Check for
Updates

' L. D. FOSDICK, Editor

ALGORITHM 364

COLORING POLYGONAL REGIONS [Z]

Roeerr G. Herrior (Reed. 30 Jan. 1967, 31 Oct. 1968
and 2 July 1969)

University of Wisconsin, Computer Science Department,
Madison, WI 53706

KEY WORDS AND PHRASES: coloring polygonal regions,
coloring planar surfaces, drawing pictures, shading enclosed
regions

CR CATEGORIES: 4.9

procedure drawarea (z, y, firstpoint, lastpoint, section, numrows,
numseals, regeolor, pointflag, painteclor, sgn, dir, edge);
value firstpoint, lastpoint, numrows, numseals, regeolor,
painiflag, peinicolor, sgn, dir, edge;
integer jfirsipoint, lasipoini, numrows, numseats, regeolor,
puinicolor, sgn;
real edge;
Boolean paintflag, dir;
real array z, ¥;
integer array $eciion;
comment This procedure is a part of a large program which
produces the card stunts for the Stanford University football
game half-times. The initial development was done by L. Breed,
T.. Tesler, and J. Sauter. The author (a Stanford student at the
time) made many further developments on this program which
included producing an algorithm for coloring in polygonal re-
gions. Prior to the development of this algorithm, there were
many cases which did not work. The larger program takes as
input an English description of the stunts and produces as out-
put an image of each flip (similar to a frame in a movie film),
as & rectangle that has 45 rows with 77 seats in each row. The
main program, which wiil be considered the driver program for
the purpose of the procedure drawarea, does all of the handling
of the definition of regions and also the printing of the images.
It should be mentioned that the procedure drawarea in the actual
program is just part of a larger procedure and that all of the
parameters are global in order to inerease efficiency. The pur-
pose of drawarea is to take the current regions and draw them in
the two-dimensional array section, which i8 to be declared as
seciion [L: numrows, 1: numseals] (the array is 45 by 77 for Stan-
ford). Each completed picture in section is then printed and also
written out on tape. Another program later takes this tape and
processes it to produce an instructien eard for each student
holding a set of colored cards in the rooters section.

The larger program allows objects of any shape to be defined
by a series of z, y-coordinates. It will accept a series of points
which are given an identifying name by the user and which can
then be uged as (1) a group of points, (2) a series of connected
line segments, (3) & polygonal region enclosed by the points
{with the first and last point connected by a straight line). It
also allows ellipses to be defined. Onee an object is defined, it
can be expanded and contracted in size, rotated about any fixed
point, or moved anywhere, including all or partially out of
sight. As soon as all objects are in place, the user can ask that an
image of the picture be made. Except for polygonal regions,
producing the image of these objects is trivial. The procedure

Yolume 12 / Number 12 / December, 1969

drawerea is the routine which places the polygonal regions in the
array section.

The array section is presumed to have s background color
associated with it. All objects, which alsc have an associated
eolor, are then drawn into the array in a specified order so that
the objects which are to be superimposed over other objects are
drawn last. The procedure drawares takes the coordinates of
the point (which may not be integral) from arrays x and y with
subseript values ranging from firstpoint to lastpoint and decides
which seats in array section will form the left and right bound-
aries of this new region. After the boundary is determined, the
interior must be colored in. The algorithm colors the region by
taking each row and then examining each seat from left to right.
For optimization, only the area of a minimal circumseribing
rectangle is examined. At the beginning of each row the variable
count is set to leflcount [row, 0)—righicount (row, 0], which will be
zero unless the objeet is partially out of sight on the left. Then
as long as count remains zero, the seat is on the exterior and is
not colored. As each seat i3 encountered, leficount [row, seat]
is added to counf. When count is positive, the seat is in the in-
terior or on a boundary and is colored. After each seat is proe-
essed, rightcoun! [row, seal] is subtracted from count. When
count returns to zero, the seat is an exterior seat and is not col-
ored. In any row it is possible to have the color turned on and
off saverzl times. Arrays leficount and rightcouni contain twice
the number of left and right boundaries which pass through each
individual seat. These two arrays solve the problem created by
having several boundaries passing through onc seat.

A further complication to the routine is added by allowing a
region to be gradually changing calor. Thus each region always
has a color (regeolor) associated with it, and if the region is
being swept with a new color, then paintflag is true and paint-
color, sgn, dir, and edge are used to determine the section of
the region which is to be of the new color {painicolor). The roles
of the parameters for painting are: sgn and dir indicate the direc-
tion in which the imaginary paintbrush is moving. dir = true
means the direction is horizontal and dir = false means ver-
tical. sgn = —1 means the direction is left or down and sgn = 1
means the direction is right or up. edge is the row or seat (col-
umn) where the new color (painicoler) ends and the old color
(regeolor) begins. The driver program is expected to change
edge with each new image so that the region looks as if it is
being swept by a new color.

A related algorithm which determines whether a point is
inside a polygon is presented in Algorithm 112 [1, 2].

REFERENCES:
1. Hacxer, Ricnanp. Certification of Algorithm 112, Position
aof point relative to polygon. Comm. ACM & (Dec. 1962), 606.
2. SBpIMRAT, M. Algorithm 112, Position of point relative to
polygon. Comm. ACM & (Aug. 1962), 434;
begin
integer row, seal, ioprow, righlseat, ril, lef, top, boi, ior, ioy,
inx, tny, sdx, sdy, 7, iz, iy, count;
real oz, oy, nzx, ny, dx, dy, dedy, const;
integer array leflcount, righteount [nwmrows+l1,

0: numseats+1];
integer procedure maz(z, y); value x, y; integer z, ¥;

maz = if 2 > y then 2z else y;
integer procedure min(z, y¥); value z, y; integer z, y;

min = if ¢ < y theo =z else y;
foprow := numrows 4 1;
righiseatl := numseats + 1;
for row := 0 step 1 until toprow do

for seat := 0 step 1 until righiseat do

leftcoun! [row, seal] 1= rightcoun! [row, seal] := 0;
oz := zllastpoint]l; ril := left := dox 1= oz;
= yllasipoint]; fop i= bo! := igy := oy;
comment Draw the boundary by iterating through the points;
for j := firstpoint step 1 until lastpoint do

Communications of the ACM 685

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363626.363646&domain=pdf&date_stamp=1969-12-01

begin

ne = z|§]; inz = nr;

ny = y(fl; iny = ny;

di 1= nx — ox;

dy 1= ny — oy;

