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A method of optimizing the computation of arithmetic and 
indexing expressions of a Fortran program is presented. The 
method is based on a linear analysis of the definition points of 
the variables and the branching and DO loop structure of the 
program. 

The objectives of the processing are (1) to eliminate redun- 
dant calculations when references are made to common sub- 
expression values, (2) to remove invarlant calculations from DO 
loops, (3) to efficiently compute subscripts containing DO itera- 
tion variables, and (4) to provide efficient index register usage. 

The method presented requires at least a three-pass com- 
piler, the second of which is scanned backward. It has been 
used in the development of several FORTRAN compilers that 
have proved to produce excellent object code without sig- 
nificantly reducing the compilation speed. 
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1. Introduct ion  

Since the development of the first FOnTRAN compiler, a 
major concern of compiler writers has been the production 
of efficient object code; in fact, the more efficient the better. 
However, the need for fast computation has often pushed 
efficient object code far out of the mind of the compiler 
writer. This is evidenced by the numerous one-pass com- 
pilers that have been developed recently. The need for 
fast compilation is often acute, especially in a university 
environment, where there are many programs that re- 
quire very little execution time after the debugging proc- 
ess has been completed. 

But there are also production programs, which are run 
many times after debugging is complete. Compilation 
techniques used in a compiler written for this type of 
program are different from the one-pass algorithms [1, 2, 

3, 4, 5]. The most obvious requirement of such a compiler 
is that it optimize the code written by the programmer. 
Two of the tasks of the compiler in this area are the recog- 
nition of common subexpressions and the removal of 
invariant calculations from loops. Another important 
goal is the efficient use of registers as much as practical. 

In this paper a three-pass FORTr~AN compiler to perform 
the above-mentioned optimizations is described. The de- 
sign has been used in compilers developed by Computer 
Sciences Corporation and has demonstrated that it can 
generate good object code while providing efficient com- 
pilation. 

2. Pass I: Dict ionary and Table Bui lding 

The first pass of the compiler transforms the FORTRAN 
source statements into an internal representation. During 
this pass, information is collected that is needed during 
later passes. The major tables built during this pass are: 

1. Symbol dictionary 
2. Statement-number dictionary 
3. Constant dictionary 
4. Expression dictionary 
5. Encoded source program 

Symbol, Statement-Number, and Constant Dictionaries. 
The symbol dictionary contains one entry for each variable 
and function in the source program. Each entry contains 
the attributes for the identifier. For each variable, there 
is a definition sublist that contains an entry for each state- 
ment in which the variable is potentially redefined. The 
origin of this sublist is contained in its symbol-dictionary 
node. The statement-number dictionary contains an 
entry for each referenced statement number (the state- 
ment number denoting the end of a DO is not considered 
a reference unless referred to by a GO TO or passed as an 
argument). The fall-through ease for an arithmetic IF 
does not cause the label on the statement following the IF  
to be referenced. The constant dictionary contains one 
entry for each different constant value in the source pro- 
gram. Constants are entered by value rather than in the 
character string form. During this pass, as much constant 
arithmetic as possible is performed. 

Expression Dictionary. Each distinct expression has an 
entry in the expression dictionary. Each expression is 
transformed into triad form, that is, operator and up to 
two operands. The operands allowed are pointers to dic- 
tionary entries. Whenever possible, current expressions 
use previous triads for part or all of the expression. 
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Take, for example, the following two FORTRAN state- 
ments and their corresponding expression-dictionary 
entries: 

Expression Dictionary pointers 
entry Operator Operand 10perand 2 

I = J + K  (1) + J K 
(2)  - -  I (1)  

L = J + K (3)  = L (1)  

During the encoding of an expression, all minus signs 
are moved to the highest possible position in the expres- 
sion. For example, the expression (--A --B) is encoded as 
- ( A  + B). For operations that are commutative, the 
operands are sorted and the signs changed as necessary. 
This allows A + B and B + A to be treated as identical 
expressions and, therefore, increases the likelihood of 
optimization. Another transformation made on the source 
is the explicit statement of implied expressions. For 
example, the statement I = X implies use of the IF IX 
function to convert the right-hand side of the assignment 
to fixed point. Therefore, when the expression is trans- 
formed into triads, the result is as if the following state- 
ment had been written: 

I = I F I X  ( X )  

(IFIX is a built-in FORTRAN function giving a fixed-point 
value for a floating-point argument.) 

Other implied expressions are present in the use of sub- 
scripts, since code must be generated to linearize array 
element storage. For example, consider the array dimen- 
sioned A(20, 10). The code generated for a reference to an 
element of the array, say A(I, J), would be equivalent to 
"(address of A -- 21) + (J.20 + I)". When possible, ex- 
pressions involving DO variables are factored, and con- 
stant arithmetic is performed; for example, A(I, I) be- 
comes "(address of A - 2 1 )  + (21.I)". Since only the re- 
stricted forms of subscripts were allowed, factoring was 
performed simply by moving the induction variable to the 
final position in each term and factoring the induction 
variable from all terms with I. 

