actually provided in the
online homework during academic year 2022. The objective here is
to see the proporition of mistakes Tartare could catch based on
our misconception library. On Fig. 8, the more to the right the red
curve, the more robust the misconception library. Fig. 8 illustrates
that a majority of students’ errors can be mapped with the errors
stored in our misconception library. More precisely, we can see that,
in 50% of the cases, the proportion of wrong answers that could be

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Proportion of successful mapping

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u
m

u
la

ti
v
e

su
b
m

is
si

o
n

d
is

tr
ib

u
ti

o
n

Figure 8: Misconception library robustness with respect to

students incorrect answers (in the context of an online

homework in academic year 2022).

mapped to misconception is higher than 60%. And for 15% of the
submissions, all errors could be computed in advance.

4 TARTARE EVALUATION

This section demonstrates that Tartare fulfills the four goals
stated in Sec. 1. We assess the diversity of statements (Goal 1 and
Goal 3) and we discuss the feedback robustness (Goal 2) as well as
the scalability (Goal 4) of Tartare. Regarding the feedback robust-
ness, Tartare automates the mapping between misconception(s)
and answer (for a given expression). In this way, more combinations
of misconceptions can be handled (compared to manual simula-
tions), leading to a longer list of possible answers with an appro-
priate feedback. As this list produced by Tartare at least includes
answers that would have been manually computed, the resulting
feedback accuracy reaches at least what we could get so far, based
on a manual mapping (see Fig. 8). Then, for both the mapping (sup-
porting the feedback) and the statement generation using Tartare,
the supervisor workload significantly decreased, therefore meeting
Goal 4. With Tartare, the only manual intervention consists in set-
ting the parameters. Moreover, to generate 1,000 exercises (directly
compiled in LaTeX, producing 1,000 PDF files), only 5 seconds are
now required, while manually designing one C pointer statement
took us, on average, four hours.

Regarding Goal 1 and Goal 3, C pointer statements produced by
Tartaremust respect the given setting while remaining sufficiently
distinct from each other’s. For that purpose, at each step of the
generation process (see Fig. 4), various choices are kept random:
(1) the relation between the variables and their initial values; (2)
the bounds of the various memory blocks that are visible and the
variables location in the memory; (3.1) the pattern selection within
a category; (3.2) the component selection for a given pattern.

This section evaluates the Tartare randomness around those
four aspects through 1,000 C pointer statements generated with
parameter values as given in Table 4. In addition, Tartare has gen-
erated the corresponding 1,000 feedback dictionaries (see Sec. 3.2).

Fig. 9 shows the proportion of each pattern in a given category.
The patterns distribution appears well-balanced, as expected. Only
two patterns (CD.3 and CD.4) seem less represented, both belonging
to the CDef category. It is likely because the addresses they need
to access (&data binOp val and ptr binOp val) often falls outside
the memory range of interest, leading to the selection of another
pattern.

Tartare: Automatic Generation of C Pointer Statements

and Feedback ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

Table 4: Tartare parameters values used for our evaluation.

Parameter Value Meaning

Global NBR_EXERCISES 1,000 Number of different statements to generate
SIMILAR_EXERCISES False variable names, memory states, and expression selections differ

Variables VARIABLE_REPARTITIONS [3,2,1] 3 simple variables, 2 pointers, and 1 array
VARIABLE_CHAR_REPARTITIONS [2] 2 strings

Category CATEGORY [7,3,4,1,1,2,2] 7 expressions in Easy, 3 in IncDec, 4 in PtrA, 1 in Cast, 1 in Array, 2 in String, and 2 in CDef

Memory

MAX_MEMORY_INTERVAL [0,500] lower and upper bounds for the memory range
MEMORY_RANGE 1,000 memory range for each statement
NBR_VISIBLE_ADDRESS 10 number of addresses that are visible within the memory range
MAX_NBR_MEMORY_BLOCKS 4 the maximum number of distinct memory blocks inside the memory range

Easy Array PtrA IncDec Cast CDef String

Category

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Pattern 1

Pattern 2

Pattern 3

Pattern 4

Pattern 5

Figure 9: Distribution of patterns for each category. Eachpat-

tern is associated with the percentage of occurrences within

the category.