&dz :== if dz < G then —1 else 1;

sdy := if dy < 0 then —1 else 1;

if Yoy = dny then

begin
comment The line is horizontal, or almost so;
comment min and max keep the point in the section;
row = max(min(ioy, toprow), 0);
seal 1= maxz(min(max (fox, inx), rightseat), 0);
righlecount [row, seat] := righicoun! {row, seal] 4 1;
seat 1= maz(min(min(iox, inz), righiseat), 0);
laftcount [row, seat] := leficount [row, seat] 4 1;

end horizontal line

else

begin
comment The line is not horizontal;
dady 1= dx/dy;

consl := if abs(dz) < abs{dy)
then oz — dxdy ¥ oy
else ox — dady X (oy — sda/2) — sdy/2;
comment Draw line between two points by stepping
through each row and determining which seat should be
marked ss the boundary;
for 1y 1= doy step sdy until iny do
begin
iz 1= drdy X 1y + const;
row := max(min(iy, loprow), 0);
seal 1= maz{min(iz, rightseat), 0);
comment Because end points are each processed twice,
we add only 1 to them instesd of the usual 2;
if dy > 0 then
begin
comment Boundary on right side of area;
rightcouni[row,seat] := righlcountlrow,seat}
+ (if fy=1oy\/ty=iny then 1 else 2)

end
else
begin
comment Boundary on left side of area;
leftcounttrow,seat] ;= leficountlrow,seat]
-+ Gf iy=1ioy\/iy=iny then 1 else 2)
end

end drawing of line;
end sloping line;
comment Move on to next line segment;
0% 1= nx; t0r 1= OF;
oy 1= my; oy 1= oy;
comment Find rectangle which circumscribes the area;
if ri? < doz then rif := t0x
else if lef > ioz then lef := 7ox;
if top < foy then top := ioy
else if bol > oy then bo! := ioy;
end bordering area;
lef := maz(l, lef); rit 1= min(ril, numseals);
bot := maz(l, botl); top := min(lop, numrows);
comment Color the area. It is only necessary to look within
the circumscribing rectangle;
for row := bot step 1 until fop do
begin
counl := leficount [row, 0] — righicovnt [row, 0};
for seai := lef step 1 until rit do
begin
cound 1= count + leficount [row, seat];

686 Communications of the ACM

if count > G then
section [row, seal] 1= if painiflag then
(if sgnX ((f dir then seu! else row)—edge) >0
then
regeolor
else painicolor)
else regeolor;
count := count — righicount [row, seall;
end coloring of ¢ne seat;
end coloring of one row;
end draworea;

The following algorithm by H. Back relates o the paper by the same
auther in the Numerical Analysie department of this {ssue orn pages 675-
érn.

Thia concwirent publication in Communisations follews a policy an-
nounced by the Editors of the two departments in the March 1987 issus.

ALGORITHM 365

COMPLEX ROOT FINDING [C5]

H. Bacu (Recd. 18 Apr. 1968 and 15 July 1969)

Laboratory of Electromagnetic Theory, Technical Uni-
versity of Denmark, Lyngby, Denmark

EEY WORDS AND PHRASES: downbill method, complex
relaxation method, complex iteration, complex equation,
transcendental complex equation, algebraie complex equation

CR CATEGORIES: 5.15

CommeNT., The present subroutine determines, within a cer-
tain region, a root of & complex transcendental equation f(z) = 0,
on which the only restriction is that the function w = f(z) must be
analytic in the region considered. The iterative method used,
the downhill method, was originally deseribed in [2] and is die-
cussed and modified in [1].

The program uses a complex function subprogram FUNC(Z)
for the computation of f{z). From a given complex starting point
ZS, the iteration is performed in steps of initial length HS. The
iterations stop at the root approximation ZE when either the
function value DE at the end point is less than the preseribed
minimum deviation DM or when the step length HE has become
less than the prescribed minimum step length M. For reference,
the subroutine also returns DS, the function value at the starting
point Z3, and N, the number of iterations used. There are thus
four input parameters, namely the starting point ZS, the initial
gtep length HS, the minimum step length HM, and the minimum
deviation DM.

AcknowrLEDGMENT. Thanks are due to Mr. Frank Jensen,
M.Sec., who helped in the testing of this algorithm.

REFERENCEB!

1. Bacu, H. On the downhill methed. Comm. ACM 12 (Dec.
1969) 675-677.

2, Warp, J. A. The downhill method of solving f(z) = 0. J.
ACM 4 (Mar, 1957), 148-150,

SUBROUTINE CRF{ZS+HS s HMeDMaFUNC DS 9 ZE vHESDE SN

THE SUBROUTINE DETERMINES A RODT OQF A TRANSCEN-
DENTAL COMPLEX EQUATION F{Z)=0 BY STEP-WISE I1TE-
RATION. (THE DOWN HILL METHOD!

INPUT-—PARAMETERS,

START VALUE OF Z#tCOMPLEX)
LENGTH OF STEP AT START,
MINTMUM LENGTH OF STER,
DM = MINTMUM DEVIATION,

ANANSS AN NO
z
o
[N]

Volume 12 / Number 12 / December, 1969

SUBPROGR AM,

FUNC(Z}s A COMPLEX FUNCTION SUBPROGRAM FOR THE
CALCULAT[ON OF THE VALUE OF FI2Z) FOR A COMPLEX
ARGUMENT 2,

QUTPUT-P ARAMETERS,

CABSIFURCIZS))=DEVIATION AT START.
END VALUE OF 2, (COMPLEX}

LENGTH OF STEP AT END.
CABS(fUNCIZE))=DEVIATION AT END.
KUMBER OF ITERATIONS.

Q
m
aonow

RESTRILT IONS,

THE FUNCTION W=F(Z) MUST BE ANALYTICAL IN THE
REGION WHERE ROOTS ARE SQUGHT,

aNaFalaNalaNalalafatalataRhia Xa e Ka Xl
re
m
Wow

REAL W(3)

COMPLEX Z20352592E52Ds224213)1CW AV IU(T) sFUNC
UI11=C14104)

UL2)=10:866075440,5000000)
UL31=(0,000000041.0000000)

Ul t=(0,965925840.2588190)

UI5)= (0, 7071068404 70710681

Ul)a(0.258819040,9659258)

UIT1={-0.258B190,0,9659258)
HaHS
20=25
N=0
<
€ CALCULATION OF DS
C
CW=FUNCIZO)
WO=ABSIREAL {{W)} +ABS [AIMAGICHW)
DS=wW0
IFI{WO=-DM) 18918131
1 K=1
I=Q
2 V=l-1e202)
o
C EQUILATERAL TRIANGULAR WALK PATTERN,
<
3 A=l-0,4500,866)
<
< CALCULATION OF DEVIATIONS W IN THE NEW TEST POINTS.
Lol
& Z01)=Z0+HrVES
CW=FUNCIZ(1)}
WU1)=ABS{REALICW] 1+ABSEATMAGICW))
ZU2)=Z0+H*Y
CW=FUNCIZE2])
WI21=2ARSIRFALICWI1+ARSIATMAGICWY)
2031 =Z0+H*CONJIGIAY»Y
CW=FUNC({Z(3})
WI3)=ABSIREALICW) 1+ABSIATMAGICHW])
N=R+]
<
€ DETERMINATIQON OF WINR)¢ THE SMALLEST OF W(I).
<
IFIWMI1I-WI(3]) 54546
S5 JF(WELI-WE2)) 7+848
& IFIWI2)=-W(3)) 8.8.9
7 NR=1
GO 10
B NR=2
GoToH 10
9 NR=3
10 IF(WO-WINR)) 11512.12
11 GOTO (134144150 4K
12 k=1
1=0
<
< FORWARD DIRECTED WALK PATTERN.
<
A={0.707+0.707)
v=(ZINR}=Z01/H
WO=WINR)
Z0=Z (NR)
TF(WO-N™) 1Bs18.4
13 k=2
¢ REDUCTION OF STEP LENGTHa
<
IF{H.LT«HM) GOTO 18
H=H%0,25
GOTO 3
14 K=13
C
€ RESTORATION 0OF STEP LENGTH.
C
HaH¥4
GOTQ 2
15 [=p+1
<
£ ROTATION OF WALK PATTERN.
<
IF1-7) 16216417
16 V=utl)
60TO 3
<
g REDUCTION OF STEP LENGTH,
17 IFIH.LT.HM) GOTO 18
H=H#0,25
1=0
GOTO 2
18 2Eg=20
HE=H
DE=W0
RETURN
END