The replacement of array references with their expan- 
sion in the expression dictionary provides optimized sub- 
script calculation in the same manner as arithmetic ex- 
pressions. The only implied expressions not expanded 
during Pass I are those associated with the setting, in- 
crementing, and testing of index variables of DO loops 
and expressions involving DO variables that are apt to be 
computed recursively. Each DO index is treated as a 
unique variable with the same attributes and storage 
address as the index variable written by the programmer. 
Wherever the index variable is referenced within the loop, 
the reference is made to the "created variable" dictionary 
entry rather than the programmer-named variable. This 
substitution is required because of the optimization of 
subscripts performed in Pass II  over parallel DO loops 
(DO loops in the same DO nest at the same level of nesting) 
using the same index variable. If the DO variable is used 
computationally, a flag associated with the DO loop is set 
during this pass. 

An example of some of the operations and tables has 
been derived from the FORTRAN program on the left-hand 
part of Figure 1. The symbol, constant, and expression 
dictionaries for this program appear in Figure 2. 

FORTRAN PROGRAM 

S U B R O U T I N E  
S U B  

C O M M O N  I,  J ,  K 
30 L=O 

D O  180I = 1,10 
DO 130J = I, I0 
D O  100 K = 1, 10 
GO T O  130 

80 L = L + M O D ( J ,  2) 
L = L + I S U B  (I)  

100 C O N T I N U E  
GO T O  130 

120 GO T O  200 
130 C O N T I N U E  

J = 0  
DO 170K = 1, L 
J = I + J + K / 2  16 

170 C O N T I N U E  17 
180 C O N T I N U E  18 

I = J 19 
200 IF (I -- 200) 30, 30, 20 

210 
210 RETURN 21 

END 22 

H e a d  of Lis t  

1 

2 

3 
4 
5 

6 
7 
8 
9 0 

10 
11 
12 
13 
14 
15 

9 

0 

0 
3 

8 
7 

10 11 
12 

13 
17 

18 12 

20 

21 20 

0 18 
4 13 
5 10 

6 6 

10 5 

13 17 

15 15 
17 4 

18 

0 0 l  Nc 
4 0 Nc 
5 0 Nc 

4 5 Nc 

3 No 
0 Yes 
0 No 

0 Yes 

F I G .  1. S a m p l e  p r o g r a m  

ID 
a 

bt 
b2 
ba 
b4 
eL 

e3 
d 
el 
e l  
ea 
e4 
f 
g 

Symbd dictionary list 
Definition 

Symbol Attributes list 

I Fixed,  common  19, 9, 4, 0 
J Fixed, common 16, 14, 5, 0 
K Fixed,  common  15, 6, 0 
L Fixed 9, 8, 3, 0 
M O D  Built- ln function,  fixed 0 
I S U B  User  function,  fixed 0 
1.1 Fixed,  s ame  as I in s t a t emen t  4 4, 0 
J.1 Fixed,  same as J in s t a t emen t  5 5, 0 
K.1 Fixed, same as K in s t a t emen t  6 6, 0 
K.2 Fixed,  s ame  as K in s t a t emen t  15 15, 0 

Constant 
Expression dictionary dictionary list 

Operator Operand 1 Operand 2 Value 

= L 0 1 
J 2 2 
M O D  bt 10 

+ L b2 200 
= L bs 0 
( I S U B  I 
+ L cL Statement-number 
= L e2 dictionary 
= J 0 30 
+ 1 J 130 
/ K 2 200 

J = ez 
= I J 
- -  I 200 

F I G .  2. D i c t i o n a r i e s  f o r  s a m p l e  p r o g r a m  
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Encoded Source Program. Some of the important in- 
formation needed for the optimization pass is associated 
with the executable statement and, thus, is kept with the 
encoded source program. Each executable statement is 
assigned an ascending identification number by the com- 
piler and is encoded in terms of dictionary-list nodes en- 
tered in the encoded source-program list. Each statement 
entry is in two parts: header information and the state- 
ment coding. The header part identifies the type of state- 
ment and contains the links for the nondictionary sublists 
formed during this pass. The statement encoding describes 
the various syntactic components of the statement. Figure 
3 contains examples of a possible form of statement en- 
coding. 

