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the other hand, using even imperfect 
information has potential value in the 
design of memory managers that out-
perform those that do not employ life-
time considerations during allocation.

The following paper is the first to 
explore this idea in depth, as imple-
mented and evaluated in the “Llama” 
allocator. The authors develop a neural 
net-based statistical prediction scheme 
for lifetimes based on selected prop-
erties of calling contexts and use it to 
control placement and subsequent 
management. The main challenges are 
to achieve sufficient accuracy to reduce 
footprint versus alternatives, while en-
suring the overhead for learning and 
acting upon placement rules does not 
outweigh benefits. The empirical evalu-
ation of Llama clearly shows benefits at 
least in the context of large C++ server 
applications, for which memory man-
agement quality and performance are 
serious practical concerns.

The paper is full of good ideas, both 
large and small, about neural network 
design and deployment, tolerating mis-
predictions using lifetime classes with 
adjustable deadlines, and incorporat-
ing these ideas in a high-quality mem-
ory manager that preserves fast-path 
performance in common cases. The 
authors also set the stage for a variety 
of potential improvements, as well as 
applications to other forms of memory 
management. As one example, the over-
all structure of Llama is surprisingly 
reminiscent of those of “generational” 
garbage collectors that copy straggling 
objects to new regions rather than delay 
unmapping of lifetime classes. But it 
improves upon this approach by initial-
ly placing objects in regions in ways that 
can greatly reduce stragglers, which 
might lead to advances in these forms 
of memory managers as well. 
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M E M O RY  M A N AG E M E N T S PA N S  the layers 
of computing platforms, ranging across 
hardware components that map logical 
addresses to physical memory locations, 
operating system components that track 
and control regions (usually in the form 
of “pages”), and run-time systems and 
languages that provide simple APIs and/
or language constructs to process higher-
level objects in terms of lower-level mem-
ory segments. An allocation (“new” or 
“malloc”) is performed by placement—
choosing a memory address heading a 
contiguous segment of (at least) a given 
size. A deallocation (“delete” or “free,” 
perhaps initiated by garbage collectors 
or other mechanisms that detect unused 
objects) triggers bookkeeping to enable 
future memory reuse. Some languages 
and systems additionally support mov-
ing (copying) previously allocated ob-
jects to new locations, and automatically 
adjusting pointers to them accordingly.

The primary objective of memory 
management is fitting all requested 
memory segments within a given space, 
or nearly equivalently, minimizing unus-
able gaps surrounding allocated objects. 
When gaps accumulate, there may be 
enough aggregate memory to satisfy a 
new allocation request, but not enough 
contiguously mappable space. Perfor-
mance is mainly a function of time/
space overhead per allocation and deal-
location. Even in the simplest cases, 
management is equivalent to NP-com-
plete bin-packing problems for which 
there is rarely a computationally feasible 
optimal solution. All allocator designs 
reflect trade-offs between quality (foot-
print) and performance, along with oth-
er policy and system constraints. Evalu-
ations are intrinsically empirical, based 
on measurements of actual programs.

One strategy for reducing overhead 
while maintaining a compact footprint 
is to use bulk operations that perform 
allocation and/or deallocation steps for 
possibly many objects all at once. This 
is seen in stack allocation in most lan-
guages, where local variables are con-

tiguously placed (normally according to 
compile-time layout rules) in a pushed 
stack frame and then deallocated all at 
once by popping the frame. This tech-
nique has become so entrenched in 
languages and systems that it is usu-
ally supported by different program-
ming constructions than those for other 
“heap” objects and has been extended 
in some languages to include extended 
scoping rules and/or shadow stacks, ap-
plicable when all memory accesses meet 
generalized rules for block structuring.

A different form of bulk process-
ing is available using virtual memory 
hardware and operating system func-
tionality. Systems support mappings to 
physical memory in increasingly large 
units per operation, although often re-
stricted to a few choices of sizes, as in 
Linux 2MB “huge” pages. Creating and 
managing the right number of regions 
(pages) of the right size and contents 
can lead to very efficient memory man-
agement while still maintaining an ac-
ceptable total footprint.

If the lifetime of every memory seg-
ment were known at allocation time, 
then this would not be difficult to carry 
out: Place objects with (nearly) coex-
tensive lifetimes in the same mapped 
region, and unmap them at the same 
time when they are all freed. But life-
time information for arbitrary heap al-
location requests is not generally avail-
able, or even knowable by compilers. On 
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small, about neural 
network design and 
deployment. 
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