Check for
Updates

Formalizing Giles Gardam’s Disproof of Kaplansky’s
Unit Conjecture

Siddhartha Gadgil*
Indian Institute of Science
India
gadgil@iisc.ac.in

Abstract

We describe a formalization in Lean 4 of Giles Gardam’s
disproof of Kaplansky’s Unit Conjecture. This makes use of
a combination of deductive proving and formally verified
computation, using the nature of Lean 4 as a programming
language which is also a proof assistant.

Our goal in this work, besides formalization of the specific
result, is to show what is possible with the current state of
the art and illustrate how it can be achieved. Specifically
we illustrate real time formalization of an important math-
ematical result and the seamless integration of proofs and
computations in Lean 4.

CCS Concepts: » Theory of computation — Logic and
verification.

Keywords: Automated Theorem Proving; Interactive Theo-
rem Proving; Dependent Type Theory; Lean theorem prover;
Kaplansky’s conjectures; group rings

ACM Reference Format:

Siddhartha Gadgil and Anand Rao Tadipatri. 2024. Formalizing Giles
Gardam’s Disproof of Kaplansky’s Unit Conjecture. In Proceedings
of the 13th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP °24), January 15-16, 2024, London, UK.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3636501.
3636947

1 Introduction

A little over two years ago, Giles Gardam disproved [10] a
long-standing conjecture, often called the Kaplansky Unit
Conjecture [24]. Besides the simplicity of the statement and
its history, this conjecture was important as it was one of

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP °24, January 15-16, 2024, London, UK

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0488-8/24/01
https://doi.org/10.1145/3636501.3636947

177

Anand Rao Tadipatri
Indian Institute of Science Education and Research
India
art71@cam.ac.uk

a cluster of related statements with important relations to
many areas (including the Whitehead conjecture in topol-
ogy).

We describe here the formalization of Gardam’s disproof
in the Lean 4 theorem prover! [33], which was completed
roughly a year after the result was announced. We used Lean
4 as a proof assistant, but also took advantage of its being a
full-fledged programming language. Indeed, Gardam’s result
can be viewed as having two components — that a specific
group is torsion-free (this was classically known) and that
certain explicit associated elements in its group ring are
(non-trivial) units (Gardam discovered these and showed
they were units). The former is a mathematical proof, and
the latter is a computation, specifically symbolic algebra.

Thus, our work involved making definitions in such a way
that results such as torsion-freeness can be proved, while at
the same time being effective, i.e., usable in computations.

1.1 Significance of our formalization

We describe some significant features that facilitated of our
formalization. We feel this shows what is possible with the
current state of the art and illustrates a way in which it can
be achieved. While some of these may be novel, others will
have been used in other formalizations with similar contexts
and needs.

1.1.1 Mathematical choices. Many mathematical choices
were crucial in facilitating our formalization. Firstly, Gar-
dam gave several definitions of the group P for which he
disproved the Kaplansky Unit conjecture: in terms of matri-
ces, presentations, geometry etc. We believe working with
most of these would make formalization significantly harder
than the one we chose: a description as a metabelian group.

We formalized metabelian groups in general. These are
special instances of group extensions. While we used the
general theory of group extensions (in terms of cocycles),
we made use of the special nature of metabelian groups
(as a group extension with the kernel and quotient abelian)
to simplify the formalization. For the data for metabelian
groups we used concrete descriptions of Gardam (and some
simple calculations based on these). We believe that using
either more abstraction and generality or more concrete

ISource code in supplementary material

https://orcid.org/0000-0003-4402-3848
https://orcid.org/0009-0007-0057-4169
https://doi.org/10.1145/3636501.3636947
https://doi.org/10.1145/3636501.3636947
https://doi.org/10.1145/3636501.3636947
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3636501.3636947&domain=pdf&date_stamp=2024-01-09

CPP ’24, January 15-16, 2024, London, UK

descriptions with specific calculations would have made the
formalization significantly harder.

1.1.2 Integration of proofs and computations. Our
proof used the seamless integration of proofs and programs
(and even meta-programs) of Lean 4, which facilitates (one
style of) formalizations involving computations, which we
find attractive and has some advantages (as discussed in
Section 2). Specifically, we implemented (straightforward)
algorithms for decision problems and used these in proving
equality. Further, we used typeclass inference to lift these
algorithms to more complex decision problems, including
enumeration over finite sets as well as deciding equality of
linear transformations by checking equality on basis ele-
ments.

To be able to both decide equality and prove results about
free modules (with basis infinite but having decidable equal-
ity), we essentially gave two definitions of free modules as
quotients of formal sums. One of these, in terms of equality
of coefficients, was amenable to be used for decision prob-
lems while the other, in terms of elementary moves, was
better suited to proving universal properties. We proved
these definitions equivalent.

There have of course been many important instances of
formalizations of computational proofs (as discussed in 1.2),
many which predate this work (and Lean 4) by decades. We
do not claim that our approach, or approaches using special
features of Lean 4, are superior to the many other ways this
can be done.

1.1.3 Real time formalization. Our result is an instance
of real time formalization of an important recent mathemat-
ical result. There have been a few such formalizations re-
cently (as mentioned in 1.2), but such formalizations are not
(yet) commonplace. Real time formalizations of significant
mathematical results promise to have an impact on research
mathematics by ensuring that a proof and all intermediate
lemmas are correct as stated. This not only allows trusting of
results, but also ensures that the friction caused to a reader
by having slightly wrong statements for intermediate re-
sults (something far too common in practice in mathematics)
is eliminated. Moreover, the real-time formalization of im-
portant mathematical results makes it easier to formalize
subsequent work that builds on top of them; with the ac-
cumulation of a formal corpus of modern mathematics, the
goal of formally verifying every new significant result before
publication may become more realistic.