Statement 3: (1) Statement header 
(a) Assignment-statement ID 
(b) Subllst links 

(2) Statement encoding 
(a) Expression a 

Statement 4: (1) Statement header 
(a) DO-statement ID 
(b) Subllst links 

(2) Statement encoding 
(a) 1.1 (index variable) 
(b) I (starting value) 
(c) 10 (ending value) 
(d) 1 (increment value) 

Statement 20: (I) Statement header 
(a) Arithmetic IF-statement ID 
(b) Sublist links 

(2) Statement encoding 
(a) Expre~ion g 
(b) 30 (negative branch) 
(c) 30 (zero branch) 
(d) Fall-through (positive branch) 

Fro .  3. E x a m p l e s  of execu tab l e - s t a t emen t  encoding  

Certain entries in the encoded source program are linked 
together to form various sublists. The important state- 
ment sublists formed are: 

1. Common redefinition statements 
2. Labeled statements 
3. Branch statements 
4. Adjacent DO-element statements 
The common redefinition sublist contains one entry for 

each statement that invokes a subprogram or function 
that potentially redefines the variables in the common area. 
Generally, these are only the user-supplied functions and 
subprograms as the built-in FORTRAN functions do not use 
common except through their arguments. The second 
sublist links all statements labeled with a statement num- 
ber. The third links all branch statements and statements 
with statement-number arguments. The last sublist links 
together adjacent DO elements; that is, all DOs and 
CONTINUEs are linked together in the order encoun- 
tered in the source program. If the DO is ended with a 
statement other than its own unique CONTINUE, then 
one is supplied. Because the second pass scans the program 
backward, the encoded source programs and all sublists 
are linked in reverse order; that is, each element points to a 
preceding source program statement. The first five col- 
umns following the source program in Figure 1 give an 
example of the statement identification number assigned 
by the compiler and the linking of the four sublists. 

Because of the importance of DO loops i n determining 
the limits of removal of common subexpressions and in the 
efficient allocation of index registers, additional informa- 
tion is kept for each DO loop. First, the DO and its 
CONTINUE statement are linked to each other. Second, 
each DO statement points to the DO statement of the 
loop in which it is immediately contained. Third, each 
DO statement points to the DO statement immediately 
preceding it that  is at the same DO nesting level in the 
current DO nest. Columns 6-8 in Figure 1 show this in- 
formation for the sample program. 

After the encoding scan for pass I is completed, the 
labeled statement chain is processed to remove from it all 
unreferenced statement numbers. During pass I, only a 
reference to a statement number results in an entry in the 
statement-number dictionary. All statement numbers not 
entered during pass I can be considered unrefereneed. 
Also, during this processing, a pointer to the DO statement 
of the loop in which the statement number definition 
occurs and its level of nesting is entered into its dic- 
tionary entry. 

The entries of the branch chain are then processed to 
determine their effect on the optimizations of the DO 
loops. As the branch chain is advanced to a new entry, the 
DO element chain is advanced to the DO statement entry 
immediately preceding the new branch entry. 

Each branch entry is examined. If the branch entry is 
within a loop and references a statement number outside 
the range of the loop, the DO variable materialization flag 
is set, starting with the current loop, on each DO entry of 
the nest out of which control passes. The materialization 
flag is used to determine if the value of the index must be 
stored or may be kept in a register. If the branch entry 
references a statement number not at the outermost level, 
further processing is performed to determine whether the 
branch affects certain indexing optimizations (see Section 
5). The loop chain is scanned, starting with the current 
loop and continuing until the DO of the referenced state- 
ment number is reached. Each loop encountered with a 
level of nesting that is one greater than that of the refer- 
enced statement number is flagged as nonoptimal. An 
inner loop is defined as optimal with respect to its next 
outer loop if the inner loop is always executed a fixed 
number of times for each complete execution of the outer 
loop of the pair. This situation exists if there are no 
branches out of the loop. Figure 4 indicates the branching 
situations which make loop B nonoptimal with respect to 
the next outer DO (loop A). 

During this processing, every loop containing a transfer 
to the outermost level of the program is flagged, along with 
each loop containing a transfer into its range from this 
outermost level. Those loops having both flags are ex- 
tended-range loops and have the extended-range flag set. 

During this processing, each DO is also linked to the 
first referenced label that precedes it. If another DO or 
CONTINUE is between the DO under examination and 
the preceding referenced label, this field is set null. 

668 C o m m u n i c a t i o n s  o f  t h e  ACM V o l u m e  12 / N u m b e r  12 / D e c e m b e r ,  1969 



begin loop 

begin loop B 

end loop B 

end loop A 

from 
this 
range 

loop A 

loopB 

from 
this 
range 

Fro .  4. N o n o p t i m a l  b r a n c h i n g  ranges  

The fields for some of these items are shown in the last 
three columns of Figure 1. 

Once all this information has been compiled, the second 
pass of the compiler can begin. 

3. Pass II: Optimization 

During pass II, the source program is scanned back- 
ward; that is, from the last statement to the first. During 
this pass, it is determined where each expression of the 
source program is to be computed. As much as possible, 
common subexpressions are eliminated, and invariant 
expressions are removed from DO loops. Each nonassigu- 
ment expression of a statement is processed as encountered 
during this pass in order to determine the earliest point in 
the program flow where it can be computed. 

