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ABSTRACT

Software pipelining is an essential optimization for accelerating
High-Performance Computing(HPC) applications on CPUs. Mod-
ern CPUs achieve high performance through many-core and wide
SIMD instructions. Software pipelining is an optimization that pro-
motes further performance improvement of HPC applications by
cooperating with these functions. Although open source compilers
such as GCC and LLVM have implemented software pipelining, it is
underutilized for the AArch64 architecture. We have implemented
software pipelining for the A64FX processor on LLVM to improve
this situation. This paper describes the details of this implemen-
tation. We also confirmed that our implementation improves the
performance of several benchmark programs.
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1 INTRODUCTION

Software pipelining is an essential optimization for accelerating
High-Performance Computing(HPC) applications on CPUs. Mod-
ern CPUs achieve high performance through many-core and wide
SIMD instructions. Software pipelining is an optimization that pro-
motes further performance improvement of HPC applications by
cooperating with these functions. Although open source compil-
ers such as GCC[14] and LLVM[7] have implemented software
pipelining, it is underutilized for the AArch64 architecture.

We have implemented software pipelining for the A64FX processor[9]

on LLVM to improve this situation. The A64FX is an out-of-order su-
perscalar processor designed for HPC, compliant with the ARMv8-A
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architecture profile. The A64FX supports the Scalable Vector Exten-
sion (SVE) instructions, a vector extension of the ARM instruction
set architecture. The A64FX supports 128, 256, and 512-bit SVE
vector lengths.

There have been many previous studies on software pipelining[1],
and comprehensive data on the relationship between various al-
gorithms and CPU architecture exist. However, the A64FX differs
from the CPUs considered in these studies in the following ways:

e It achieves high performance by utilizing wide SIMD instruc-
tions.

o The instructions have an overall long latency.

e It has a complicated execution flow that divides one architec-
tural instruction into multiple micro-operation instructions
and executes them.

e Under various conditions, additional penalty cycles occur
during these micro-operation instructions.

These features of the A64FX require additional efforts to implement
software pipelining.

This paper describes our current work on introducing software
pipelining for the A64FX into LLVM. The rest of the paper is orga-
nized as follows. Section 2 describes the current status and issues
of software pipelining for LLVM. Section 3 describes the details of
our implementation of software pipelining for the A64FX. Section 4
describes performance evaluation. Section 5 describes future work.
Section 6 provides conclusions.

2 CURRENT STATUS AND ISSUES OF LLVM

LLVM 17 has a MachinePipeliner pass as an optimization pass
to perform software pipelining. The architectures using the Ma-
chinePipeliner pass are ARM, Hexagon, and PowerPC, and AArch64
is not supported. The algorithm used by MachinePipeliner is the
Swing Modulo Scheduling(SMS)[10] algorithm, characterized by
short-time optimization and register-constraint-aware kernel gen-
eration. However, some previous research[3] has shown that the
ITterated Modulo Scheduling(IMS)[13] algorithm produces better
results than SMS for complex architectures.

The MachinePipeliner pass applies the optimization in Static Sin-
gle Assignment(SSA) form[4] and maintains the SSA form for the
instruction sequence generated by the optimization results. For this
reason, the MachinePipeliner pass can use the subsequent register
allocation pass without modification after its optimization. The
problem with this implementation method is that it requires many
PHI instructions to maintain the SSA form after the optimization,
and these PHI instructions become register-to-register COPY in-
structions as a result of non-SSA conversion and remain as COPY
instructions after register allocation, which may damage the sched-
ule results. Furthermore, because the MachinePipeliner pass and the
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register allocation pass are independent, the MachinePipeliner pass
cannot guarantee that the register allocation pass will not generate
spill code in the kernel part generated as a result of its optimiza-
tion. In addition, although it is important for software pipelining
to cope with the shortage of architectural registers, for example,
to alleviate register pressure by Stage Scheduling[5] and spill code
generation[16], the MachinePipeliner does not currently implement
these functions. Moreover, MachinePipeliner does not perform Mod-
ulo Variable Expansion(MVE)[6]. As a result, MachinePipeliner has
the advantage of being able to reduce the code size of its optimiza-
tion results. The trade-off is that the optimized kernel will retain
register-to-register COPY instructions, and these instructions may
cause performance degradation.