1.2 Related work

Formalization of mathematics began with Automath [9] in
1968. Since then many systems for formalization of math-
ematics have been developed, and significant amounts of
mathematics have been formalized in Mizar [35], Coq [1],
HOL Light [20], Isabelle [36], Metamath [30], Agda [37],
Lean [32], etc. Landmark formalizations include those of the

178

Siddhartha Gadgil and Anand Rao Tadipatri

four-colour problem [11], the Jordan curve theorem [18], the
prime number theorem [19], the Kepler conjecture [16], the
odd order theorem [12], the central theorem of condensed
mathematics [44], sphere eversion [28].

1.2.1 Real time formalization. Most significant formal-
izations were achieved decades after the original proof was
found. However, there are a few cases where an important
mathematical result was formalized in real-time (months or a
couple of years after the proof was found). These include the
formalization of the Cap set conjecture by Dahmen-Holzl-
Lewis [8], and that of the Erdés-Graham density theorem
(proved by Thomas Bloom) [2] by Bloom and Bhavik Mehta.
More recently, the result of Campos, Griffiths, Morris and
Sahasrabudhe announcing an exponential improvement to
the upper bound on the diagonal Ramsey numbers [6] was
formalized a few months later by Bhavik Mehta 2. In the
Liquid Tensor Experiment [44], mathematics still under de-
velopment was formalized (but this was a large community
effort, so not easy to replicate). The formalization of the proof
of the Polynomial Freiman-Ruzsa conjecture [14] > was an-
other successful community effort that led to the result being
formalized only a few weeks after being announced.

1.2.2 Computations in proofs. A mix of computation
and proofs in formalization has been used in many cases, and
many systems have been developed for this. Indeed, in the
case of the Kepler conjecture and the four-colour problem,
a motivation for formalization was ensuring computations
are trustworthy. Some of the work done to combine compu-
tations and proofs is the following:

e Facilitating verification of solutions obtained by SAT
solvers [21], primality tests [47] etc.

o A method that has been used extensively is to reduce a
problem to an equation between computable terms (e.g.
that a boolean term is equal to true), and use kernel
reduction. This is used extensively in the Mathemati-
cal Components library [29] and the SSReflect proof
language [13].

e Reducing a problem to an equality between computable
terms, extract code, and run it (either with a trusted
evaluator or something less trustworthy). This is used
in Coq’s vm_compute or native_compute.

e Using special purpose automation to construct proofs
of equations (like Coq’s ring tactic, and the extensive
automation in systems like Isabelle and HOL Light).

o Using rigorous numerics to establish results, as in Imm-
ler’s formalization of the proof of the Smale conjec-
ture [23].

Zhttps://xenaproject.wordpress.com/2023/11/04/formalising-modern-
research-mathematics-in-real-time/
3https://teorth.github.io/pfr/

https://xenaproject.wordpress.com/2023/11/04/formalising-modern-research-mathematics-in-real-time/
https://xenaproject.wordpress.com/2023/11/04/formalising-modern-research-mathematics-in-real-time/
https://teorth.github.io/pfr/

Formalizing Gardam’s disproof of the Unit Conjecture

We use most of the above approaches (adapted to Lean)
in our formalization, though not at the scale used in the pio-
neering works mentioned above. We use Lean’s Decidable
typeclass (see Section 2.2) to bridge between proofs and com-
putations, both reducing to an equation when we use decide
and running compiled code where we use native_decide. We
also use Lean’s simplifier both directly with the simp tactic
and through the aesop tactic. While Lean has a ring tactic,
we did not use it in part because this work was done when
the ring tactic was not fully ported to Lean 4.

Our use of the Decidable typeclass is similar to the ap-
proach in small scale reflection, where a decidable predicate
can be represented by a program giving a boolean value.
Indeed, an instance of the Decidable typeclass is in a sense a
lift of such a program to one returning a proof of the proposi-
tion or its negation. Logically, this is equivalent to a boolean
valued program with a proof of correctness. Examples of the
use of an approach based on boolean-valued functions are
the definition of presentations of finite groups in the Mathe-
matical Components library* and the work by Peterfalvi on
the Odd Order Theorem [41].

1.3 Outline of the paper

In Section 2 we briefly describe some aspects of Lean 4 and
our formalization.

In Section 3 we sketch the mathematical background of
Kaplansky’s conjecture and Gardam’s theorem. We begin
by defining and motivating group rings in Section 3.3. We
state Kaplansky’s conjectures in Section 3.4, and Gardam’s
theorem in Section 3.5. In Section 3.6 we describe Metabelian
groups. The group P used in Gardam’s counterexample and
the proof that it is torsion-free are briefly described in Sec-
tion 3.7.

In Section 4 we turn to describing our formalization of
Gardam’s theorem. We begin with describing the construc-
tions of free modules in Section 4.1 and of group rings in
Section 4.2. In Section 4.3 we describe a technique we use: lift-
ing decision problems using enumeration over finite sets and
bases, and its implementation. We describe the construction
of Metabelian groups in Section 4.4 and the specific group P
in Section 4.5. The proof of the result that P is torsion-free is
described in Section 4.6. The disproof of the Unit Conjecture,
using these ingredients, is sketched in Section 4.7.

Essentially the only source of possible errors in a formal-
ization is a wrong definition used in the statement of the
result. To guard against this, we prove some extra results as
discussed in Section 4.8. We conclude with some remarks.