VYolume 12 / Number 12 / December, 1969

ALGORITHM 366

REGRESSION USING CERTAIN DIRECT

PRODUCT MATRICES [G2]

P. J. Crarivgeorp (Recd. 10 May 1968 and 8 July 1969)

Division of Animal Genetics, C.3.I.LR.0., P.O. Box 90,
Epping, N.8.W., Australia, 2121

KEY WORDS AND PHRASES: analysis of variance, analysis
of covariance, regression analysis, experimental design, matrix
direct produet, projection operator, orthogonal matrix

CR CATEGORIES: 514, 5.5

procedure regressor (vec, kobs, levs, code, kfac, nfac, ndf);
value nfae¢;
integer kobs, levs, code, kfue, nfac, ndf;
real vec;

comment The mathematical basis of the algorithm which forms
the kernel of a very general analysis of variance and covariance
procedure (Algorithm 367) is set out in [5, 6]. An overwhelming
majority of the experimental designs in [2] may be analyzed in
this way. Statistical nomenclature is given in parentheses.

A vector vee, of nobs elements (sbservaiions) traced by kobs,
is replaced by ndf = nobs clements (regression coefficients)
obtained by the matrix product C7T-yee, since the matrix is
semiorthogonal, The number of initial elements is implied as
the product of the nfac values of the variable less which are
traced by kfac. Values of code, similarly traced, speeify matrices
which enter a direct product [4] to form the transforming matrix
CT (independent variales transposed). As code takes the values 0,
1, or 2, the matrices selected are I, 7, or V, i.e. the unit matrix
of order levs, the unit vector of levs equal elements, or a matrix
made up of levs — 1 mutually orthogonal unit vectars which are
also orthogonal to the previous vector (F¥-j=0and V2.V =1).
A direct product of the transposes of the selected matrices forms
the transforming matrix. An example of an actual call is shown
to illustrate tracing: evample: regressor (vec[kobs], kobs,
levslkfac], codelkfac), kfac, nfac, ndf).

The squared length of the resultant vector (sum of squares on
ndf degrees of freedom) is equal to the squared length of the
projection of the original vector in the subspace spanned by an
idempotent symmetric matrix (idiz) P. Eigenvectors associ-
ated with unit eigenvalues of thig projection operator [1] com-
prise the rows of the transforming matrix.

I = pecT Povec = veeT-C-CT-vec. (1)

The cosine of the angle between two similarly transformed vee-
tors (correlalion coefficient) is obtained in an analogous manner
from a scalar product {(sum of cross produets).

Leclueccos(§) = vecT- P-wec. @)

Prior evaluation of direet products is very wasteful of opera-
tions [3], and use is made of an identity which involves ordinary
(+) and direct (X) products:

(AXBX) -y = (AXIXI)- IXBXI)- IXIXC)y. @)

Although shown for a triple product the identity obviously
holds for any number of factors. The identity, however, is only
valid for square matrices and the rectangular § or V factors
must therefore be bordered by zeros to satisfy. In the algorithm
multiplieation by these zeros is bypassed, and after each trans-
formation the vector is packed ready for the next,

Another identity:

(AXB)-(CXD) = (4-C) X (B-D), “)

implies that the ordinary products in {3) may he taken in any
order, since the direct product facters commute. The trans-
formations should therefore be taken in the order which achieves
the largest reduction in the number of elements. Since j-faciors
achieve a reduction in the ratio levs:l, while V-faclors merely

Communications of the ACM 687

achieve levs:levs — 1, the transformations are arranged in de-

scending order of levels for j-jaciors followed by an ascend-

ing order of levels for V-faclers. Transformations requiring
the unit matrix are, of course, skipped.
ReFERENCES:

1. Banerseg, K. 8. Anoteonidempotent matrices. Ann. Math.
Staizst. 85 (1964}, 8R0-882.

2. CocuraN, W. G. and Cox, GerTrupE M. Ezperimential De-
signs (2 Ed.) Wiley, New York, 1957.

3. Goon, I. J. The interaction algorithm and practical Fourier
analysis. J. Roy. Statist. Soc. {B} 20 (1958), 361-373.

4, Marous, M. Basic theorems in matrix theory. Nat. Bur,
Standards Appl. Matkl Ser. 57 (1960), Washington, D.C.

5. NELpER, J. A. The analysis of randomised experiments with
orthogonal block structure. I. Bloek structure and the null
analysis of variance. Proc. Eoy. Soc. {A] 289 (1965), 147-162,

6. NowpER, J. A. The analysis of randomised experiments with
orthogonal block structure. II. Treatment structure and the
general analysis of variance. Prac. Roy. Soc. {A) 283 (1965),
163-178;

begin
integer ifac, jgo, nlfi, nrgt, jjac, jump, tifi, irgt, jumpheld, ilev,
Jjumpo, jumper, {up, idown, nler, moxp;
real z, v;
integer array ranks[l:nfacl;
maxp = ndf = 1;
for kfec := 1 step 1 until nfec do
begin
comment Transmit levels and determine largest factor;
rankslkfac] := nlev ;= levs; ndf 1= ndfXnlev;
if nlev > mazp then maxp := nlep

end with degrees of freedom set in null case;

maxp = — (racp+1);
for jgo := 1, 2 do
begin

comment Averaging before differencing transformations;
mfae:
begin
comment Search for best remaining factor;
nley := mazp; ifac := 0;
for kfac = 1 step 1 until nfac do
begin
tlev := (B—2Xjgo) X ranks{kfacl;
if code = jgo A ranks(kfac] = levs A\ ilev > niev then

begin
nley = ilev; ifac .= kfac
end if a better factor
end search;
if ifac > 0 then
begin

comment Process & factor;
kfac 1= tfac; nlev := levs; nlft 1= nrgt 1= 1;
for jfac := 1 step 1 until njec do
if ifac # jfac then
begin
comment Determine orders of unit matrices to left
and right;
if jfac < ifac then nlft := nlft X ranks|ifac)
else nrgt 1= nrgt X ranks[ifac]
end products;
bhegin
comment Evaluate normalization constants;
array rooi(jgo @ if jgo=1 then 1 else nley];
if jgo = 1 then rooi[l] 1= sqri(1/nlev)
else
for ilev := 2 step 1 until niev do
rooiftles] := sqri(l/(ilesX (tlev—1)));
comment Begin transformation of vector;
jump 1= 0;