Besides this, Fig. 10 reports how different the expressions emerg-
ing from the same pattern are. This metric is relevant as expressions
are what students directly manipulate. To assess the difference be-
tween the expressions, rather than just considering their value,
their whole intermediate results are taken into account. To do so,
their corresponding tree structure is used. The values hold by each
node are computed and compared. More precisely, we track both
the memory address being accessed and the resulting value of each
node. By aggregating these values for each node, starting from
the leaf nodes, we create vectors representing the values obtained
at different levels of the expression resolution. Two expressions
are considered different if their vectors differ. This differentiation
test was run on all the pairs of expressions derived from the same
pattern, under three different conditions: (𝑖) with variables and
memory being fixed (yellow bar); (𝑖𝑖) with only variables fixed (red
bar); (𝑖𝑖𝑖) without anything fixed (i.e., what is happening in practice,
when students get their own statement to solve – green bar). By
considering those different conditions, we can identify the impact
of each step on the diversity of the resulting expressions. After run-
ning those tests, Fig. 10 shows that the expressions appear unique
if they have been produced based on different memory configura-
tions (and/or variables), except the three first ones belonging to the
String category. Those three patterns only depend on variables
(not constants) while only two different strings are declared. This
explains why the diversity of expressions is extremely limited when
the variable declaration is fixed. It is not true for patterns 4 and 5

since they also depend on constants (letters or value), which are
independent from the declaration and memory state. Further, even
if the variable declaration is different, the diversity of the three
first String expressions remains limited. Considering pattern S.1
(*cTab), it suggests that lots of strings are initialized in such a way
they start with the same letter. Looking at pattern S.2, it suggests
that the substring of the first string that is declared sometimes starts
at the same index (leading to the same addresses difference across
the statements). With respect to pattern S.3 (printf("%s", cTab)),
it suggests that the first string that is declared often contains the
same number of letters. All of this gives us insight about how we
could tune Tartare for the future.

Next, coming back to the patterns of the other categories, when
both the variables and the memory state are fixed, the proportion
of unique expressions varies, depending on how many components
need to be replaced in the pattern. The more components, the
more unique expressions, which makes sense since each component
requires a random choice to be made.

To summarize, those results demonstrate that students get state-
ments that are sufficiently different from each other’s. It means that,
from one instance to another, they get a fresh training experience
to enforce their learning (meeting Goal 1). Further, their statements
also differ enough from the ones of the other students, preventing
them from easily cheating (meeting Goal 3).

5 GENERATED PATTERNS RELEVANCE

In this section, we investigate how easy it is for students to
get correct answers from external tools, such as ChatGpt. To do
so, we have confronted several C pointer statements with Chat-
Gpt version 3.5. From the 1,000 C pointer statements generated
by Tartare (see Sec. 4), we randomly picked 100 of them with
their associated feedback dictionary. Those statements have been
proposed, in a row, to ChatGpt between September 18th, 2023
and September 19th, 2023. Each statement was fully provided, in
LATEXformat, to ChatGpt. We ended up each statement with the
following question:

What is the evaluation of each of those expressions,
in CSV format? Please, indicate the expression and
your answer.

ChatGpt answers were then copied and saved in a CSV file (one
file per statement to solve) for further analysis, i.e., confronting
those answers with the corresponding feedback dictionary.

Fig. 11 illustrates the performance of ChatGpt on the 100 state-
ments. For each statement, 20 expressions had to be evaluated. An

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia Brieven et al.