2 Lean 4: Foundations, Computations

The Lean Theorem Prover [32] is an interactive theorem
prover created by Leonardo de Moura. It has an extensive

4ht‘tps:, github.com/math-comp/math-comp/blob/master/mathcomp/fingroup/presentation.v

179

CPP ’24, January 15-16, 2024, London, UK

mathematical library, mathlib [29], built by a large commu-
nity effort, which includes most undergraduate mathematics
and some advanced topics.

2.1 Lean Theorem Prover 4

Lean is based on the Calculus of Inductive Constructions
(CIC) [39], which is an extension of Martin-L6f Type The-
ory (MLTT) [27]. The Coq system [1] is also based on CIC
and Agda [37] is based on MLTT. Due to the Curry-Howard
isomorphism [46], these foundation systems include proofs
and programs at the same level, allowing an integration of
algorithms and proofs. Lean 4 exploits this fully, being a
self-hosting programming language, i.e., a programming lan-
guage with the primary compiler/interpreter written largely
in the language itself (hence with the necessary expressivity
and performance) and being a popular proof assistant with
a large mathematical library. To the best of our knowledge
Idris [3] is the only other major language of this nature, i.e.,
self-hosting and with proofs as part of the language

Lean, like many other interactive theorem provers, sup-
ports various forms of automation. These include tactics,
unification, simplification, term rewriting, and typeclass infer-
ence. As described in Section 2.2 we make use of typeclass
inference as a bridge to proofs. We also make use of the other
forms of automation in our proofs. In particular, we use the
aesop [26] tactic which combines simplification, unification
and user-specified proof rules in a configurable best-first
proof search.

We use the seamless integration of proofs, programs and
meta-programs in Lean in this work. The use of a common
language at all levels has advantages (as with client and
server in software): allowing code to be shared, avoiding
context switches, and eliminating (often error-prone and
tedious) cross-language interfaces. Integration of compu-
tation and proofs predates our work, and indeed Lean, by
decades. There are many approaches to this, as discussed
in Section 1.2. We illustrate one approach, which we find
attractive, in this work.

2.2 Typeclasses and Automation

The principal bridge between computations and proofs we
use is the Decidable typeclass. For a proposition P, an in-
stance of Decidable P signifies that P is a decidable propo-
sition, meaning that it can be algorithmically settled in the
positive or the negative. Concretely, the Decidable typeclass
associates to a proposition P a type Decidable P, terms of
which correspond to proofs that P is true or proofs that P is
false. Thus, if for each a : A, P ais an associated proposition
(for example, for each a : Nat we can take P a to be a being
an exact square), then a (dependent) function (a : A) —
(Decidable P a) gives, for each a : A, either a proof that
P ais true or a proof that P a is false.

Further, as Decidable is a so called typeclass, instances
(terms) of Decidable can be inferred using functions with

https://github.com/math-comp/math-comp/blob/master/mathcomp/fingroup/presentation.v

CPP ’24, January 15-16, 2024, London, UK

codomain of the form Decidable P by typeclass inference. In
particular, we construct instances using enumeration over
finite sets as well as bases of free Abelian groups.

We remark that alternatively tactics could be written that
bridge between proofs and computations.

3 Mathematical Background

Kaplansky’s Unit Conjecture says that the only units in the
Group Ring k[G] of a torsion-free group G over a field k are
elements of the form a - g, where a is a unit in k and g is an
element of G.

We first recall some basic definitions and motivate the
question.

3.1 Zero-divisors and Units in Rings

If the product of two integers n and m is zero, then (at least)
one of them must be zero. On the other hand, if we consider
pairs of integers with addition and multiplication defined
pointwise (i.e., (a1,b1) + (az, by) = (a1 + az, by + by) and
(a1, by) - (ay, bs) = (ayas, b1bs)), then we have (1,0) - (0,1) =
(0,0) but (1,0) # (0,0) and (0,1) # (0,0). We say (0,1) and
(1,0) are zero-divisors in the ring (we recall the definition
below) Z?2 of pairs of integers, as their product is the zero
element (0,0) in Z?2 but neither of them is equal to the zero
element.

A ring is a set with two operations, addition and multi-
plication, satisfying some standard axioms: both operations
are associative; addition is commutative; there is an additive
identity; every element has an additive inverse; multiplica-
tion distributes over addition. We say the ring R has zero
divisors if there are non-zero elements a,b € R such that
a-b = 0, where 0 refers to the additive identity (zero element)
of the ring. We saw above that the ring of integers has no
zero divisors, but the ring of pairs of integers does.

Note that multiplication in a ring need not be commutative.
Important examples of rings, where multiplication is not
commutative, are rings of matrices. Namely, for any n the
set of n X n real-valued matrices is a ring, with addition and
multiplication defined in the usual way. In this ring zero
divisors are (non-zero) matrices which are not invertible, as
follows from basic Linear Algebra.

An element a in a ring is said to be a unit if it has an
inverse, i.e., there is an element b such thata-b = 1 and
b - a = 1. In the ring of integers the units are 1 and —1. In the
ring of n X n matrices the units are the invertible matrices.

A ring is a field if every non-zero element is a unit, i.e.,
has a multiplicative inverse. For example, real numbers form
a field, but the ring of integers does not.

3.2 Polynomials and Laurent Polynomials

The set of polynomials P(x) = Y7, a;x’ over the real num-
bers (i.e., with a; real) form a ring. We can see that this ring

180

Siddhartha Gadgil and Anand Rao Tadipatri

has no zero divisors and the units in this ring are the non-
zero constant polynomials, i.e., the polynomials of the form
a with a # 0. To see this, observe that if P(x) = Y7 a;x’
and Q(x) = Y7L, bjx’ are polynomials, with a, # 0 and
b, # 0, then the coefficient of x™™ is a,b,, # 0. Thus, if
P(x)Q(x) = 0, then P(x) = 0 or Q(x) = 0. Similarly, if
P(x)Q(x) = 1, then P(x) and Q(x) are both constant poly-
nomials.