Detailed analysis of loop dependency distances, loop unrolling,
loop distribution/fusion, and other coordinated operations to adjust
loop sizes and instruction types enhance the optimization effects
of software pipelining. However, LLVM does not realize the coop-
eration of these functions.

Software pipelining can optimize various innermost loops, but
when applied to loops with a small number of executions, the
overhead of executing additional preprocessing and postprocessing
code can adversely affect performance. It is also desirable to apply
software pipelining after unrolling the loop an appropriate number
of times, considering the instruction dependencies inside the loop
and the usage status of hardware resources. Since it is generally
difficult for the compiler to make these judgments automatically at
compile time, a mechanism that allows the user to give optimization
instructions by specifying directives in the source code would be
useful, but LLVM does not currently have such a feature.

The description processed by LLVM’s TableGen program can
express in detail the scheduling model for the instructions for the
target CPU. This description specification can describe the divi-
sion of an architectural instruction into multiple micro-operations.
However, the current description specification cannot specify the
pipeline that executes each divided micro-operation or express
changes in latency due to dependencies between micro-operations.

3 SOFTWARE PIPELINING IMPLEMENTATION
FOR THE A64FX

This section describes the details of our implementation of software
pipelining for the A64FX processor on LLVM. Our implementation
of software pipelining for the A64FX has the following features:

e We adopt Iterated Modulo Scheduling as a scheduling algo-
rithm.

e Our implementation extends the LLVM scheduling model
for the A64FX.

e We perform instruction scheduling in non-SSA form.

e Our implementation applies Modulo Variable Expansion if
necessary due to instruction scheduling.

e We perform register allocation to the kernel part after in-
struction scheduling.

e We have introduced countermeasures for register shortages
due to register allocation.

Algorithm 1 shows an overview of our implementation’s process-
ing flow within the software pipelining pass. Our implementation
applies software pipelining to a loop consisting of a single basic
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block, resulting in the control flow graph shown in Figure 1. Imple-
mentation details are described in the following sections.

Algorithm 1: An overview of our implementation’s pro-
cessing flow within the software pipelining pass
INPUT :Basic Block BB
OUTPUT :{SUCCESS, FAILURE}
Perform various preprocessing steps
Convert BB to non-SSA form
II « Calculate minimun II

regshort « false
genspill « false
while true do
II < Execute Iterated Modulo Scheduling (II)
if II does not improve the performance of the original
loop then
if regshort == false or genspill == true then
Give up applying software pipelining
L return FAILURE
Introduce spill code to relieve register pressure
genspill « true
II « Recalculate minimun II
continue

Execute Stage Scheduling
Apply Modulo Variable Expansion if necessary
Allocate registers to the kernel part
if Register allocation was successful then

L break

else if The failure was due to instruction format
constraints then

Insert COPY instructions
L II « Recalculate minimun II

else
regshort « true
IIe—II+1

Generate the resulting optimized code including the extra
loop

Replace BB with the optimized code and update CFG

return SUCCESS

3.1 Various pre-processing

As a preprocessing before applying software pipelining, we analyze
the basic blocks to be optimized, detect the number of loop rota-
tions, and rewrite them into a form that is easy to apply software
pipelining.

In addition, our implementation decomposes the pre and post-
indexed instructions of the AArch64 instruction set into load or
store instructions and address addition instructions at this stage to
increase the flexibility of scheduling those instructions.
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Figure 1: Control flow graph of optimization results

3.2 Converting non-SSA form

To prevent scheduling results from being corrupted by COPY in-
structions generated from LLVM’s non-SSA transformation[2], our
implementation converts the basic block to non-SSA form before
optimization. With this, we delete PHI instructions, create an in-
struction sequence that includes the minimum necessary COPY
instructions, and execute instruction scheduling. Although there is
room for selection in the position to generate the COPY instructions
required when deleting PHI instructions, in our implementation,
at this point, we are minimizing the number of COPY instructions
that appear in the instruction sequence that we are scheduling. We
convert only the KERNEL part in Figure 1 to the non-SSA form,
and for other basic blocks, by maintaining the properties of the
SSA form, we can use the subsequent PHI deletion and register
allocation pass of LLVM. As a result of the non-SSA conversion at
this stage, we can only deal with architectural instructions that are
finally output as assembly code during instruction scheduling.