E.1 E.2 E.3 E.4 E.5 AR.1 AR.2 AR.3 AR.4 AR.5 PA.1 PA.2 PA.3 PA.4 PA.5 ID.1 ID.2 ID.3 ID.4 ID.5 C.1 C.2 C.3 C.4 CD.1 CD.2 CD.3 CD.4 CD.5 S.1 S.2 S.3 S.4 S.5

Pattern

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

o
f

U
n

iq
u

e
n

e
ss

Different variables and memory state Identical variable declaration Identical variable declaration and memory state

Figure 10: Proportion of unique expressions derived from a given pattern. Pattern identifiers on the X-Axis refer to those in

Table 2.

0 2 4 6 8 10 12 14 16 18 20

Number of answers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u
m

u
la

ti
v
e

st
a
te

m
e
n
t

d
is

tr
ib

u
ti

o
n

ill-formatted

correct

incorrect

Figure 11: Performance of ChatGpt.

answer can be ill-formatted2, correct, or incorrect. Fig 11 shows
that, in 10% of the cases, ChatGpt could not provide any well-
formatted answer. Next, for 60% of the statements, ChatGpt could
only provide at most four correct answers out of 20. Among the in-
correct ones, only some of them could be mapped to a pre-defined
misconception, which shows how much unreliable ChatGpt is
regarding our C pointer statement. However, it also shows that
students cannot really take benefit from ChatGpt. Going further,
we noticed that most of the correct answers given by ChatGpt
are related to the Easy expressions, which is not much helpful for
students.

Those results also highlight our C pointer statement generation
and the fact that, to solve a statement, a student must have a deep
understanding of theoretical concepts and must have trained with
traditional exercises sessions or statements generated by Tartare.

6 RELATEDWORK

With the growing number of students enrolled and the popularity
of online courses, automated exercise generation and assessment
has gained attention as a means of reducing instructor workload
and offering additional opportunities for students to practice.

Different techniques for creating exercises have been presented
in prior work: (𝑖) Context-Free grammar [5, 11, 20, 44, 45]; (𝑖𝑖) Tem-

plates; (𝑖𝑖𝑖) Mutation [6, 39]; (𝑖𝑣) Construction from solution [3, 32];
(𝑣) Natural language processing [2, 4, 8, 14, 26, 27, 31, 35, 40, 43,
2ChatGpt typically replied with text describing how the answer could be obtained
rather than the actual value. For instance, with expression *tab, ChatGpt replies with
[value of s], which does not make sense and cannot be automatically evaluated.

46, 47]. This paper applies the Template approach through which
patterns have been identified from previous statements to shape
new instances. The same process was applied for other statement
profiles, like identifying what a piece of code does [36], shaping a
loop flow [16], writing SQL queries [24], or solving equations [41].

Then, different strategies to provide meaningful feedback have
been introduced: (𝑖)Test-based feedback; (𝑖𝑖) Path construction [7,
34, 37]; (𝑖𝑖𝑖) Transformation model; (𝑖𝑣) Peer-feedback [17]. In
our work, Test-based feedback and Transformation model are com-
bined. It compares the student’s response to the expected, similar to
what the first wave of automated grading tools supported. [15, 18,
21, 23]. To go further, we catch students’ misconception(s) in case
of error. To do so, transformation rules simulating typical errors
are applied when a solution is computed to anticipate multiple
students’ solutions [38, 42]. The limitation of this method is that it
fails if the student is too far from the solution [33].

Typical errors made by students in practice are the cornerstone of
our misconception library. Some of those errors can bemapped with
some C pointer concepts introduced by Craig and Petersen [12], in-
cluding getting an address, dereferencing pointer, managing point-
ers arithmetic, or considering the array name as the address of
the first element of the array. They also studied students’ common
mistakes in regards to those concepts. However, their students were
asked to define their own expressions while our students are ex-
pected to assess given expressions. Therefore, some of their errors
match with ours (e.g., Incorrect Pointer Arithmetic or Dereferenc-
ing pointer gives the value at the address stored in the pointer)
while others do not (eg: ‘&’ applied to address, undeclared vari-
able, or a pointer is assigned to an integer). More generally, other
studies identified common mistakes related to the “Memory model,

references, pointers” class [1, 25]. Like Craig and Petersen [12], they
focus more on how students manipulate pointers to solve a given
problem rather than purely considering how students can evalu-
ate some given pointers expressions. Because of that, their error
taxonomy is more oriented towards dynamic allocation.