The process of determining where in the program to 
compute an expression represented by an entry in the ex- 
pression dictionary involves determining the range of the 
source program over which the operands of the expression 
have a constant value (ignoring redefinitions caused by 
branches to explicit or implied labels within this range). 
This process yields values called the "forward definition 
point" and the "backward definition point." Using these 
points and the DO loop structure and knowledge of 
referenced labels, the earliest location where it is theoreti- 
cally possible to compute the expression is determined. A 
node is entered in the Encoded Source Program at this 
point. This is called the expression's "compute point." 
When the expression's compute point is reached during 
this scan, the actual best "evaluation point" for the ex- 
pression is determined. 

Variable Compute Points. At the start of pass II, the 
origin of the definition sublist for each variable contains 
the location of the last node in the encoded source-program 
list where the variable was redefined. This field is called 
the identifier's forward definition point. A field called the 
backward definition point is initialized to infinity. These 
two fields define the current bounds of the source program 
over which the variable has a common value, ignoring 
redefinitions caused by transfers or calls to subprograms 
(except where the variable is an argument) within these 
bounds. Whenever a statement is encountered that rede- 
fines a variable, the definition bounds are updated by 

setting the forward definition point to the next link in the 
variable's definition sublist and the backward definition 
point to the current statement. An example of both for- 
ward and backward definition points is given in Figure 5. 

For variable I 
Forward Back'~ard 

Statement definition definition 
ID Program Range point point 

: } 0 I0 

10 I ~ : ~ 10 20 

20 I ffi 
20 30 

) 

30 READ (5, I1) I : 30 40 
) 

40 CALL: FUN (I) t 40 50 

50 I 
51 END 

50 co 

FIG. 5. F o r w a r d  and  backward  definit ion po in t s  of a va r iab le  

In order to save table space, a single pair of fields is 
similarly maintained for the definition bounds of all the 
variables in the common area. This pair is updated from 
the common definition sublist wherever a statement is 
encountered that calls a subprogram or references a func- 
tion that potentially redefines common. 

Information concerning bounds of loops of the current 
nest is kept in a pushdown list. The entire program is con- 
sidered within the range of a dummy noniterative DO 
loop in order to provide the mechanism required to move 
to the program's prologue, the evaluation of expressions 
whose elements contain no redefinition within the program 
body. The encoded source-program node location contain- 
ing the referenced statement number immediately pre- 
ceding the current processing point is maintained and up- 
dated at each referenced label. 

Expression Compute Points. The earliest point in the 
program at which the value of an expression may be com- 
puted is determined from the forward and backward 
definition points of its operands, the DO structure, and the 
referenced program labels. This point is referred to as the 
expression's compute point. At the beginning of pass II, 
the compute point fields in the expression dictionary are 
initialized to infinity. 

As the encoded source-program list is scanned, the com- 
pute point of each primary expression in the source state- 
ments encountered is compared against the identification 
number of the statement containing the expression. If the 
value of the compute-point entry in the expression dic- 
tionary is greater than the current statement-identifica- 
tion number, this is the first time the expression has been 
encountered since passing another compute point for the 
same expression, earlier in the scanning process; therefore, 
the previously determined compute point is no longer 
valid, and a new compute point must be determined. If the 
compute-point field in the expression dictionary is less than 
the current statement-identification number, the previ- 
ously established compute point has not been passed 
during the scan, and is therefore still valid. 

The first step in ascertaining the compute point of an 
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expression is determining the most limiting forward 
(lowest statement-identification number) and most limit- 
ing backward (highest statement-identification number) 
definition point of all of its operands. If an operand is itself 
an expression with an invalid compute point, this process 
is recursively applied to first learn its compute point. The 
forward and backward definition points of an identifier 
operand are obtained from its symbol-dictionary node. 
Those points are zero and infinity, respectively, for a con- 
stant, statement and format label, and built-in function 
operands. Those for all other operands (such as user func- 
tions) are the statement-identification numbers of the 
statement currently being processed. If either operand is an 
identifier in common, then the definition bounds of the 
common area are also imposed. The forward and backward 
definition points of an expression are illustrated in the 
example in Figure 6. 

Statement ID Program Range 

IO I ~ ] 
11 J =  

20 I'J: } 

25 I 

30 I*J 

35 J =  

Definition polnls lor I * Y 

Forward definition point = I1 
Backward definition point = 25 

Forward definition point ffi 25 
Backward definition point = 35 

FIG. 6. F o r w a r d  a n d  b a c k w a r d  de f in i t ion  p o i n t s  of 
an  e x p r e s s i o n  

Compute Point Flow Information. The next step in 
determining the compute point of an expression is to deter- 
mine whether the value of the expression remains fixed 
throughout the range of any DO loop. In order to do this, 
the expression's limiting forward and backward definition 
points are compared with the beginning and ending 
bounds, respectively, of each currently active DO loop in 
the pushdown list, starting with the innermost DO. If the 
definition bounds are outside the DO-loop bounds and the 
loop does not have an extended range, then the expres- 
sion's value is independent of, and may be removed from, 
the loop. If the expression contains only constants and DO- 
iteration variables, the extended range restriction does not 
apply, since the DO-iteration variables may not be rede- 
fined in the extended range. 