688 Communications of the ACM

comment Loop over all combinations to the left;
for iift := 1 step 1 until =lft do
begin
jump 1= jump + 1;
comment Loop over all combinations to the right;
for irgt := 1 step 1 until nrg! do
begin
jumphold := jump; jump 1= jump — nrgt; z:=0;
comment Loop over active [actor;
for ilev := 1 step 1 until nlev do
begin
comment Form sum;
Jumpo 1= jump; kobs 1= jump := jump + nrgl;
if jgo = 2 A dlev > 1 Lhen

begin
comment Form difference when appropriate;
v 1= vec; kobs 1= jumpo;

vec 1= (z— (tlev—1)Xv)Xrooi[tlev]
end now do sum;
kobs := jump; z = z <+ vec

end sum and difference loop;

if jgo = 1 then

begin

comment Insert normalized average;
kobs := jumphold; wvec := z ¥ rooifl]
end insertion;

Jumper 1= jump; jump = jumphold + 1
end loop over all combinations to the right;
jump = jumper;

end loop over all combinations to the left
end block;
tup 1= nrgi X nlev; idown = if jgo = 1 then nrgt else

Tup — nrgl;
for ilft := 2 step 1 until nift do
begin

comment Compsact vector;
for irgt := 1 step 1 until nrgt do
for ilev := 2 step 1 until znlev do
if ilev < 3V jgo = 2 then
begin
kobs 1= fup = tup + 1; v 1= vec;
kobs := tdown := idown + 1; vec := v
end within block moves;
tup 1= if jgo = 1 then tup + (nlev—1) X nrgl else
tup <+ nrgt
end block moves;
comment Adjust dimensions of pseudoarray;
rankslifac] := if jgo = 1 then 1 else nlev — 1;

ndf 1= tdown;
go to mfac
end

elze go to end jyo
end labeled compound statement;
end jgo:
end loop over factor types
end regressor

ALGORITHM 367

ANALYSIS OF VARIANCE FOR BALANCED

EXPERIMENTS [G2]

P. I. Craringeord (Reed. 27 May 1968 and 8 July 1969)

Division of Animal Geneties, C.S.1.R.0., P.O. Box 90,
Epping, N.3.W., Australia, 2121

KEY WORDS AND PHRASES: analysis of va.fiance, analysis
of covariance, regression analysis, experimental design, bal-
anced experiment, missing data, interblock estimate, intrablock

estimate
CR CATEGORIES: 5.14, 5.5

Volume 12 / Number 12 / December, 1969

integer procedure balanced anova (y, missing y, x, fized effect, esti-
maie, error level, error code, all y, all =, length ¥, length ©, pooled
beln, se bela, normalized bela, error, df total, df error, tolcor,
telengih, lolmpss, tspace, nspace, ires, jres, nres, iirt, nirt, iobs,
nobs, ifac, nfac, maz cycle, check diagonality, projecior, putpy,
gelpy, pulpz, gsipz);
value tolcor, tolength, iolmpss, napace, nres, nirt, nobs, nfac, maz
cycle, check diagonality;
realy, x, all y, all z, length y, lengih x, pooled beia, se beta, normal-
ized bela, error, inlcor, tolength, tolmpss;
integer error level, errav code, df toial, df error, ispace, nspace,
ires, jres, nres, ilri, nirt, iobs, nobs, ifac, nfac, maz cycle;
Boolean missing y, fixed effect, estimate, check dingonality;
procedure projecior, pulpy, getpy, putpz, gelpz;
comment The algorithm provides analyses of variance, covari-
ance, and regression for data collected according to a wide
variety of experimental designs. The vector of elements compris-
ing sither a response (y or dependent) or a treatment (z or inde-
pendent) variate forms a conceptual complete array of nfee di-
mensions. The implied subseripts are a set of diserete variables
which define an error classification. Designs of this type include
the fully randomized, randomized block, incomplete block, spiit ({o
any order) plot, Latin (and higher) squares, laitices, et cetera, and
make up the overwhelming majority in use [3]. By means of an
appropriate transformation the frequency data of contingenoy
tables may be processed to provide partitions of chi-square [1].
A comprehensive account of the mathematieal basis is given in
14, 5].

In this implementation extensive use is made of the call-by-
name facility so that generators and routines involving auxiliary
store may freely be used for all input variables. Usually data
sets are quite small and storage of intermediate quantities
within the immediate access store is possible. In the following
notes on the formal parameters relevant tracer variables are
shown in brackets. An arrow {—) indicates that the variable is
used only as a source of information.

balanced anova: If the projection of z-variale numbered Jirt
haa & correlation coefficient exceeding lolcor with the projection
of z-variate numbered kirt in subspace ispace of the design, then
abnormal termination is forced with balanced enome = 10° X
ispace -+ 108 X jirt + kirt, Zero is returned as the value of the
procedure in the case of normal termination, Note that this
time-consuming check of the balance of the treatment model
with respect to the crror model is only performed if check diago-
nality i3 set trae.

Y, missing y (ires, iobs) — : The y-variale generntor or array
must provide trial values, e.g. the average of present elements
for the variate, for any missing data. These elements are flagged
by true in the Boolean missing y which may take the form of
an expression in terms of fres, fobs, and integer constants.

z (itrt, dobs) — : A complete specification of the orthogonal
dscomposition of the total sum of squares (and products) using
polynomials or some other form of contrast representation is
required. In the ease of troatment classifications (for example
Jaclorial expertment) the z-ariate values may be generated as a
direct produet (or as & selection of elements from such a matrix)
of a number of small contrast matrices, i.e. orthogonal matrices
with first column having elements greater than zero (usually
constant).

Jized effect (itrt, ispace) — : By setting this variable true the
flagged regression coeflicients, i.e. bela number frt in estimation
subspace number Zspace, are declared to be error free or invari-
ants. In most practical eases this facility is only relevant to the
constant term of the regression model.

estimale (itrl, ispace) — : By setting this variable false the
flagged regression coefficients are declared to be zero and are
not estimated in the indicated subspaces. Usually this facility
is not required, and the constant true is used as actual parame-
ter.

Yolume 12 / Number 12 / December, 1969

error level (ifac) — : The variable sets the number of levels
of the error classifications. If it is assumed that the conceptual
subseripts have unit lower bounds, then the upper bounds are
set. Variates (traced by fobs) must be in lexical order by the
implied subseripts, and use of = permutation array or function
may be required to achieve this end.

error code (ifae, ispace) — : Error sources of variation (esti-
mation or error subspaces) are specified by integer codes 0, 1,
or 2. The codes could be generated by means of a procedure
which interpreted a string of input characters denoting the
error siruclure of the experimental design, see [4, 5]. A set of nfac
integers specifies a projection operator which spans a subspace.
The operator is formed as the direct product of (0) identity
mairiz I, (1) averaging mairiz J, or (2) differencing matriz K =
I — J. Every element of the averaging matrix is equal to the
reciprocal of the order,
eg.! 2,001,221 KX LXGXEK XTI~ P, say.
It is required that the error subspaces be mutuslly erthogonal,
PPy = §;P; .