Note that all the above is true for the ring of polynomials
P(x) = 2,1, a;x’ over any field k (i.e., with a; € k), not just
the real numbers.

Laurent polynomials are like polynomials except allowing
negative powers of the variable x. Thus, a Laurent polyno-
mial is of the form P(x) = Y, a;x’ with n,n’ € Z and
n’ < n. We again take a; to be elements of a field k.

We see that the ring of Laurent polynomials over a field
also has no zero divisors. However, units are not just constant
polynomials. Namely, for a # 0 and n € Z, the monomial ax”
is a unit as (ax™)-(a"x~") = 1. We can see that these are the
only units, and that there are no zero divisors. Namely, con-
sider polynomials P(x) = Y1, a;x’ and Q(x) = X bix’
withn,n’. mm’ € Z,n’ < n,m < m, and a,, a,v, b, and
b all not zero. Then the coefficients of n + m and n’ + m’
are anb, # 0 and a,b;, # 0. Thus, P(x)Q(x) # 0. Further,
if P(x)Q(x) = 1, then we must have n’ + m’ = n+ m, so
n =n’ and m = m’. It follows that P(x) is of the form ax™
with a # 0.

We can more generally consider (Laurent) polynomials
with coefficients in any ring R. However, the above state-
ments no longer hold in general.

3.3 Group Rings

Group Rings are analogues of Laurent polynomials with
powers x" replaced by elements in a group G. For this, it is
convenient to view Laurent polynomials a little differently.
Observe that instead of using the order on powers of x, we
can define Laurent polynomials as (formal) sums Zle a;x™
with n; € Z for all i and with all the powers n; distinct. The
multiplication is defined as the bilinear extension of that of

xMox™ = x™" je.,
k 1 k1
(@™ - (Y bx™) = 3 3 (aiby)x™™,
i=1 7= i=1 j=1

with the right-hand side assumed to be simplified by group-
ing together terms corresponding to the same powers of
X.

Fix a group G and a ring R. The group ring R[G] is the
set of formal sums)., a;g; with a; € R and g; € G. We
assume that the g; are distinct (otherwise we can combine
coefficients) and that all the coefficients are non-zero. Further,
two sums related by reordering the terms are considered
equal.

Formalizing Gardam’s disproof of the Unit Conjecture

Formally, the group ring is the free R-module with basis G
(a free module is the analogue of a vector space with a given
basis, allowing coefficients to be in a ring instead of a field).
The multiplication in R[G] is the bilinear extension of that
of G, i.e.,

k]
O ag) - (O bihy) =
i=1 Jj=1

The right-hand side is assumed to be simplified grouping to-
gether terms corresponding to the same group elements (just
as we simplify polynomials in the variable x by grouping
together monomials of the same degree).

Observe that the group ring R[Z] is precisely the ring of
Laurent polynomials with coefficients in R, with Z viewed as
the infinite cyclic multiplicative group (x), i.e., withn € Z
identified with the element x" € (x).

Group rings occur naturally and are important in many
areas of mathematics. For instance, if a vector space (or more
generally an R-module) admits a linear action by a group,
then it has the structure of a module over the group ring R[G].
In particular chains and co-chains (over a ring R) on cov-
ers of simplicial complexes (more generally cell complexes)
form modules over the group ring R[G] for the group G of
deck transformations. Many important topological invari-
ants, such as the Alexander polynomials and Reidemeister
torsion, are constructed from such R[G]-modules.

k1
D0 (aib))(gihy).

i=1 j=1

3.4 Kaplansky’s conjectures

Consider group rings over a field k. Suppose g is a torsion
element in a group G, i.e., we have g" = e for some n > 1
but g # e. In contrast to the case of Laurent polynomials (i.e.
G = Z), we do have zero-divisors in k[G] as

(1-g)(1+g+---+g"H=1-g"=0.

Similarly, for all but finitely many groups with torsion, k[G]
has non-trivial units, i.e., units not of the form a - g [22].

The Kaplansky conjectures assert that we do not have
non-trivial units or zero divisors if G is torsion-free (i.e.,
the only element with finite order is the identity) and k is a
field.

Thus, suppose k is a field, and G is a torsion-free group.
We have the following conjectures, the first of which was
formulated earlier by Higman [22].

Conjecture 3.1 (Kaplansky’s Unit Conjecture). Given ele-
ments a, in k[G], if af = 1 then there existsa € k,g € G
such thata =a - g.

Conjecture 3.2 (Kaplansky’s Zero Divisors Conjecture).
Given elements a, f ink[G], ifaff = 0 thena =0 or f = 0.

Beyond the simplicity and generality of the statements,
these are attractive because of their similarity to many impor-
tant mathematical questions. For example, in understanding
a basic question in topology - the relation between homo-
topy type and homeomorphism type — Whitehead introduced

181

CPP ’24, January 15-16, 2024, London, UK

an intermediate relation, simple homotopy type, and showed
that simple homotopy types are classified by elements of the
Whitehead Group. Again, groups with torsion can have non-
trivial Whitehead groups, while the Whitehead Conjecture
postulates that torsion-free groups have trivial Whitehead
groups. Indeed, there are direct relations too between the
Whitehead group and Kaplansky’s conjectures.

3.5 Gardam’s theorem

In [10], Gardam proved the following theorem, showing that
Kaplansky’s Unit conjecture is false.

