
Technical Perspective
Learning-Based Memory Allocation
for C++ Server Workloads
By Doug Lea

the other hand, using even imperfect
information has potential value in the
design of memory managers that out-
perform those that do not employ life-
time considerations during allocation.

The following paper is the first to
explore this idea in depth, as imple-
mented and evaluated in the “Llama”
allocator. The authors develop a neural
net-based statistical prediction scheme
for lifetimes based on selected prop-
erties of calling contexts and use it to
control placement and subsequent
management. The main challenges are
to achieve sufficient accuracy to reduce
footprint versus alternatives, while en-
suring the overhead for learning and
acting upon placement rules does not
outweigh benefits. The empirical evalu-
ation of Llama clearly shows benefits at
least in the context of large C++ server
applications, for which memory man-
agement quality and performance are
serious practical concerns.

The paper is full of good ideas, both
large and small, about neural network
design and deployment, tolerating mis-
predictions using lifetime classes with
adjustable deadlines, and incorporat-
ing these ideas in a high-quality mem-
ory manager that preserves fast-path
performance in common cases. The
authors also set the stage for a variety
of potential improvements, as well as
applications to other forms of memory
management. As one example, the over-
all structure of Llama is surprisingly
reminiscent of those of “generational”
garbage collectors that copy straggling
objects to new regions rather than delay
unmapping of lifetime classes. But it
improves upon this approach by initial-
ly placing objects in regions in ways that
can greatly reduce stragglers, which
might lead to advances in these forms
of memory managers as well. 

Doug Lea is a professor and chair of the Department of
Computer Science at the State University of New York,
Oswego, NY, USA.

© 2024 Copyright held by the owner/author(s).

M E M O RY M A N AG E M E N T S PA N S the layers
of computing platforms, ranging across
hardware components that map logical
addresses to physical memory locations,
operating system components that track
and control regions (usually in the form
of “pages”), and run-time systems and
languages that provide simple APIs and/
or language constructs to process higher-
level objects in terms of lower-level mem-
ory segments. An allocation (“new” or
“malloc”) is performed by placement—
choosing a memory address heading a
contiguous segment of (at least) a given
size. A deallocation (“delete” or “free,”
perhaps initiated by garbage collectors
or other mechanisms that detect unused
objects) triggers bookkeeping to enable
future memory reuse. Some languages
and systems additionally support mov-
ing (copying) previously allocated ob-
jects to new locations, and automatically
adjusting pointers to them accordingly.

The primary objective of memory
management is fitting all requested
memory segments within a given space,
or nearly equivalently, minimizing unus-
able gaps surrounding allocated objects.
When gaps accumulate, there may be
enough aggregate memory to satisfy a
new allocation request, but not enough
contiguously mappable space. Perfor-
mance is mainly a function of time/
space overhead per allocation and deal-
location. Even in the simplest cases,
management is equivalent to NP-com-
plete bin-packing problems for which
there is rarely a computationally feasible
optimal solution. All allocator designs
reflect trade-offs between quality (foot-
print) and performance, along with oth-
er policy and system constraints. Evalu-
ations are intrinsically empirical, based
on measurements of actual programs.

One strategy for reducing overhead
while maintaining a compact footprint
is to use bulk operations that perform
allocation and/or deallocation steps for
possibly many objects all at once. This
is seen in stack allocation in most lan-
guages, where local variables are con-

tiguously placed (normally according to
compile-time layout rules) in a pushed
stack frame and then deallocated all at
once by popping the frame. This tech-
nique has become so entrenched in
languages and systems that it is usu-
ally supported by different program-
ming constructions than those for other
“heap” objects and has been extended
in some languages to include extended
scoping rules and/or shadow stacks, ap-
plicable when all memory accesses meet
generalized rules for block structuring.

A different form of bulk process-
ing is available using virtual memory
hardware and operating system func-
tionality. Systems support mappings to
physical memory in increasingly large
units per operation, although often re-
stricted to a few choices of sizes, as in
Linux 2MB “huge” pages. Creating and
managing the right number of regions
(pages) of the right size and contents
can lead to very efficient memory man-
agement while still maintaining an ac-
ceptable total footprint.

If the lifetime of every memory seg-
ment were known at allocation time,
then this would not be difficult to carry
out: Place objects with (nearly) coex-
tensive lifetimes in the same mapped
region, and unmap them at the same
time when they are all freed. But life-
time information for arbitrary heap al-
location requests is not generally avail-
able, or even knowable by compilers. On

To view the accompanying paper,
visit doi.acm.org/10.1145/3611018 rh

The following paper
is full of good ideas,
both large and
small, about neural
network design and
deployment.

86 COMMUNICATIONS OF THE ACM | APRIL 2024 | VOL. 67 | NO. 4

research highlights

DOI:10.1145/3636500

https://doi.acm.org/10.1145/3611019
https://dx.doi.org/10.1145/3636500
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3636500&domain=pdf&date_stamp=2024-03-25