7 CURRENT LIMITS AND FURTHERWORK

By relying on a pattern-based approach, expression profiles are
limited compared to what we could get using other techniques

Tartare: Automatic Generation of C Pointer Statements

and Feedback ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

such as a context-free grammar or a machine learning approach.
However, the disadvantage of those techniques is that one loses
control over the generated expressions. Therefore, it requires careful
checking of each expression to ensure they are correct and relevant.
For example, an expression that might result from a context-free
grammar is * (int *) * (int *) * (int *) x while we would expect
*** (int ***) x. Machine Learning techniques would likely lead to
expressions that are even more inaccurate. Some alternative would
be to use those techniques only to draw new patterns (rather than
expressions directly), so that manual reviewing would be feasible
as the pattern creation occurs only once. Moreover, by sticking to
the pattern-based approach, expressions distribution can be more
balanced since we can force each pattern to be used only once per
C pointer statement.

Although pattern-based techniques provide more control, cur-
rently, Tartare does not come with a mechanism to fully make
sure that the generated expressions are syntactically correct. How-
ever, given we are working on a subset of the C programming
language, we believe the produced expressions could be included
in a C-program and compiled. In case of incorrectness, warnings
should be triggered and the expression(s) of concern should be
replaced.

Finally, regarding the automatic mapping Tartare is making to
support automatic feedback, it could still be improved by enriching
the misconception library it relies on. To do so, uncaptured values
provided by students should be analyzed as they directly highlight
where we currently still lose track of students’ errors.

8 CONCLUSION

This paper investigates the automatic generation of C pointer
statement in the context of a computer programming class. Our
aim is to develop a structured approach that generates a wide range
of C pointer statements to help students practice and improve their
understanding of this complex subject. The approach also aims at
reducing the workload for teachers in manually creating C pointer
statements and at reducing the likelihood of academic dishonesty
coming from students copying each other’s answers or using exter-
nal helps. The objective also extends to providing a comprehensive
overview of the field of exercise generation to inspire further de-
velopment in the generation of exercises for various subjects.

A flexible framework for exercises using pattern templates has
been developed. Patterns are sufficiently restrictive to allow control
over the production of C pointer statements, ensuring that only
relevant expressions are given to students and their concepts are
consistent for all students. At the same time, the framework enables
the creation of unique C pointer statements by exploiting the dif-
ferent choices that can be made in the pattern and the uniqueness
of the memory and variables. That framework has been imple-
mented in Tartare (auTomAtic C pointeR statemenT generAtoR
with fEedback). We evaluated Tartare performance over two di-
mensions: unique C pointer statements generation and patterns
distribution within a C pointer statement. The paper also discussed
generated C pointer statements relevance.

SOFTWARE ARTEFACT

Tartare is written in Python 3. It requires the Pandas library for
working properly. Tartare must be tuned according to parameters
listed in Table 4. Tartare source code is available at this URL:
https://gitlab.uliege.be/cse.

ACKNOWLEDGMENTS

Authors would like to thank Pascal Fontaine for his careful read-
ings and insights on Tartare and on their manuscript.

This work is supported by the CyberExcellence project funded
by the Walloon Region, under number 2110186.