Theorem 3.3 (Gardam). LetF, be the field with 2 elements.
There exists a torsion-free group P and elements a, &’ in the
group ring F,[P] such that o - &' = 1 and @ and &’ are not of
the forma - g witha # 0 € Fy, g € P.

Specifically, Gardam considered a certain (well studied)
group P, called the Promislow [42] or Hantzsche—Wendt group.
This was known to be torsion-free. Gardam showed that
there are elements a, &’ € F,[P] with « - @’ = 1 and with
a not of the form a - g. The elements were discovered by a
computer search using SAT solvers (i.e., programs that solve
the Boolean satisfiability problem, i.e., equation with Boolean
variables and constraints built from these using logical op-
erations such as A, V, and —) and were given explicitly by
Gardam.

Gardam gives many descriptions of the group P. For in-
stance, for those familiar with Geometric topology, a topolog-
ical description is as the fundamental group of a 3-manifold
M obtained by gluing two copies of the orientable twisted
I-bundle over the Klein bottle along their boundaries.

Given our motivation of simultaneously computing with
as well as proving theorems about the group, the description
of P that was most convenient to us was as a Metabelian
group. We next recall Metabelian groups.

3.6 Metabelian Groups

A Metabelian Group is a group G with an abelian normal
subgroup K so that the quotient Q = G/K is also abelian.
The simplest such groups are the products K x Q. However,
for fixed K and Q, there are in general other corresponding
metabelian groups G, as we see with following examples.

e The permutation group G = S3 is a metabelian group,
with abelian normal subgroup K = Z/3 generated by
the cycle o and quotient Q = Z/2.

e Let G = Zand K = 27Z be the subgroup of even integers.
Then Q = G/K = 7Z/2. This gives Z a description as a
metabelian group with K = Z and Q = Z/2.

The two examples illustrate the two ways in which G can
fail to be a product. In a precise sense, we see that these are
the only two ways. Thus, we can determine all metabelian
groups G corresponding to fixed K and Q in terms of some
explicit data. We remark that this is a special case of the so
called group extension problem.

CPP ’24, January 15-16, 2024, London, UK

Firstly, observe that as a set we can always identify G
with K X Q by choosing a section s : Q — G, i.e., a function
s : Q — G such that g(s(x)) = x for all x in Q, where
q : G — Q is the quotient homomorphism. Every element
g € G is then uniquely of the form g = k - s(q) with k € K
and q € Q.

In the case of the permutation group we can choose s to
be a homomorphism by mapping the generator 1, of Z/2 to
a transposition 7. Thus Q can be identified with a subgroup
of G and s regarded as the inclusion (and omitted from the
notation). However, an element of the group K C G does not
in general commute with an element of Q C G, so G is not a
product of K and Q. Instead, we can write kqgk’q’ = kk’9qq’,
where k' = gk’q™! is the result of conjugation. Conjugation
gives a group action of Q € G on K. Conversely, given an
arbitrary group action Q X K — K, (¢, k) — q - k, we can
define a metabelian group with underlying set K x Q and
multiplication given by the formula

(k,q)- (K'.q')=(k+q-kK.q+q).

This is a special case of the familiar semi-direct product con-
struction.

Indeed, as K is abelian, for all metabelian groups we have
an action of Q on K, given by g - k = s(q) - k - s(¢) !, which
does not depend on the choice of section s. This action is
part of the data determining a metabelian group. Suppose
henceforth we have fixed K, Q and a group action of Q on K.

The second example illustrates that the group action is
not enough to determine G; indeed, as G is abelian the action
is trivial, but G is not the product of K and Q. The reason
for this is we cannot choose the sections : O — G to be
a homomorphism; the image s(1;) must be an odd number
2k + 1, and while 1 + 1, = 0, s(15) + s(15) = 4k + 2 # 0 (but
s(0) = 0 for a homomorphism).

We can measure the extent to which s is not a homomor-
phism by considering, for elements g, q" € Q, the quantity
c(q,q") = s(qq") - (s(q)s(¢’))". As s is a section, we can
deduce that in fact ¢(q,q’) € K € G, so ¢ gives a function
c:QOxQ—K.

The associativity of G implies a certain condition on the
function c, called the cocycle condition. Functions ¢ : QxQ —
K satisfying this condition are called cocycles. Conversely,
given a (group action and) a cocycle, we can define a group
structure on G = K X Q by

(k.q) - (K'.q') = (k+q-k +c(q.9).q+q).

Indeed all metabelian groups are of this form. Thus, an arbi-
trary metabelian group is determined by K, Q, an action of
Q on K and a cocyle.

We remark that even if the group G is a (semi-)direct
product, an arbitrary section s : Q — G need not be a homo-
morphism (indeed most sections are not homomorphisms).

Thus, the cocycle ¢ need not be zero for a typical section.
However, note that if s is a sectionand ¢ : Q — Kisa

182

Siddhartha Gadgil and Anand Rao Tadipatri

function, then s’ : g — ¢(q)s(q) is also a section, and indeed
all sections are of this form. It is easy to compute the cocycle
¢’ corresponding to s” in terms of ¢ and ¢, namely ¢’ differs
from c by a so called coboundary. Thus, metabelian groups
are determined by K, Q, an action of Q on K, and a cocyle up
to a coboundary. A cocycle up to a coboundary is an element
of a group called Ext(Q, K) (for extension), which is also the
so called group cohomology H!(Q, K).

3.7 The Group P and its Torsion Freeness

The group P is a Metabelian group with kernel K = Z* and
quotient Q = Z/2xZ/2. Gardam gives an explicit description
of the action and the cocycle which determine P. This allows
us to explicitly (without much effort) work with elements in
P. In particular, we can prove the (well known) result that P
is torsion free.