Code Sets for Some Common Designs

Design Codes P14-Py
Fully randomized 1 2 0
Randomized or 11 21 02 oL
incomplele
block
Split plot 111 211 021 02 011
Split split plot 1111 2111 0211 €021 0002 0111
Square or 11 21 12 22 01
rectangle
Revlicaled square 111 211 021 012 022 011
or reclangls

Three-way erossed 111 211 121 112 221 212 122 222 011

error
In certain circumstances it may be desired to work
mod(JXJX .- K%J), that is the y-variales arc adjusted to have
zero mean. In this case the first code is omitted from the analy-
sis, Usually it is convenient 1o peol the subspaces defined by
JXIX o XJTand K X J X --- X J yielding (by addition)
I X J X --- X J,and if this is reguired the first two ¢olumns
of the table are replaced by the rightmost auxiliary column.

ally fives], all = [itri], length y lires, ispace], length =z [itrt, ispace):
The lengths of the y, , projected y, and projected = veetors are
returned. Null variates (which have zero length) should be indica-
ted in, or excluded from, analysis of variance tables (et cetera)
derived from an activation of the procedure.

pooled bela, se bele [ires, itri]: The weighted mean regression
coeflicient relating y-variate number ires to z-varicle number iiri
is returned in pooled beta, and the standard error of the estimate
in se bela.

normalized beta [ires, ilrt, ispace]: Within each subspace the
regression coefficients are scaled so that it may be assumed that
the sum of squares of each (nonnull) projected z-varizte is unity.
The dyad obtained by forming all pairwise products over the
tracer ires (fixing the other tracers) is a single degree of freedom
contribution due to treatment (z-variale) number ilrt to sub-
space number {space of the analysis of variance (and covariance
if nres > 1),

error [ires, jres, ispace]: For each subspace an error covari-
ance matrix is computed. This is the only variable bearing the
tracer jres which is constrained so that jres = ires. The calling
program may make provision to pack the matrices in triangular
form using a subseript function: pack{éres] + jres, whers
packlires] = (ires¥ (ires—1)) + 2.

df total, df error [ispace]: The variables return the total and
error degrees of freedom for each subspace,

toleor: If the activation callg for a check of the orthogonality
of projected z-varicfes, then thig constant sets the value of the
correlation coefficient, which should not be exceeded in the test.

Communications of the ACM 689

iolength: A projected vector is assigned zerc length if the
ratio of the computed length to that of the unprojected vector,
multiplied by the square root of the ratio of the number of ob-
servations to degrees of freedom of the subspace, fails to exceed
this criterion,

loimpss: As a single measure of all missing data a sum of
squares is computed, If the ratio of the absolute value of the
difference betwcen this sum and that of the previous iteration

(or 0), to the current sum, fails to exceed this constant, no

further iterations are made.

ispuce, nspace, ires, jres, nres, iirt, nirt, tobs, nobs, ifac, nfac:

The identifiers with initial letter 4 or § are tracers mnemonically

related to the remaining identifiers which define the number of

subspaces, y-variates, z-variaies, observations and error factors,
respectively.

maxz cycle: An upper limit to the number of iterations re-
quired for the convergence of estimates of missing data is pro-
vided by this parameter.

check diagonality: If this parameter is true then the projected
z-variates are checked for orthogonality. While computing time
is saved by the opposite setting, incorrect resulis are computed
if an invalid assumption of orthogonality is made.

projector: Tn order to compute the consequences of projection
of variates, a choice between at least two procedurcs is made:

Pz = C-CT-z or CT-x. The idempotent symmetric projection

operator P (see [4, 5]), or the rectangular matrix made up of

the eigenvectors corresponding with unit eigenvalues (see [2]}

is used. The second alternative is preferred since the transform-

ing 1natrix is then thin, and Algorithm 366 is an implementation
of this approach.

pulpy, getpy, puipr, geipr: These procedures are concerned
with the transmission of transformed variates between arrays
internal to the algorithm and auxiliary store. While immediate
access store may be used as auxiliary store with small problems,
backing media such as magnetic drum, diglk, or tape are required
for large problems. The proccdure puipy transmits all nelm ele-
ments of a transformed y-variate to auxiliary store, while getpy
performs the reverse transmission. Similar actions on the
z-varigies are carried out by the other two procedurces. All four
routines have similar calling sequences: (vec[telm], 1elm, nelm,
ivar, ispace), where vec identifies the vector to be moved, 7elm
traces the elements of the vector, nelm (returned by projector)
specifies the number of clements to be moved, fvar gives the
variate number, and {space gives the subspace number. The ele-
ments o be moved are in the leading position in »ec, and an
appropriate instruction begins for felm := 1 step 1 until
nelm do. The last two formal parameters may be used to index
an array listing Lhe starting positions of the vectors in auxiliary
storage.

REFPERENCES:

1. CramiNgporp, P. J. The use of orthogonal pelynomials in
the partition of chi-square. Awustral. J. Staizst. § (1961), 48—
B3.

2. CrariNgeoLd, P. J. Algorithm 366. Regression using certain
direet product mairices. Comm. ACM 12 (Dec. 1969), 687-
688,

3. CocmraN, W. G, axp Cox, Gurrrupe M. Experimental De-
signs (Ed. 2). Wiley, New York, 1957.

4. NELpER,J. A. The analysis of randomised cxperiments with
orthogonal block structure. 1. Block structure and the null
analysis of variance. Proc. Eoy. Soc. {A} 283 (1965), 147-162.

5. NeLpER,J. A. The analysis of randomised experiments with
orthogonal block structure. II. Treatment structure and the
general analysis of variance. Proc. Roy. Soc. {A] £88 (1965),
163-178;

bhegin

array yy, az|lmobs]; real s, 1, v, ssmp;

inleger 1 cycle, ndf, jirt, ktrt, kres, nelm, nints;

real procedure sigma (z, 2, n);

value n;
real z; integer i, n;