In addition to the PHI and COPY instructions, which are pseudo
instructions related to the SSA form, LLVM uses subregister-related
instructions as pseudo instructions that express restrictions for reg-
ister usage(INSERT_SUBREG, SUBREG_TO_REG,REG_SEQUENCE). Our
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implementation removes these subregister-related pseudo instruc-
tions after saving their constraint information needed for register
allocation at this stage and avoids handling them during instruction
scheduling.

3.3 Iterated Modulo Scheduling

We use IMS algorithm as the software pipelining algorithm in our
implementation. Some previous research[3] has shown that the
IMS algorithm produces better results than SMS for complex ar-
chitectures. The A64FX is a more complex CPU than the complex
architectural model used in this paper. The A64FX has longer in-
struction latency than its complex architectural model, and the
method of executing instructions is also more complicated. The
A64FX has a complex implementation that divides one instruction
into multiple pOP instructions and puts each one into the available
pipeline for execution.

For example, we explain the schedule model of architecture
instruction LD2W (scalar plus scalar) in the A64FX. The A64FX
decomposes this instruction into pOP instructions for one address
calculation (#OP0) and two data loads (¢OP1 and pOP2), and it
submits the operation to either the EAGA or EAGB pipeline (Ar-
chitecture Manual [9] Section 16). Therefore, even if there is no
effect of other instructions, there are eight execution patterns for
this instruction, as shown in Table 1. The address calculation has a
latency of 1 cycle, and the load of the two data takes the address
value of the calculation result as an input and has a latency of 10
cycles. Figure 2 shows the pipeline flow when the EAGA pipeline
performs address calculations, and the EAGA and EAGB pipelines
each perform one load. Executing the pattern in Figure 2 has a
total latency of 11 cycles. Figure 3 shows the pipeline flow when
the EAGB pipeline performs address calculations and the EAGA
pipeline performs both loads. Since the EAGA pipeline cannot exe-
cute two load instructions simultaneously, an additional one-cycle
delay will occur in that case, as shown in Figure 3. Since our im-
plementation does not use pipeline execution patterns that cause
delays as a scheduling model for instruction scheduling, we only
use the four patterns with a latency of 11 cycles in Table 1.

Our IMS implementation considers the registration status of the
Modulo Reservation Table and the status of instructions before
and after data dependence and uses an appropriate pattern from
these patterns to search for solutions. Since the current schedule
model description of LLVM cannot express such a complex situation,
our implementation stores this information as code in the target-
dependent part used by the optimization pass.

After running IMS, we apply Stage Scheduling to reduce register
usage. After determining the code for the kernel part as a result of
applying Stage Scheduling, we use MVE if necessary.

3.4 Register allocation to the kernel part

As a result of applying IMS, Stage Scheduling, and MVE, our imple-
mentation generates code in the form of a control flow graph shown
in Figure 1, which consists of a prologue, kernel, and epilogue parts.
In Figure 1, KERNEL is a steady-state kernel loop generated by
software pipelining, and there are codes for the PROLOGUE and
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Figure 2: Pipeline execution pattern 4 of LD2W (scalar plus scalar) instruction
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Figure 3: Pipeline execution pattern 1 of LD2W (scalar plus scalar) instruction

Table 1: Pipeline execution patterns of LD2W (scalar plus
scalar) instruction

pattern “ pOPO l 1OP1 l pOP2 l latency
0 EAGA | EAGA | EAGA 12
1 EAGB | EAGA | EAGA 12
2 EAGA | EAGB | EAGA 11
3 EAGB | EAGB | EAGA 11
4 EAGA | EAGA | EAGB 11
5 EAGB | EAGA | EAGB 11
6 EAGA | EAGB | EAGB 12
7 EAGB | EAGB | EAGB 12

EPILOGUE parts before and after it. If the number of rotations of
the original loop is greater than the minimum number of loop body
executions on the path that executes KERNEL, the ENTRY basic
block selects the path to execute KERNEL. Otherwise, it executes
the loop body with the REST equivalent of the original loop body.
The basic block of CHECK chooses to execute the remaining itera-
tions by the loop in REST if the number of loop iterations executed
in the path including KERNEL is less than the number of rotations
of the original loop.