If the computation of an expression cannot be removed 
from any loop (see Figure 7(a)), then the expression's 
compute point is the maximum of (1) the limiting forward 
definition point of the expression and (2) the nearest pre- 
ceding statement with a referenced label. 

If the computation of the expression can be removed 
from one or more nested loops, the next step is to deter- 
mine whether evaluation may be moved through any 
loops parallel to the outermost one. If a referenced label 
exists between this outermost loop and its first parallel 
loop (see Figure 7(b)), then the compute point is the maxi- 
mum of (1) the expression's limiting forward definition 
point and (2) the encoded source-program node identifiea- 

tion of that label. If no referenced label exists between the 
parallel loops (see Figure 7(e)), the limiting forward deft- 
nition is compared with the bounds of the preceding 
parallel loops until one is found whose identification (1) 
is less than the limiting forward definition point of the 
expression, (2) has an extended range, or (3) is preceded 

I10 A = ~ Forward definition point 
and compute point [A.B 

~ Backward definition point 

FIG. 7(a) .  E x a m p l e  (a) of  c o m p u t e - p o i n t  d e t e r m i n a t i o n  

I GO 

1 0 X = I  

TO 10 

~-- Forward definition point 
and compute point 

A * B  

~-- Backward definition point 

FIO. 7(b). Example (b) of compute-point determination 

-A = ~ Forward definition point 
and compute point [ 

A * B  

~- Backward definition point 

FIG. 7(e) .  E x a m p l e  (c) of  c o m p u t e - p o i n t  de f in i t i on  

by a referenced label. The compute point becomes either 
the limiting forward definition point determined for the 
expression or the stop condition specified above, which- 
ever is greater. 

Compute-Expression Node. Each time an expression's 
compute point is determined, a compute-expression node 
identifying the expression is inserted in the encoded 
source-program list after the expression's compute point. 
The presence of this node is used by the third pass of the 
compiler to determine where to generate the code for the 
evaluation of an expression. The expression dictionary 
node for the expression is initialized at this time. In addi- 
tion to the fields discussed in Section 2, the expression- 
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dictionary node contains a field for the compute point, 
identification of the highest and lowest statements con- 
raining a reference to it, the DO-loop level of nesting asso- 
ciated with its lowest reference, and a multiple-reference 
flag field. When initialized, the multiple-reference flag field 
is set to no reference, and the highest and lowest statement 
fields are set to zero and infinity, respectively. If the ex- 
pression is a type that is not to paxticipateinsubexpression 
consideration (such as assignment equals, or subroutine 
calls) this step is skipped. 

Expression References. An expression that is directly 
referenced in the code for the statement is a primary ex- 
pression (e.g. expression in an IF statement, arguments in 
a CALL statement, the right-hand side of an assignment 
statement, or the subscript expression of the left-hand side 
of an assignment statement). Each primary expression of a 
statement is considered to be referenced directly at the 
point in the program where the statement appears. The 
operands of each primary expression and each of its con- 
tained expressions are referenced at the evaluation point of 
the expression in which they are immediately contained. 
The identification number associated with a statement is 
used to indicate the relative position of the reference point 
with respect to the other statements of the program. 

An expression node update routine is used to update the 
fields of an expression-dictionary node at each reference to 
an expression in the object program. The inputs to this 
routine axe a pointer to the expression's dictionary node 
and the statement-identification number at which the 
reference occurred. If, when entered, the highest reference 
field is nonzero, the multiple-reference field is set on. The 
highest and lowest reference fields are then updated, if 
necessary. 

Determining Evaluation Point. The following process 
yields the evaluation point. If the DO-loop level of nesting 
associated with the lowest statement reference is greater 
than the current level, evaluation of the expression can be 
removed from at least one DO loop. The head of the outer- 
most DO lo0p containing this lowest (earliest) reference is 
located; that is, the identification of each parallel DO 
statement through which the compute point was moved is 
compared with the lowest occurrence value until the high- 
est DO statement less than the lowest reference is located. 
The compute-expression node is removed from its current 
location in the encoded source-program list and linked into 
the program list immediately preceding this outermost DO 
and is flagged to indicate that the expression is evaluated 
at this point. This is the point in the program where this 
expression will be evaluated. An example of this is shown 
in Figure 8(a). The value of its highest referenced state- 
ment is added to the compute-expression node. Now the 
expression node update routine is called for each of the two 
operands of the expression, since they will be referenced in 
compiling the containing expression. The reference point 
of these two operands is the containing expression's 
evaluation point, that is, the head of the loop from which 
it was removed. 
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If the computation of the expression is not removed from 
a loop, the multiple-reference flag is examined. If it is not 
set, the compute-expression node is deleted from the list. 
If it is set, the value of the expression's highest referenced 
statement field is placed on the compute-expression node 
and is flagged for evaluation at first occurrence of the ex- 
pression. In either case, the evaluation point of the expres- 
sion is at the first occurrence (that is, lowest statement 
field) as shown in Figure 8(b). The expression node update 
routine is called for the processing of its two operands to 
give them a reference at this evaluation point. 