690 Communicalions of the ACM

begin
real zx; zx := 0;
for 1 := 1 step 1 until n do 2z : = 22 + «;
stgme ;= ax

cnd sigma;

comment Count missing data items;

nmis 1= 0; ssmp = 0;

for ires := 1 step 1 until nres do

for iobs := 1 step 1 until nobs do
if missing y then amis = nmis - 1;

begin
comment (et space for estimates of missing data;
array y missing(l : if nmis=0 then 1 else nmis];
comment Set up loop for missing data iteration;
for 7 eycle := 1 step 1 until maz cycle do

begin
comment Analyze data in various crror subspaces;
for ispuce := 1 step 1 until nspoce do
begin

comment Determine subspace degrees of freedom;
if ¢ eycle = 1 then

begin
comment Only compute degrees of freedom onece;
ndf = 1;

for ifac := 1 step 1 unlil nfac do
ndf 1= ndf X (Gf error code=0 then error level
else if error code=1 then 1 else error level—1);
df total := ndf
end
else ndf := df total;
comment Project response vectors;
nmis 1= 0;
for ires := 1 step 1 until nres do
hegin
comment Ietch a vector, and possibly fit missing
data;
for zobs := 1 step 1 until nobs do
if missing y then
begin
nmis = nmis 4 1;
if tspace = 1 then y missinglnmis] 1= if 7 cycle = 1
then y
else stgma (pooled beiaXzx, tirt, nirt);
uyliobs] 1= y missing{nmis]|
end
else yyliobs] := y;
if ispace = 1 then all y := sgrilsigma(yyliobs] T 2, 10bs,

nobs));
projector (yy[iobs), tobs, error level, error code, ifac, nfac,
nelm);
jres 1= ires;
error 1= stgmalyy(iobs] T2, iabs, nelm);

length y = if sgri({errorXnobs)/ndf)/all y > lolength
then sgrilerror) else 0;
pulpy{yyliobs], tobs, nelm, jres, ispace);
for jres := 1 step 1 until ires — 1 do
begin
comment Determine sums of eross products;
getpy(xz[iods], tobs, nelm, jgres, ispace);
error = sigma(yy[iobs|Xxz|iobs], fobs, nelm)
end cross products
end dependent variates;
comment In the first cycle project treatment vectors;
if © cycle = 1 then
for jiri := 1 step 1 until nirt do
if esiimale then
begin
comment Only work on variates included in regres-
sion;

Volume 12 / Number 12 / December, 1969

iirl 1= jirl;
for 70bs := 1 step 1 until nods do zx[iobs] := z;
if 4space = 1 then all z := sqri{sigma(vaiobs] T 2,
z0bs, nohs));
projeclor (xa[iobs), iabs, error level, error code, ifac, nfac,
nelin};
i := sigmae{zz[tods] T 2, tobs, nelm);
s 1= lengih z = if sqri((iXnobs)/ndf)/all x > tolength
then sgrt(l) else 0;
if s > 0 then
begin
comment Null variates are skipped;
putpz{zzliobs], tobs, nelm, iirl, ispace);
if check diagonality then
for kirl := 1 step 1 until jirt — 1 do
if estimale then
begin
comment Orthogonality checked for variates
in regression;
itrt 1= kirl; v 1= length x;
if ¥ > 0 then
begin
comment Null variates are skipped;
getpx (yyliobs), dobs, nelm, itrt, ispuce);
if abs(sigma(raliobsIXyyliobs], iobs, nelm))/
(sXv) > tolcor then
begin
comment Forve termination since ex-
cesgive correlation;
balanced anova := 1000 X (1000Xispace+
jirt) + ktri;
go to exit
cnd large correlation
end if secondary variatc has projection
end secondary variate loop
end if primary variate has projection
end primary variatc loop; -
comment Compute normalized regression coeflicients;
for iirt := 1 step 1 until niri do
if length x > 0 A\ estimate then

begin

comment Skip null or not in regression independent,
variates;

ndf 1= ndf — 1;

getpx (zxiobs], fobs, nelm, tirt, ispace);

for ires := 1 step 1 until nres do
if length y > 0 then
begin

comment Skip null dependent variates;
gelpy (yyliobs], tobs, nelm, ires, tspuce);

normalized beia 1= sigma{xx[iobs]Xyyliobs], iobs,
nelm)/length x
end
else normalized beta := 0
end
else for ires := 1 step 1 until nres do normalized beta
= 0,

df error 1= ndf;
comment Reduce sums of squares and products for
regression;
for irt := 1 step 1 until nirf do
if length x > 0 A estimate then
begin
for kres := 1 step 1 until nres do
for jres := 1 step 1 until kres do

begin
ires 1= jres; § := normalized Dela;
ires := fres; error := error — s X normalized bela

end dyad reduction leops
end normalized regression coefficient computation;

Volume 12 / Number 12 / December, 1969

comment Determine true regressions and information;
for ires := 1 step 1 until nres do
hegin
for jres := 1 step 1 until ires do
error := il lengthy = 0 \/ ndf = 0 then 0 else error/ndf;
jres 1= fires;
for itrt := 1 step 1 until nirt do
begin
commenl Clear arcas at start;
if ispace = 1 then pooled Dela := se bela := O,
if esitmaie then
begin
comment Set information ag unity for fixed
effects;
t 1= if fixed effect /\ length z > 0 then 1 else
if ndf = 0 thea 0 else length =T 2/ (f error=0
then 1 else error);
se beta := se beta 4 i;
pooled bela := pooled beta 4+ t X (if length x=0
then 0 else normalized beta/length z)
end of addition to pools
end independent variate loop
end dependent variate loop
end error subspace loop;
for ires := 1 step 1 until nres do
for ilrt .= 1 step 1 until ntri do
if se beie > 0 then
hegin
comment Compute weighted means and standard
eLTOTS;
pooled beln := pooled beia/se belu;
se beta := sqri(l/se beia)
end average;
if nmis > 0 then
begin
comment Check convergence of missing items;
s .= sigma(y missingliobs] T 2, {obs, nmis);
if abs(s—ssmp)/s > tolmpss then ssmp 1= s
else go to finish
end missing data convergence test
end cycle;
Jfinish: balanced anove 1= 0;
exil:
end block
end balanced anove

CERTIFICATION OF ALGORITHM 147 [S14]

PSIF [D. Amit, Comm. ACM & (Dec. 1962), 605]

RonaLp (. Parsons* (Reed. 7 Dec. 1966 and 5 Aug.
1969)

Stanford Linear Aceclerator Center, Stanford University,
Stanford, CA 94305
* Present address: Department of Physies, The University of

Texas, Austin, TX 78712. Work supported by the US Atomic
Energy Commission.

KEY WORDS AND PHRASES: gamma function, logarithmic
derivative, factorial function, psi function
CR CATEGORIES: 5.12

The following errors were noted in this algorithm in addition
to those noted by Thacher [2].
a. (4) in the comment should read “For —zx < —1 we use: (4)
F(~2) = ¥(@—1) + = cot (az)”.
b. At the end of the first comment add: “Note that psif(z) =
w(z) is ¢(z+1) as defined, for example, by Jahnke-Emde-Lisch”
(see [1]).

Communications of the ACM 691

¢. The statement in the algorithm before the label pos should
read: pst := pei X cos (peiXz)/sin (peiXx); These errors caused
the procedure to give incorrect results for psif(z, a) forz < 1.
d. The arguments {an and In should be deleted from the parameter
list and real procedure fax, la; should be deleted {rom the speci-
fication part of the procedure heading,

With these changes and those of Thacher, the procedure was
translated into Burroughs B5500 extended A1coL and run on the
Stanford Bb0CO. psif(z, ¢) was tabulated for z = —2.9(0.1)5.0
with @ = 8.0 The results agreed with tabulated values to within
1/(240a8).