REFERENCES

[1] B. Adcock, P. Bucci, W. D. Heym, J. E. Hollingsworth, T. Long, and B. W. Weide.
2007. Which Pointer Errors Do Students Make?. In Proc. SIGCSE Technical Sym-

posium on Computer Science Education.
[2] M. Agarwal and P. Mannem. 2011. Automatic Gap-Fill Question Generation from

Text Books. In Proc. Workshop on Innovative Use of NLP for Building Educational

Applications (IUNLPBEA).
[3] U. Z. Ahmed, S. Gulwani, and A. Karkare. 2013. Automatically Generating Prob-

lems and Solutions for Natural Deduction. In Proc. International Joint Conference

on Artificial Intelligence (IJCAI).
[4] I. Aldabe, M. Lopez de Lacalle, M. Maritxalar, E. Martinez, and L. Uria. 2006. Arik-

Iturri: An Automatic Question Generator Based on Corpora and NLP Techniques.
In Proc. Intelligent Tutoring Systems (TS).

[5] J. J. Almeida, E. Grande, and G. Smirnov. 2016. Context-Free Grammars: Exercise
Generation and Probabilistic Assessment. In Proc. Symposium on Languages,

Applications and Technologies (SLATE).
[6] C. Alvin, S. Gulwani, R. Majumdar, and S. Mukhopadhyay. 2015. Automatic

Synthesis of Geometry Problems for an Intelligent Tutoring System. cs.AI 1510.08525.
arXiv.

[7] T. Barnes and J. Stamper. 2008. Toward Automatic Hint Generation for Logic
Proof Tutoring Using Historical Student Data. In Proc. Intelligent Tutoring Systems

(ITS).
[8] L. Becker, S. Basu, and L. Vanderwende. 2012. Mind the Gap: Learning to Choose

Gaps for Question Generation. In Proc. Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies.
[9] J. Boustedt, A. Eckerdal, R. McCartney, J. E. Moström, M. Ratcliffe, K. Sanders,

and C. Zander. 2007. Threshold concepts in computer science: do they exist and
are they useful? ACM SIGCSE Bulletin 39, 1 (March 2007), 504–508.

[10] G. Brieven, L. Malcev, and B. Donnet. 2023. Training Students’ Abstraction Skills

Around a Café 2.0. cs.CY 2309.09562. arXiv.
[11] O. Chinedu and A. Ade-Ibijola. 2023. Synthesis of Nested Loop Exercises for

Practice in Introductory Programming. Egyptian Informatics Journal 24, 2 (July
2023), 191–203.

[12] M. Craig and A. Petersen. 2016. Student Difficulties with Pointer Concepts in C.
In Proc. Australasian Computer Science Week Multiconference (ACSW).

[13] J. Crawford, K. Butler-Henderson, J. Rudolph, B. Malkawi, M. Glowatz, R. Burton,
P. A. Mangi, and S. Lam. 2020. COVID-19: 20 Countries’ Higher Education Intra-
Period Digital Pedagogy Responses. Journal of Applied Learning & Teaching 3, 1
(2020), 9–28.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In Proc. Conference
of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies (NAACL-HLT).
[15] C. Douce, D. Livingstone, and J. Orwell. 2005. Automatic Test-Based Assessment

of Programming: A Review. Journal on Educational Resources in Computing 5, 3
(September 2005), 4–es.

[16] A. DuFrene. 2016. Automatic Generation and Grading of Programming Exercises.
Technical Report. California Polytechnic State University.

[17] P. Ertmer, J. Richardson, B. Belland, D. Camin, P. Connolly, G. Coulthard, K. Lei,
and C. Mong. 2007. Using Peer Feedback to Enhance the Quality of Student Online
Postings: An Exploratory Study. Journal of Computer-Mediated Communication

12, 2 (January 2007), 412–433.
[18] G. E. Forsythe and N. Wirth. 1965. Automatic grading programs. Communications

of the ‘ACM’ 8, 5 (May 1965), 275–278.
[19] K. Goldman, P. Gross, C. Heeren, G. Herman, L. Kaczmarczyk, M. Loui, and

C. Zilles. 2008. Identifying Important and Difficult Concepts in Introductory
Computing Courses using a Delphi Process. In Proc. ACM Technical Symposium

on Computer Science Education (SIGCSE).
[20] K. V. Hanford. 1970. Automatic Generation of Test Cases. IBM Systems Journal 9,

4 (1970), 242–257.

https://gitlab.uliege.be/cse

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia Brieven et al.