-10 

[ 
I * J  

~-- Compute point 
(after label) 

Evaluat~ion point  
(before DO start) 

I * J 

Fro. 8(a). Example (a) of compute-point determination 

10 ~- Compute point 

I * J ~- Evaluation point 

I * J  

Fin. 8(b). Example (b) of evaluation-point determination 

Also during this backward scan, expressions referencing 
DO-iteration variables are examined to determine their 
initializing and incrementation expressions. These expres- 
sions are added to the expression dictionary so that they 
may be part of this analysis. Also, the parallel DO pointers 
in the encoded source program list are reversed for use by 
the DO loop processing of pass II. After completion of 
pass II, the evaluation points for all expressions have been 
determined. 

4. Pass II: Register Assignment and DO Loops 

Register Assignment. In addition to the processing de- 
scribed above, pass II  can determine register assignment 
optimizations on DO loops. The processing described for 
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register assignment was developed for a multiple index 
register machine (for example, UNIVAC 1108) but can 
be extended for a machine with no dlstintion between in- 
dex and arithmetic registers. 

Each subscript expression whose value is invariant over 
the loop or limited by the DO variable of the loop is a 
potential candidate for permanent index register assign- 
ment over the range of that loop. For each loop, a list 
containing one entry for each such subscript expression is 
maintained. Each entry contains a count of the number of 
times the expression was referenced in the loop. This list is 
built during the backward scan of pass II  as the indexing 
expressions are encountered. 

When a DO statement program-list node is reached, the 
expressions to be permanently assigned to registers during 
the loop are determined. Thus, innermost loops receive 
assignments first. When reaching a DO statement pro- 
gram-list node, a variable (called N) associated with the 
loop is set equal to the number of index registers allocated 
to the indexing expressions of the inner loops of the nest. 
The N for an innermost DO is set to zero. For outer D0's ,  
N is set to the maximum N for all contained loops at the 
next level of nesting. Expressions are assigned to registers 
until the number of assignments reaches the maximum 
number of registers available for assignment (called M). 
M is dependent on the number of registers in the machine 
and on various machine and system characteristics. 

At the beginning of a DO loop it is first determined 
whether the number of subscript expressions removed 
from the loop plus the initial N for the loop is greater than 
M. If not, all of the subscript expressions can be perman- 
ently assigned, and the following sort step can be bypassed. 
If there are insufficient registers available, the list of sub- 
script expressions removed from the loop is ordered by fre- 
quency of occurrence to allow those expressions with the 
most frequent occurrence to be processed and assigned 
first. 

The entire list of subscript expressions associated with 
the loop is scanned to determine which of the expressions 
can be permanently assigned. If during examination of a 
subscript expression, N for the loop is currently less than 
M, then the subscript expression under consideration can 
always be given a permanent assignment over the loop in 
question. When this condition exists, the subscript ex- 
pression is added to the list of permanent index register 
assignments for the loop, and the effect of this assignment 
on N is then determined. If N is not currently less than M 
during examination of a subscript expression, the sub- 
script expression can be permanently assigned over the 
loop only if this assignment does not increase the value of 
N. 

To determine the effect of an assignment on the value of 
N, the list of permanently assigned subscript expressions 
for each inner DO at the next level of this nest is examined. 
If the subscript expression in question is in the list for an 
inner DO, then assignment over the current DO will have 
n o  effect on the N for the inner DO. If, however, the ex- 
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pression is not in the list of an inner DO, the N for the inner 
DO must be increased by one if the expression is perma- 
nently assigned over the outer DO (since permanent assign- 
ment over an outer DO implies permanent assignment 
over an inner DO). 

After determining the effect of a permanent assignment 
on the N's of the inner DO's, the maximum of the adjusted 
N's is taken. If it is not greater than M, the assignment can 
be made, and the N for the current loop and the N's for all 
inner loops at the next nest level are adjusted as required. 
If the maximum of the new N's is greater than M, then the 
expression cannot be assigned, and none of the N's is 
changed. 

Consider, for example, the DO nest shown in Figure 9. 