Proposition 3.4. The group P is torsion-free.

Sketch of proof. Let g € P and n > 1 be such that g" = e. It
follows that (¢?)" = (¢")? = e.

Using the explicit description of the group P, we see that
g? € K = 73, As Z3 is torsion-free and (g%)" is trivial (and
n > 1), it follows that g2 is trivial.

Finally, using the explicit description of the group P again,
we deduce that g? =e = g=e. Thusg’=e = g=e,
i.e., P is torsion-free. O

The self-contained and explicit nature of this proof makes
it straightforward to formalize. We state precisely the formu-
lae for g2 in terms of g in the various cases (depending on
the Q-component of g). This lets us deduce both that ¢* € K
andthatg’ =e¢ = g=ce.

4 Formalization: proofs, enumeration,
computation

The formalization of Gardam’s theorem involved two largely
independent components, the construction of group rings
with decidable equality and the construction of the group P
and the proof that it is torsion-free. In this section we first
sketch the construction of group rings. We then sketch some
typeclass-based methods used, in particular for enumeration,
to construct and prove the properties of the group P. We then
sketch the construction and torsion-freeness of P. Finally
we see that the ingredients can be put together to disprove
the Unit Conjecture. Figure 1 shows the modules and their
direct imports.

The documentation, with links to the source code, is avail-
able in the supplementary material, and we give links rel-
ative to the build/doc folder. The best way to browse the
documentation is to run a static web server, for example
to run python3 -m http.server from the ‘build/docs‘ direc-
tory. An overview is at ./UnitConjecture.html. The package

./UnitConjecture.html

Formalizing Gardam’s disproof of the Unit Conjecture

Figure 1. (direct) module dependencies

UnitConjecture contains all the modules®, which can also be
navigated by following imports.

Henceforth, show or prove mean formally prove in
Lean 4.

4.1 Free Modules

Our construction of Free Modules® must facilitate two goals.
We need to construct the group ring F,[P] and also be able
to decide (with proof) when two elements of F,[P] are equal.
As mentioned in 2.2, the latter is encoded in the Decidable
typeclass; allowing typeclass inference which we use exten-
sively.

A group ring R[G] is a free R-module with an additional
structure, the product. Further the product is a bilinear exten-
sion of a function given on the basis G of the free R-module.
Thus, our goal is to construct free R-modules with basis X,
including when X is infinite, so that both of the following
are possible (assuming decidable equality in R and in X).

e We can decide when two elements of the free R-module
are equal.

e We can define R-module homomorphisms given values
on the basis X.

The first is a computational goal and the second a con-
ceptual one. To achieve both, we make two constructions,
and essentially prove that they are equivalent (we actually
formally prove only those parts of the equivalence that we
need). Both definitions are as quotients of formal sums. We
first sketch the first construction, which is the definition
used, and decidable equality using this. We then sketch the
second construction and its equivalence to the first.

SWe link to the relevant files in footnotes in the first paragraph of the
section.
6 /UnitConjecture/FreeModule.html

183

CPP ’24, January 15-16, 2024, London, UK

4.1.1 Formal sums, Coordinates and Free modules. Fix
aring R and a type X, with both R and X having decidable
equality. A formal sum is an expression of the form .7 | a;x;
where a; € R and x; € X for 1 < i < n. We encode these as
equivalence classes (under a quotient we define) of lists of
pairs (a_i, x_i),i.e., terms with type List (R x X).

Given a formal sum s =)1 ; a;x;, we can associate to it
coordinates as a function y; : X — R, with the coordinate
of an element x(of X being the sum of the coefficients q;
corresponding to indices i with x; = x. Observe that only
finitely many coordinates are non-zero (but we do not for-
mally state or prove this). Note that to define the coordinate
function y; as a (computable) function, we need decidability
of equality in X.

We define two formal sums s; and s; to be equivalent
if x5, = xs,- It is easy to show that this is an equivalence
relation. The free module R[X] is defined as the quotient of
the formal sums of X by this equivalence relation.

4.1.2 Supports and Decidable equality. Observe that if
X is infinite (as it is in our case), we cannot check equality
of coordinate functions by checking at all values. Thus, we
need some other way to check equality of coordinates. We
do this by relating coordinates to supports.

We define the support supp(s) of the formal sum s
>\, aix; to be the list consisting of the elements x; (this is
a coarse notion of support, ignoring that coefficients may
be zero and/or may cancel). We show that for xy € X, if
xs(x0) # 0 then x € supp(s) (stated in Listing 1).

theorem nonzero_coord_in_support
(s : FormalSum R X) : V x :
X € s.support := ...

X, @ # s.coords x —

Listing 1. Non-zero coordinates in support

It follows immediately that for formal sums s; and s,
Xsi = Xs, if and only if x5 (x) = ys, (x) for all x € supp(s;)
and also for all x € supp(s).

We are thus reduced to deciding when two functions with
values in R are equal on members of a list in X. This is easily
done using induction (using the assumption that we can
decide equality in R). Thus, we can decide when formal sums
are equivalent.

With a little work, we can deduce decidability of equality
in the quotient R[X] from decidability of equivalence of
formal sums, using basic theorems about quotients that are
part of Lean.

4.1.3 Elementary moves and Universal properties. To
construct multiplication in the Group Ring, we need to ex-
tend functions from X to R-modules to R[X]-module homo-
morphisms. We do not formally define R-modules or prove
such an extension result, but we implicitly make the defi-
nitions and prove the results involved and use them in the
group ring construction.