[21] J. B. Hext and J. W. Winings. 1969. An Automatic Grading Scheme for Simple
Programming Exercises. Commun. ACM 12, 5 (May 1969), 272—-275.

[22] G. Hill, J. Mason, and A. Dunn. 2021. Contract Cheating: an Increasing Challenge
for Global Academic Community Arising from CoVID-19. Research and Practice

in Technology Enhanced Learning 16, 1 (December 2021).
[23] J. Hollingsworth. 1960. Automatic Graders for Programming Classes. Commun.

ACM 3, 10 (October 1960), 528––529.
[24] E. Holohan, M. Melia, D. McMullen, and C. Pahl. 2006. The Generation of e-

Learning Exercise Problems from Subject Ontologies. In Proc. IEEE International

Conference on Advanced Learning Technologies (ICALT).
[25] L. Kaczmarczyk, E. Petrick, J. East, and G. Herman. 2010. Identifying student

misconceptions of programming. In Proc. ACM Technical Symposium on Computer

Science Education (SIGCSE).
[26] T. Klein and M. Nabi. 2019. Learning to Answer by Learning to Ask: Getting the

Best of GPT-2 and BERT Worlds. cs.CL 1911.02365. arXiv.
[27] Z. Liang, W. Yu, T. Rajpurohit, P. Clark, X. Zhang, and A. Kaylan. 2023. Let GPT

be a Math Tutor: Teaching Math Word Problem Solvers with Customized Exercise

Generation. cs.LG 2305.14386. arXiv.
[28] S. Liénardy, L. Leduc, D. Verpoorten, and B. Donnet. 2021. Challenges, Multiple

Attempts, and Trump Cards – A Practice Report of Student’s Exposure to an Au-
tomated Correction System for a Programming Challenges Activity. International
Journal of Technologies in Higher Education (IJTHE) 18, 2 (June 2021), 45–60.

[29] K. Malinka, M. Peresini, A. Firc, O. Hujnak, and F. Janus. 2023. On the Educational
Impact of ChatGPT: Is Artificial Intelligence Ready to Obtain a University Degree?.
In Proc. Conference on Innovation and Technology in Computer Science Education

(ITiCSE).
[30] I. Milne and G. Rowe. 2002. Difficulties in Learning and Teaching Program-

ming—Views of Students and Tutors. Education and Information Technologies 7
(March 2002), 55–66.

[31] R. Mitkov and L. A. Ha. 2003. Computer-Aided Generation of Multiple-Choice
Tests. In Proc. Workshop on Building Educational Applications Using Natural Lan-

guage Processing (HLT-NAACL-EDUC).
[32] A. Papasalouros. 2013. Automatic Exercise Generation in Euclidean Geometry.

In Proc. Artificial Intelligence Applications and Innovations (AIAI).
[33] P. M. Phothilimthana and S. Sridhara. 2017. High-Coverage Hint Generation

for Massive Courses: Do Automated Hints Help CS1 Students?. In Poc. ACM

Conference on Innovation and Technology in Computer Science Education (ITiCSE).
[34] T. W. Price, Y. Dong, and T. Barnes. 2016. Generating Data-driven Hints for

Open-ended Programming. In Proc. International Conference on Educational Data

Mining (EDM).
[35] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. 2019. Language

Models are Unsupervised Multitask Learners. Last Access: September 21st, 2023.
[36] D. Radosevic, T. Orehovački, and Z. Stapic. 2010. Automatic On-line Generation of

Student’s Exercises in Teaching Programming. Proc. Central European Conference

on Information and Intelligent Systems (CECIIS).
[37] K. Rivers and K. Koedinger. 2014. Automating Hint Generation with Solution

Space Path Construction. In Proc. Intelligent Tutoring Systems (ITS).
[38] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki, and

B. Hartmann. 2017. Learning Syntactic Program Transformations from Examples.
In Proc. International Conference on Software Engineering (ICSE).