Our implementation generates the KERNEL with non-SSA form
as a result of scheduling and allocates registers to it after sched-
uling. It retains the SSA form for the rest of the basic blocks and
utilizes subsequent optimization passes of LLVM for optimization
and register allocation of those basic blocks. The LLVM intermedi-
ate language specification does not allow hardware registers to live
across basic block boundaries on the control flow graph before reg-
ister allocation. However, it is necessary to use hardware registers
to input and output data to and from the KERNEL part. Therefore,
in our implementation, we use pseudo instructions to represent the
lifetime of hardware registers for value passing through hardware
registers. Figure 4 shows an example of the representation of the
lifetime of hardware registers using these pseudo instructions. In
this Figure, the LIVE_IN and LIVE_OUT pseudo instructions express
that registers $x<R> and $x<W> live across basic block boundaries.
Our implementation removes these pseudo instructions after LLVM
register allocation.

The current implementation attempts to reduce register usage
by increasing the II value if there is a shortage of architectural
registers when allocating registers to the KERNEL part. If increasing
the II value does not solve the register shortage, or if increasing
the II value eliminates the optimization effect, our implementation
introduces spill code[16] to ease the register usage. If introducing
spill code does not solve the register shortage, our implementation
gives up applying software pipelining to the target loop and restores
the original code before optimization.

Even if there is room in the architecture registers when allocating
registers to the KERNEL part, it may not be possible to allocate
registers due to the restrictions of the instruction format of the
AArch64 architecture. If the register allocation fails due to such
restrictions on the instruction format, insert a COPY instruction to
avoid the conditions and re-execute IMS.

PROLOGUE :
... Write $x<R> ...
LIVE_OUT, implicit $x<R>
KERNEL:
LIVE_IN, implicit-def $x<R>
.o. read $x<R> ...
oo Write S$x<W> ...
LIVE_OUT, implicit $x<W>
Bcc 1, KERNEL
B EPILOGUE
EPILOGUE:
LIVE_IN, implicit-def $x<W>

° oo

read $x<W> ...

oo o0

Figure 4: Liverange representation for hardware registers
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Table 2: Evaluation Environment
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Table 3: Evaluation Results

System PRIMEHPC FX700 benchmark H noswpl(us) ‘ swpl(us) ‘ speedup ‘ it ‘ il ‘ stages ‘ unroll
CPU A64FX, 2.0 GHz, 48 cores kernel 1 17490 15666 112] 4 6 3 3
Memory 32GIB(HBM2) kernel 2 32122 18110 1.77 4 7 7 6
kernel 3 147642 | 147640 1.00 | 109 | 109 1 1

0s CentOS 8.3 kernel 5 291496 | 291193 100 | 20| 20 2 3
Compiler LLVM 17.0.4 kernel 7 29308 29783 098 | 6| 12 5 6
Compile option | -O2 -fno-unroll-loops -msve-vector-bits=512 kernel 11 146160 | 145905 100 | 10| 10 3 3
kernel 12 12497 12370 01| 2| 3 3 3

TSVC s1161 47819 24994 191 6| 11 4 5

TSVC s271 10213 8852 115 3| 7 6 7

TSVC 5272 46282 25662 180 5| 7 7 7

TSVC s273 152535 37628 405 7] 8 7 8

TSVC s274 31210 25389 123| 6| 10 6 7

X . L. . TSVC 51279 33708 26696 126 | 4| 10 6 7

3.5 Cooperation with other optimization passes TSVC 52712 6690 6068 10l 31 7 3 7
Our current implementation does not apply loop unrolling to loops TSVC 54113 54028 34247 158 | 23] 23 4 4

subject to software pipelining. When software pipelining optimizes
loops after applying loop unrolling, register allocation to the kernel
part often fails due to a lack of registers. In addition, we do not apply
the instruction scheduling or the peephole optimizations after reg-
ister allocation to kernel loops that apply software pipelining. The
reason is that those optimizations to the kernel loop may destroy
the execution timing by IMS and cause performance degradation.