./UnitConjecture/FreeModule.html

CPP ’24, January 15-16, 2024, London, UK

Given a function f : X — N, with N an R-module, f
clearly extends to formal sums by f(X7, a;x;) =
What needs to be shown is that if formal sums are equivalent
then they map to the same element. This is not so easy when
X is infinite.

We instead give a second description of free modules.
Namely, we define a relation on formal sums as given by
elementary moves:

o if the first term has zero coeflicient, it is deleted.

e if the first two terms are of the form (a, x) and (b,
x) for some x : X, they are replaced by a single term
(a + b, x).

e the first two terms are exchanged.

e aterm is prepended to two formal sums related by an
elementary move.

Note that this is not an equivalence relation. Nevertheless,
in Lean, the quotient is defined, and is the quotient by the
equivalence relation generated by the elementary moves.

It is straightforward to show that coordinates are un-
changed by elementary moves. The key result, which takes
some work, is to show that two formal sums with the same
coordinate function are related by a sequence of elementary
moves, i.e., have equal images in the quotient by elementary
moves.

This in turn depends on the technical result that if a formal
sum s has ag = ys(x9) # 0 for some x(€ X, then s is related
by a sequence of elementary moves to a formal sum of the
form apxy + t, with the number of terms in t less than the
number in s, as is stated in Listing 2. This is proved by well-
founded recursion, and the main result is also deduced from
this by well-founded recursion.

theorem nonzero_coeff_has_complement (x¢ :
FormalSum R X) :
@ # s.coords xg —
(3 ys : FormalSum R X,
(((s.coords xg, Xg) ::
ys < s.length)) := ...

X)(s :

ys) s) A (List.length

Listing 2. Complements in formal sums

The relations between moves and coordinates show that
the equivalence relation generated by moves is the same as
that given by having the same coordinate functions. In prac-
tice, we use the consequence that a function on formal sums
is constant on equivalence classes (corresponding to equal
coordinates), and hence well-defined on the Free Module, if
and only if it is invariant under elementary moves. This can
be conveniently used by using the induction tactic for an
elementary move.

im1 aif (xi).

184

Siddhartha Gadgil and Anand Rao Tadipatri

4.2 Group Rings

Using the construction and properties of Free Modules, we
construct the Group Ring R[G]’. First, we define multiplica-
tion on formal sums recursively in two steps, first recursively
defining multiplication of a formal sum on the right by a
monomial a - g, and then recursively defining multiplication
of formal sums.

Various properties are proved by (iterated) induction. These
allow us to define the product on R[G] by showing invari-
ance under elementary moves. This is also done in two steps,
where in the first the first term is a formal sum.

Further, we show that there is a ring structure on the
group ring (statement in Listing 3).

instance : Ring (FreeModule R G) := ...

Listing 3. Group Ring as a Ring

4.3 Lifting Decisions using Enumeration, Bases

As the group Q = Z/2 X Z/2 is finite, deciding whether the
cocycle condition holds for a functionc : Q - Q — K
can be done by enumeration and checking for each triple
of elements of Q. We automate such enumerations using
a typeclass DecideForall®. This captures the property of Q
thatif p : Q — Prop is a property of elements of Q such that
each p(q) is decidable for each q : Q, so is the proposition
Vx : Q, p(x).

By recursion we prove that for the type Fin n (consisting
of the natural numbers below n with the operations corre-
sponding to Z/nZ) we have an instance of DecideForAll. This
means we can decide the propositionV x : Fin n, p(x) if
we can decide p(x) for each x. This is stated along with the
definition of the typeclass in Listing 4.

class DecideForall (a : Type _) where
decideForall (p : a — Prop) [DecidablePred p]:
Decidable (V x : a, p Xx)

instance {k: Nat} : DecideForall (Fin k) := ...
Listing 4. DecideForall

This can be used iteratively automatically. An illustration
(and test) is in Listing 5.

theorem Zmod3.assoc :
Vxyz:Fin3, (x+y)+z-=

decide

x + (y +2z) := by

Listing 5. Associativity by enumeration

Further, we construct instances of DecideForAll of prod-
ucts and sums given those for components. This lets us infer
an instance for Q = Z/2 X Z/2.

Further, in the case of finitely-generated free abelian groups,
we can define homomorphisms by specifying their values

7 /UnitConjecture/GroupRing.html
8 /UnitConjecture/EnumDecide.html

./UnitConjecture/GroupRing.html
./UnitConjecture/EnumDecide.html

Formalizing Gardam’s disproof of the Unit Conjecture

on the basis, and we can decide equality of homomorphisms
by enumeration of basis elements. Once more we define a
typeclass, AddFreeGroup — corresponding to an abelian group
A being free with basis a type X. We construct instances
for Z with basis a singleton (represented by Unit in Lean),
and for direct products of free abelian groups, with basis the
direct sum of the bases of the factors. Note that we do not
assume that the basis X is contained in A (it is usually not),
instead we have an inclusion (as a field of the typeclass).
We show that if A is a free abelian goup whose basis
X has an instance of DecideForall, then equality of homo-
morphisms on A is decidable (provided the codomain has
decidable equality). We also show that functions from X to
abelian groups extend uniquely to homomorphisms on A.

4.4 Constructing Metabelian Groups
As recalled in Section 3.6 a Metabelian group’ is determined
by
1. A pair of abelian groups Q and K, which we represent
as Additive groups.
2. An action of Q on K by automorphisms.
3. Acocyclec: QxQ — K.