REFERENCES:

1. Jaunge-EMpe-LoscH. Tables of Higher Functions (Gth Ed.).
MeceGraw-Hill, New York, 1960.

2. Taacrer, H. C., Ja. Certification of Algorithm 147. Comm.
ACM & (Apr. 1963), 168.

CERTIFICATION OF ALGORITHM 229 [B1]

ELEMENTARY FUNCTIONS BY CONTINUED

FRACTIONS [James C. Morelock, Comm. ACM 7 (May
1964), 296]

T. A. Bray (Reed. 18 June 1964)

Boeing Scientific Research Laboratories, Seattle, WA 98124

KEY WORDS AND PHRASES: Padé

table
CE CATEGORIES: 5.19

continued factions,

Algorithm 229 was coded in ForTRAN II and run on the TBM
1620 computer for £ = Q.50 and 0.75, for n = 1, 2, 3, 4, and for
parm = 1,2,3,4,5, 6,7,

For 2 = 0.50 my values agree with the author’s up to 107"

For z = 0.75 and n = 4, my values of sin 2, cos », tan x, and
exp z agree with tabulated values to within 107", For the same
z and » my values of sinh x, and cosh z, and tanh =z agree with
tabulated values to within £1071°; no tables were available to
check the 11th decimal.

REMARK ON ALGORITHM 300 [522]

COULOMB WAVE FUNCTIONS [J. H. Gunn, Comm.
ACM 10 (Apr. 1967), 244]; CERTIFICATION OF
ALGORITHM 300 [K. 8. Kélbig, Comm. ACM 12 (May
1969), 279]

K. 8. Kérpia (Reed. 14 Apr. 1969)

Data Handling Division, Furopean Organization for
Nuclear Research (CERN), 1211 Geneva 23, Switzer-
land

KEY WORDS AND PHRASES: Coulomb wave functions, wave
functions, special functions, funetion evalustion
CR CATEGORIES: 5.12

Recently, Isacson (1) pointed out that the coefficient of 7192 in
the known asymptotie expansion for the irregular Coulomb wave
function Gy, p) on the transition line p = 2y was erroneous.

In addition, he gave the expansions for Fy, Gy, Fo¢" and &y’ up
to order y~f, whereas the old expansions were given to order
7% only,

Therefore, and for reasons of speed, the relevant part of Algo-
rithm 300 should be changed as follows:

begin comment G[0] and Gd[0] are caleulated on the transition
line for rhom = 2 X eia, ref. Isacson in remark;
array ¢{[1:12]; real eil;
elll} :=ela T (—24);

692 Communications of the ACM

for i := 2 step 1 until 12 do ei[i] := et[l] X efli—1};
efl :=ela T (34);
G0] := 1.223404016 X efl X (1 -- 0.04259570165 ¥ e 2]
—0.008888888889 X et [3] + 0.002455199181 X et [5]
~0.0009108958061 X ef [6] -+ 0.0008453619909 X e! [8]
—0.0004096926351 X et [9] 4 0.0007116606205 X ef [11]
—0.00002439615603 X et [12]);
Qd[0] 1= (—0.7078817734/e1l) X (L — 0.1728260369 X et [1)
- 0.0003174803174 X et [3] — 0.003581214850 X ef [4]
--0.0003117824680 X et [6] — 0.0009073966427 X et [7]
+0.0002128570749 X el [9] — 0.0006215584171 X et [10]
+0.00003685244766 X e [12]);
rhom 1= 2 X ela

end;

Furthermore, it was found in this connection that replacing the
firgt line of the fourth 4f statement of the algorithm by
if eia < 4 A ela < rho/2 then
gives, together with the above expansions, better results for
p = 2y in test (iii) and forp = 3,7 = 5 intest (i) of the Certification.
The relevant statements in test (iii) of the Certification should
therefore be replaced by the following ones:
Fop— lunitforp =5,p = 6, and p = 8.5.
Fo' — 1 unit for p = 6.
Go — 1 unit for p = 5.5,
Gy — 1 unit for p = 5,
REFERENCE:
1. Isacson,T. Asymptotic expansion of Coulomb wave functions
on the transition line. BIT 8 (1968), 243-245.

p = 16, and p = 30.
5,

REMARK ON ALGORITHM 341 [H]

SOLUTION OF LINEAR PROGRAMS IN 0-1

VARIABLES BY IMPLICIT ENUMERATION
(J. L. Byrne and L. G. Proll, Comm. ACM 11 (Nov.
1968), 782]

L. G. ProuL (Recd. 5 Dec. 1968 and 18 Aug. 1969)

University of Southampton, Department of Mathematices,
Hampshire, England

KEY WORDS AND PHRASES:

variables, partial enumeration
CR CATEGORIES: 541

linear programming, zero-one

The published algorithm contains an error in the assembly of
the initial partial solution, 8, if & priori information is given. In
certain eases this can cause premature termination of the algo-
rithm. The error may be corrected by replacing the following lines
of the procedure body, from

begin
for j := 1 step 1 until n do

to
e:=mn; z:=A[0,0]; go te LO;
by
begin
e := 0;

for j := 1 slep 1 unltil n do
if z[j]1 = O then ¢[j] := 0
else
begin
e:=¢+1; sle] := 7; wofj] := 33
for 7 := 1 step 1 until m do
Ali, 0] := A[L, 0] + A[i, il
end;
z := A0, 0]; go to LO;
and by deleting the line
if gpi then begin api := false; go to I4 end;

Volume 12 / Number 12 / December, 1969

Al
Al
Al

Bl
Bl

Cl
Cl

cz2
€
.2

[9]
[:]
[o%-]
Ch

)
[#1:]
-]
ce

El
El
£l
1

E2
Ez
re
E2
E2

E&
E4
E&
E4
E4
E4

FL

Fl
FL
FL
Fi
Fl

Fz2

F2
F2

Fa
Fo
Fé

Index by Subject to Algorithms, 1969

[Algorithms not in CACM have been included, when known to ual]