4 PERFORMANCE EVALUATION

This section describes the performance evaluation of our implemen-
tation of the software pipelining pass. Table 2 shows our evalua-
tion environment. We used the Livermorec[12] benchmark and the
TSVC [11] benchmark as benchmark programs for evaluation. For
the evaluation, we measured only the innermost loop of each bench-
mark program and set the number of loop revolutions to 32 x 10°.
For all benchmarks, we rewrite loops that can be executed in par-
allel into SIMD executable code using the ACLE descriptions[8].
Loop unrolling was not applied to avoid register shortage situa-
tions. Furthermore, accurate data dependence distance information
is provided at compile time via command line options for all bench-
marks if necessary, Table 3 shows the results of the performance
evaluation. In Table 3, the noswpl and swpl columns show the ex-
ecution time without and with software pipelining, respectively.
The speedup column shows the performance improvement due to
software pipelining. These values confirm that for each kernel, the
application of software pipelining improves performance. Kernel
3 includes an instruction FADDA with a long latency of 69 cycles
in the loop, so it cannot take advantage of software pipelining.
TSVC 5273 shows that the reordering of instructions by software
pipelining is more effective than reordering instructions by hard-
ware at runtime. In Table 3, the II column shows the value of the
initiation interval resulting from modulo scheduling, the stages
column indicates the number of stages in the result, and the unroll
column shows the number of times MVE unrolled the loop body.
From the values in the MVE column, we can see that it is necessary
to use MVE to generate high-performance kernels. In Table 3, the
II, column represents the initiation interval value, assuming an
infinite number of registers exist. The difference between the Il
and II column values indicates that the lack of registers suppresses
instruction-level parallelism in most benchmarks.

5 FUTURE WORK

Because of the long instruction latency of the A64FX, the number
of stages tends to increase when Modulo Scheduling is applied, re-
sulting in high register pressure. For this reason, we are considering
introducing a method to reduce register pressure during scheduling
and a process to alleviate register pressure by introducing spill code.
Since it is difficult to improve register pressure only by a software
pipelining pass, adjusting the loop size by loop distribution/fusion
and loop unrolling is necessary. Implementing these methods and
evaluating their impact on performance will be the subject of future
work.

There are if-conversion and reverse-if-conversion techniques
for applying software pipelining to loops containing if statements.
SVE’s predicate can convert an if statement into a mask process for
vectorized loops, making the code applicable to software pipelining.
However, the SVE instruction requires using hardware resources
and the definition of registers even when the predicate data is all
false. Therefore, it may be better to generate code that does not
consume hardware resources by applying reverse-if-conversion
rather than converting unbalanced if statements to the predicate
form. We are considering introducing hierarchical reduction[6] and
reverse-if-conversion[15] for loops of scalar instructions and imple-
menting the decision to apply vectorization from the perspective
of software pipelining.

In the current LLVM, the autovectorizer converts a loop with
scalar instructions into a vectorized loop using SVE instructions.
This process generally generates pre-processing and post-processing
code before and after the loop targeted for optimization to adjust
the number of loop executions and memory alignment. We perform
software pipelining after these automatic vectorizations. For this
reason, our pass generates the code shown in Figure 1 in the form of
further additions to this pre-processing and post-processing, result-
ing in the expansion of code size due to the execution of redundant
branch instructions and a series of loops with a small number of
executions. Reducing these redundant codes by coordinating the
software pipelining pass and the automatic vectorization function
is future work.
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6 CONCLUSIONS

Software pipelining is an essential optimization for accelerating
HPC applications on CPUs. This paper details the implementation of
software pipelining for the A64FX processor on LLVM and evaluates
its performance. The A64FX is an out-of-order type superscalar
processor that divides an architectural instruction into multiple
micro-operation instructions and submits each instruction to an
execution pipeline. Although the A64FX is a CPU with a complex
execution flow, we confirmed that our implementation improves
the performance of several benchmark programs. In the future, we
plan to study how to deal with register shortages and coordinate our
software pipelining with the overall flow of LLVM’s optimization
pass. We are also considering proposing our implementation to
LLVM upstream.
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