[39] D. Sadigh, S. A. Seshia, and M. Gupta. 2012. Automating Exercise Generation:
A Step towards Meeting the MOOC Challenge for Embedded Systems. In Proc.

Workshop on Embedded and Cyber-Physical Systems Education (WESE).
[40] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen. 2022. Automatic Generation of

Programming Exercises and Code Explanations Using Large Language Models.
In Proc. ACM Conference on International Computing Education Research (ICER).

[41] R. Singh, S. Gulwani, and S. Rajamani. 2012. Automatically Generating Algebra
Problems. In Proc. AAAI Conference on Artificial Intelligence.

[42] R. Singh, S. Gulwani, and A. Solar-Lezama. 2013. Automated Feedback Generation
for Introductory Programming Assignments. In Proc. ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI).
[43] Y. Skalban, L. Specia, and R. Mitkov. 2012. Automatic question generation in

multimedia-based learning. In Proc. International Conference on Computational

Linguistics (COLING): Posters.
[44] E. Soremekun, E. Pavese, N. Havrikov, L. Grunske, and A. Zeller. 2022. Inputs From

Hell:. IEEE Transactions on Software Engineering 48, 4 (April 2022), 1138–1153.
[45] P. N. Sovietov. 2021. Automatic Generation of Programming Exercises. Proc.

International Conference on Technology Enhanced Learning in Higher Education

(TELE) (June 2021).
[46] J. Weizenbaum. 1966. ELIZA—a Computer Program for the Study of Natural

Language Communication between Man and Machine. Commun. ACM 9, 1
(January 1966), 36—-45.

[47] J. H. Wolfe. 1976. Automatic Question Generation from Text – an Aid to Inde-
pendent Study. ACM SIGCSE–SIGCUE Outlook 10, SI (February 1976), 104—-112.

A EXAMPLE OF C POINTERS STATEMENT

Consider the following memory state:

1008 ??
w: 1004 28

1000 8
. . .

a[0]: . . .
. . .

36 1996
32 19
28 1200
24 4

v: 20 1000

The first column gives variable names, the second one provides
memory addresses (expressed, in this exercise, as decimal numbers),
and the third column gives the value stored at this address (??means
the value is undetermined). We also assume variables are declared
as follows (throughout the exercise int are on four bytes, short
are on two and long on eight):

1 # include <stdio.h>
2 in t w,v, *b = &v;
3 char *a = "Invariant";
4 char *l = a + 3;

In this exercise, you have to evaluate the following expressions.
You must consider that, between each expression, the memory is
reinitialized to its initial state, as illustrated above. In other words,
each expression is evaluated on the same initial state of the memory,
there is no history between expressions. If a memory access leads to
an address outside the [20, 1008] interval, indicate the segmentation
error with value SF (for Segmentation Fault). Addresses are also
represented on four bytes.

(1) v
(2) *(int*)v
(3) &v
(4) &*b
(5) *(int *)*b
(6) &*(b-4)
(7) *b++
(8) *(++b)
(9) b-- + --w
(10) &w - b
(11) &w - 16
(12) *(b+4)
(13) (long *) &w - 8
(14) (short*) b+3
(15) *++b
(16) a[’c’-’a’]
(17) printf("%s", l)
(18) a[4] - a[3]
(19) (a-l)
(20) ++b + *(&v +3)

	Abstract
	1 Introduction
	2 C pointer statement Framework
	2.1 Variable Declaration
	2.2 Memory State
	2.3 Expressions to Evaluate

	3 Tartare
	3.1 Statement Generation
	3.2 Feedback Generation

	4 Tartare Evaluation
	5 Generated Patterns Relevance
	6 Related Work
	7 Current Limits and Further Work
	8 Conclusion
	References
	A Example of C Pointers Statement