Loop ID 

A 
B 

Nesting Removed s~¢bscrip! expressions 

1, 3, 4, 2* 
1, 2, 3 

L 
I 1, 2 

Fie .  9. DO nesting. * Indicates  sorted on frequency 

When reaching the DO for loop A, subscript expressions 1, 
2, and 3 have been permanently assigned in loop B, and 
thus, Nb equals 3. Nc equals 2 since expressions 1 and 2 
were permanently assigned in loop C. Assume that h~I 
equals 4. When reaching the DO for loop A, N, is initially 
computed as 3. Since the number of subscript expressions 
(4) plus N, is greater than M, the sort on frequency is per- 
formed. Now assignment inspection begins. Subscript ex- 
pression 1 is permanently assigned over loop A without 
affecting N~, Nb, or No. Subscript expression 3 is assigned 
over loop A. However, this causes N~ to be increased to 3. 
As it turns out, subscript expression 4 can also be per- 
manently assigned. This assignment causes the three N's 
to be equal to 4. If, however, M equaled 3, then subscript 
expression 4 could not be assigned. Subscript expression 2 
may also be assigned, even though N equals M. Each sub- 
script expression that is given a permanent assignment 
and whose compute point is less than or equal to the D0-  
statement node of the next outer loop is given an occur- 
rence in that next outer loop, since the expression must be 
loaded at the top of the inner loop if not loaded perma- 
nently over the outer loop. Thus, the subscript expression 
will be considered for a permanent assignment at the next 
outer loop of the nest, even though there were no other 
occurrences within the outer loop. 

Optimal Subscripts. The compute point of subscripts 
dependent on more than one DO variable of the nest may 
often be adjusted to move the initialization to anouterloop. 
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These subscripts can be termed "optimal subscripts." A 
subscript is said to be optimal if it meets the following 
criteria: 

1. The compute sequence of the subscript is at a DO- 
statement node. 

2. The subscript contains a DO variable from an outer 
loop of the nest. 

3. The non-DO variable elements of the subscript have 
a compute point outside the next outer loop. 

4. The DO limits have a compute point outside the next 
outer DO. 

5. The subscript expression can be loaded permanently 
over the range of the next outer loop. 

6. The loop associated with the compute sequence of the 
subscript is optimal; that is, the loop is always executed a 
fixed number of times for each execution of the next outer 
loop of its nest. 

If these criteria are met, the initial value of the sub- 
script expression computed using the initial loop value for 
the DO variable can be loaded at the beginning of the 
outer loop. Each time through the inner loop, the value of 
the index expression is advanced by an increment. Each 
time the end of the outer loop is reached, the subscript ex- 
pression must be decremented by an amount to bring it 
back to its original value, taking into account the effect 
of the new value of the DO variable of the outer loop. An 
example of an optimal loop appears in Figure 10. This 
process may be repeated through as many loops as the 
criteria hold. 

DIMENSION A(10, I0) 

D O I O I  = 1,10 

DO 2 0 J =  1,10 
A(I ,J)  = 0 

20 C O N T I N U E  

10 C O N T I N U E  

Load XR1 (index register 1) with n 
Loop " D O  10" definition point I 

Loop " D O  20" definition point J 
(Address of A -- 11) + XR1 = 0 
XR1 ~ X R I +  I0 

XR1 = X R I +  1 - -  100 

F r o .  10. O p t i m a l  l o o p  e x p a n s i o n  

When a subscripting expression with a compute point at 
a DO-statement node is encountered, it is scanned to de- 
termine the compute points of the non-DO-variable oper- 
ands of the expression and the DO variable with the earli- 
est definition point. The most limiting of the two values 
becomes the outermost point to which the subscript may 
be optimized. The optimal criteria are considered at each of 
the loops of the nest either until they are found to be vio- 
lated or until the outermost point to which the subscript 
may be optimized is reached. Each time the criteria are 
met, the adjusting increment expression is determined, 
and, if it is not zero, an increment item is generated and 
linked to the encoded source program list at the associated 
CONTINUE-statement node. When the subscripting ex- 
pression can no longer be optimized, the initial value ex- 
pression of the subscript is determined by replacing the DO 
variables associated with each of the loops over which it 
was optimized with the associated initial value. An initial 
value item is generated and linked to the encoded source- 
program list at the associated DO-statement node. 
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Collapsing Loops. It  is often determined that an inner 
loop can be collapsed and combined with its next outer 
loop. For example, this happens when the program is going 
column-wise through an entire array. This occurs if the 
A(I, J) = 0 in the program in Figure 10 is replaced by 
A(,I, I) = 0. 

The criteria that must be met to combine an inner loop 
with its next outer loop are: 

1. There are no executable statements or code inserted 
by the compiler between the DO-statement nodes or the 
CONTINUE-statement nodes of the two loops. 

2. The DO variable of neither the inner nor the outer 
loop is to be materialized; that is, the DO variable is not 
used computationally within either loop, nor as an argu- 
ment, there is no branch out of the loop, and (if the DO 
variable is in common) there is no procedure invocation. 

3. All DO-variable subscripts of the loops are optimal 
and contain both of the DO variables. The adjusting in- 
crement of each of these subscripts at the ends of the loops 
must be zero. 

When these conditions are met, the inner DO is set as 
noniterative, causing phase III  to ignore the loop when it 
generates code. The upper limit of the outer loop is set to 
the initial value of the outer loop minus one plus 
the product of the number of times the inner loop would 
have been executed, the number of executions of the outer 
loop, and the increment of the outer loop. The collapsing 
process is applied until a loop is encountered that does not 
satisfy the criteria. 