REAL ARITHMETIC, NUMBER THEORY Fs OR THOGONALIZATION
356 PRIME NUMBER GENERATOR 10-69({563) F5 358 SING.VAL.DECOMP,—COMPLEX MATRIX 10-859(564}
357 PRIME NUMBER GENERATOR 10=69(563 }
GL SIMPLE CALCULATIONS ON STATISTICAL DATA
TRIG AND INVERSE TRIG FUNCT]ONS 1 359 FACTORIAL ANALYSIS DF VARIANCE 11-69i{631)}
229 ELEMENTARY FCNS,.BY CONT.FRACT. 5-64(296),12-69(692)
G2 CORRELATIOM AND REGRESSJON ANALYSIS
. o - 87)
DPERATIONS DN POLYNDMIALS AND POWER SERLES G2 366 REGRESSION-DIR.PROD.OF MATRICES 12-65(6
337 POLY.AND DERIV.BY HORNER SCHEME 0-68(833),1-69(39) 62 267 ANALYSIS OF VAR.-DIRECT EXPAT, 12-63(688)
. 65 RANDOM NUMBER GENERATORS
ZERGS OF POLYNOMIALS - -59
340 KT-SOUARING AND RESULTANT METH. 11-68(779),5~69(281) O2 33% NORMAL RANDOM DEVIATES 1684881, 5-69(281)
ROTATING-CROSS METHDO BIT 15671244)
66 PERMUTATJONS AND_COMBINATION
- - G& 308 PERMUT.IN PSEUODLEXIC.ORDER T=671452)+11-69{638)
LEROS_DF_ONE OR_MORE TRANSCENDENTAL EQUATIONS G& 329 DISTR DF INDISTINGUISHABLE 0UBJ 6-68{4301,3=69(147)
314 N FUNGTIONAL EQNS.IN N UNKNOWNS 11-67(726),1-69(38) G6 361 PERMANENT FNC.OF SOUARE MATRIX 11-69{634}
315 DAMPED TAYLR SERIES-NONLIN.SYS, 11-67(726),9~63(513) ERMUTAT 1ONS 11-691(634)
385 COMPLEX ROUT FINDING 12-6916861 G& 382 RANDDM PERMUTATICN
G5 PARTITION FUNCTIONS-MDD(D} BIT 1969(83)
SUMMATION DF SERIES, GCONVERGENCE ACCELERATICON H OPERATIONS RESEARCHs GRAPH STRUCTURES
255 FOURTER CHEFFICTENTS 5-653(2791411-690636) H 333 MINIT ALGORITHM FUR LIN PROG 6-681437T), T-69{408)
339 FAST FOURIER W1TH ARB. FACTORS 11-6B{776).3-63(187} H 341 LINEAR PGMS.IN 0O-1 VARTABLES LL=6B{T821,12=69(692)
345 CONVOLUTION BASED ON FFT 3=69(179},10-69(5658) H 350 SIMPLEX METHON=LU CECOMPOSITION S=69{275)
H 354 SPANNING TREE GENERATOR 9-69(511)
H 360 SHORTEST PATH FOREST-TOPOL.ORD, 11~69{632)
QUAORATURE
331 GAUSSITAN QUADRATURE FURMULAS 6-68{4321,5-691280)
351 MODIFIED ROMBERG QUADRATURE 6591324) Jb £LOTTING
353 FILON OUADRATURE B-69(457} J6 A CURVE PLOTTING PROCEDURE COMP,J.V121291)
INTERPOLATION K2 RELOCATION
SPLINE INTERPOLN OF DEGREE 3 COMP.J.V12(198) K2 302 TRANSPOSE VEGTOR STORED ARRAY 5-67(292),6-6%(326)
QUINTIC SPLINES INTERPOLATION COMP.J.V12!1292)
SMODTH CURVE [NTERPOLATION BIT 1569(69)
Ml R
ML 347 SORT WITH MINIMAL STORAGE 3-691185}
GURVE AND_SURFACE FITTING Ml A SEARCHING ALGDRTTHM COMPLJ.VI2(101)
296 LEAST SO.FIT-NRTHOG.POLYS. 2-6TLHT) ,6=6T(377],
296 11-831636)
EXPONENTIALLY=DAMPED LINEAR FIT CUMP.J.V12{1D0} R2 SyMBOL MANIPULATION
RATIONAL CHEBYSHEV APPROX. NUM.MATH. VS (177} R2 268 ALGDL &0 REF.LANG.EOITDR 11=65{867), 1=69{407)
KATIONAL CHEBYSHEV APPROK, NUM MATH, V12(242)
5 APPROXIMATION OF SPECIAL FUNCTIONS
MINTMIZING OR MAXIMIZING A FUNCTION s FUNCTIONS ARE CLASSIFIED SOL TO S22, FOLLOWING
178 DIRECT SEARCH 6=630313),9-661684), S FLETCHER=MILLER—BOSENHEAD, INDEX OF MATH. TABLES
_ _ _ S14 147 CERIVATIVE OF GAMMA FUNCTION 12-62{505)44—-63(1681,
178 7-68(498),11-691637),11-631638) S14 149 irie0(691)
251 FUNCTION MINIMIZATION 3-65(169),9-66{568b6), $14 322 F-D[STRIBUTION 2=66(116],1-69139)
251 9-691512) : - - 1=
215 MINIMIZING SUM OF SQUARES 11=67(726),9=69(513) g}: giz 21?25?7;205;E}E}§122710” 5:23:?;z:
S14 349 PDLYGAMMA FNS — ARB, PRECISION 4-69(213)
S15 304 MORMAL CURVE INT IAPSTE A
MATRIX DPERATIONS, INCLUDING JNVERSION 1o 304 eneat oSy NrEoRaL QIEITAN Am6TU3TT],
274 HILBERT DERIVED TEST MATRIX 1660111, 7-69(407) 515 363 CDOMPLEX ERRO FUNCT _
298 SO.RT.OF A POS.DEFINITE MATRIX 3=-6711821,6-69(325) S1b AREAS UNDER #HE NgRagr CURVE ééng?j?a?;‘lQT)
348 MTRX SCALING 8Y INTGR PROGRMING 4-69(212] Slo 47 ASSOCIATFD LEGENDRE FUNCTION 4-61(17H1,8-63(445),
358 SING.VAL,DECOMP,~COMPLEX MATRIX 10-69(564) S16 47 11-891635)
TRIDIAG. OF SYM, BAND MATRIX NUM.MATH,VIZ(Z34) :
A . . 3 $21 165 FLLIPTIC INTEGRAL 4-63(163),1-69136}
SIMJRED.GEN.MTX . HESSENBERG FORM NUM.MATH.VI2(354) s71 FLLIPTIC INTEGRALS-KINDS 1,2,3 NUM.MATH.;?IBS).
521 V7(343),V13{309)
522 292 REGULAR CUULMME WAVE FCNS, 11-66(793),5-69(278},
ELGENVALUES AND EIGENVECTURS OF MATRICES S22 292 5-59(2R0)
MOD.LR.-CMELX HESSENBERG MATRIX MUMJMATH.VI2{372) S22 300 COULOMB WAVE FUNCTIONS 4-87(245)45-69{279),
IMPLICIT QL ALGORITHM NUMOMATH,V12{379) 522 300 17-691692)
BALANCING A MATRIX NUM,HATH.V13(298) 522 352 CHAR.VALS.SLNS OF MATHIEU'S DE, 7-69(399)
SIFULTANEQUS LINEAR EQUATIOUNS 4 ALL OTHERS
328 CHEBY SOLN-OVERDET LINEAR SY5 6-62(428),6-69(326) Z 355 GENERATE ISING CONFIGLRATIONS 10-69(562)
358 SING.VALLUECOMP,,~COMBLEX MATRIX 10=69(5hA%) Z 3464 COLORING POLYGONAL REGIDNS 12-69(685)

Key. The first column, Al, B, Cl, is the key to the elassification system categories; second eolumn: number
of the algorithm if in CACM; third column: algorithm title; fourth eolumn: month, year, pages (in parentheses)
in CACM or reference elsewhere. This 196% index is the first supplement to the Index by Subject to Algorithms,
1960-1968 (Comm. ACM 11, 12 (Dec. 1968), 827-830),

Volume 12 / Number 12 / December, 1969

Communieations of the ACM

693