5. Pass III: Code Generat ion  

This last pass over the encoded source program is made 
forward; that is, from the beginning of the program to the 
end. The purpose of this pass is to form the machine- 
language instructions. 

References to an expression which appear in statements 
bounded in the encoded source program list by an ex- 
pression-compute node and the statement indicated in the 
last reference field in the compute node refer to a common 
value of the expression. References not within such bounds 
require distinct evaluations. The current status of an ex- 
pression is maintained in the compute-point field of its 
dictionary node. When pass III  begins, all of these fields 
are equal to zero. The compute-point field is updated from 
the last reference field of an expression-compute node 
whenever such a node for the expression is encountered in 
the program list during this pass. 

When a reference to an expression is processed, the ex- 
pression's compute-point field is compared with the identi- 
fication of the statement currently being processed. If it is 
less, code is generated to evaluate the expression. Since 
this is a one-time reference to this value, it is not necessary 
to keep the resulting value available for later use. How- 
ever, if the compute-point field is greater than or equal to 
the current statement identification, the expression need 
be evaluated only if its dictionary node is flagged, indi- 
cating this as its first reference since encountering the ex- 
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pression-compute node. When the expression is newly 
evaluated, this flag is reset and the location of the result 
(register and/or temporary storage) is recorded in its 
dictionary node; subsequent references are to this location 
until the statement indicated by the compute point is 
passed. Any change in location of the expression is re- 
flected in its dictionary entry. Figure 11 shows an example 
of this sequence for a program segment. 

Statement ID 

15 

25 

35 

I * J  

I * J  

10 - -  

I * J  

I Las6 reference field 0 

~- Compute node, 
flagged as not computed 

Evaluation point, 
flagged as computed 

Last reference field = 25 

Evaluation point 
(no multiple reference) 

Fro. 11. Code generator evaluation point processing 

When a DO statement node is reached, it is necessary to 
choose the index registers to be assigned to the subscript 
expressions permanently assigned over the loop. Registers 
chosen first are those with no worthwhile values in them. 
If not enough registers are available, instructions must be 
generated to store the results of the registers being freed 
before generating the instructions to load the registers. 
When the contents of a register are stored in memory, it is 
necessary to update the corresponding expression-diction- 
ary node. Any values left in registers at the beginning 
must remain there throughout the entire loop; thus they 
can also be considered permanently assigned over the loop. 

When a register is required and a free one is not avail- 
able, it is desirable to know which of the registers contains 
the value that is referenced furthest down in the program. 
This register can then be freed leaving the other registers 
intact, since their values will be used sooner. This "next 
use" information for the values of the expressions in regis- 
ters is obtained from a sublist that is built for each ex- 
pression during pass II. There is one entry in this list for 
each time the value of the expression is evaluated and for 
which there are multiple references to that value. Each of 
these entries points to a sublist containing an entry for 
each time that value was referenced. When it becomes 
necessary to free a register, the proper sublist for each ex- 
pression currently in a register is examined and the register 
whose next reference is furthest away is selected. 

When a DO loop has an extended range, it is necessary 
that all index registers permanently assigned over the loop 
contain the same values on branching back into the loop 
as they had when the branch out was made. This is 
achieved by loading these registers with the values of the 
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globally assigned expressions at each statement whose 
statement number is referenced from outside the loop. 

6. Conclusion 
There is certain information available to the program- 

mer that is not made available to the compiler through the 
FORTRAN source program. This lack of information re- 
quires that the compiler always assume the worst case. 
For example, the process presented assumes that any sub- 
routine call potentially redefines all of the variables in com- 
mon. This severe assumption is generally not needed but is 
required in order to generate safe code. 

Thus the method described in this paper cannot guaran- 
tee an improvement in the performance of the object code. 
In fact, it is possible to degrade this performance. For ex- 
ample, if a section of code within a loop is invariant over 
the loop, the method described here removes the calcula- 
tion from the loop. If this expression appears in a section 
of the loop that is executed conditionally, it is possible 
that this value is not referenced during execution of the 
loop. In this case, a useless evaluation will have occurred. 
While the optimization techniques presented here are not 
the quintessence, several implementations of these algo- 
rithms have shown that they significantly improve the ob- 
ject code for almost all FORTRAN programs. 

Experience has shown that some of these optimizations 
actually pay for themselves. This is because the time 
needed to perform the optimization analysis is less than 
would be required to perform straightforward code genera- 
tion of the extra instructions produced when the optimiza- 
tion is not performed (for example, register assignment and 
instruction assembly). Furthermore, these compilers, while 
not achieving the compilation speeds of a one-pass proces- 
sor and while requiring adjustment for differences in 
machine speeds, have proved to be faster than most multi- 
pass FORTRAN compilers. 
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