This data is bundled together in the code as the Cocycle
typeclass (Listing 6), with the cocyle explicitly encoded into
the type.

class Cocycle {Q K : Type _} [AddGroup Q]
[AddGroup K] (c : Q — Q — K) where
/== An action of the quotient on the kernel by
automorphisms. -/
a : Q > (K -+ K)
/-- A typeclass instance for the action by
automorphisms. -/
autAct : AutAction «
/-- The value of the cocycle is zero when its
inputs are zero, as a convention. -/
cocycle_zero : ¢ @ 0 = (0 : K)
/-- The *cocycle conditionx. -/
cocycle_condition : Vgqq' q"'
cqqg *c(g+q)q'’ =
d+,¢cq q'' +cag(+q'")

1 Q,

Listing 6. The Cocycle typeclass

Given an action and the cocycle, defining the multipli-
cation, the identity element and the inverse operation on
G = K X Q are straightforward. Some work is needed to
show that this is indeed a group, especially that the group
action property and the cocycle condition imply associativ-
ity. By integrating with the Aesop automation tool for Lean
4 [26] and proving some auxilliary lemmas about actions
and cocycles, we are able to produce succinct proofs of these
results.

9 /UnitConjecture/MetabelianGroup.html

185

CPP ’24, January 15-16, 2024, London, UK

As a check, we also prove that the group resulting from
this construction lies in the center of the short exact sequence
with K as the kernel and Q as the quotient.

4.5 The Group P

As we saw in Section 3.7, the group P is a metabelian group'”
with the kernel group K isomorphic to Z* and quotient group
Q isomorphic to the Klein Four group Z/2 X Z/2. We use the
general construction of metabelian groups as in Section 4.4.
For this, we need to define the action of Q on K by auto-
morphisms, the cocycle ¢ : Q X Q — K (actually the curried
form ¢ : Q —» Q — K), and show that these indeed form a
group action and a cocycle. The group structures on Z and
Fin 2 (i.e., the group Z/2) are already known to Lean, and
the product group structures on the types Z X Z X Z and
Fin 2 x Fin 2 are automatically inferred.

The group action is a family of homomorphisms K — K,
given by k — q - k, associated to elements q of the quotient
group Q. As K = Z3 is a free abelian group we can decide
equality of homomorphisms by enumeration of basis ele-
ments. Indeed, the code in Listing 7 gives the verification of
the group action property. We see that this involves typeclass
derivation and decision problems, which in turn are based
on enumeration on finite sets and on bases.

local infixr:100 " x " => AddMonoidHom.prodMap

/-- The action of Q on K by automorphisms.

The action can be given a component-wise description
in terms of id and neg, the identity and
negation homomorphisms. -/

@[aesop norm unfold (rule_sets [P]), reducible]

def action : Q — (K —+ K)
| .e=> .idZ x .idZ x .id Z
| .a=> .idZ X negZ X neg Z
| .b=> negZ X .idZ X neg Z
| .c=> negZ X negZ X .id Z

/-- A verification that the above action is indeed
an action by automorphisms.

This is done automatically with the machinery of
decidable equality of homomorphisms on free
groups. -/

: AutAction action :=
rfl

:= by decide }

instance
{ id_action :=
compatibility

Listing 7. Group action

The derivation of the cocycle condition (see Listing 8) is
similar.

def cocycle : Q - Q — K
|a!a
| a, c

=> X
=> X

10 /UnitConjecture/GardamTheorem.html

./UnitConjecture/MetabelianGroup.html
./UnitConjecture/GardamTheorem.html

CPP ’24, January 15-16, 2024, London, UK

=y
= -y
=> z
-X + -z
-y + 2z
-X +y + -z
=0

T 0O T o 0o T
O 0 0 0 T T

instance P_cocycle : Cocycle cocycle :=
{ a := action
autAct :=

cocycle_zero :=

inferInstance
rfl

cocycle_condition := by decide }

Listing 8. Cocycle condition

We remark that the by decide for the cocycle condition
is an enumeration over 64 cases. One could alternatively
enumerate using tactics like cases and split, but these de-
pend on the product structure of the enumeration, while our
typeclass-based approach used only effective finiteness of
the enumeration.

Another consequence of defining the group on the con-
crete underlying type Z X Z X ZX Fin 2 x Fin 2 is that it is
easy to compute whether two given elements of the group
are equal. This gives the construction of P a strong com-
putational advantages over other descriptions, such as in
terms of generators and relations, where elements can be
represented in more than one way and equality of elements
cannot be checked directly. The Lean theorem prover is able
to infer that equality on P is decidable from the fact that it
is the product of K and Q (both of which are in turn iterated
products of types with decidable equality):

instance : DecidableEq P :
DecidableEq (K X Q)

inferInstanceAs <|

Listing 9. Decidable Equality on P

As a confirmation that our constructions and type infer-
ence have worked correctly, we check that the multiplication
on P is given by the appropriate explicit formula.

theorem mul (k k' : K) (q q'
(k, @) * (k', a') =
(k + action g k' + cocycle g q', g +q') :=

: Q)

rfl

Listing 10. Multiplication on P

The type P = KX Q also has an instance of a product group
structure coming from mathlib. We mark the instances of the
metabelian group structure and the associated multiplication
operation on P with high priority to make these the default.
For general hygiene, we also mark these instances as scoped
to limit them to their designated namespace.

186

Siddhartha Gadgil and Anand Rao Tadipatri

4.6 Torsion freeness of P

Torsion freeness!! follows the mathematical sketch in Sec-
tion 3.7. We begin by showing, for an element g € P, that
g is in the kernel of the metabelian extension describing P,
and is given by an explicit formula (see Listing 11). We prove
this in Lean by matching on the structure of the group Q and
invoking the aesop tactic with the appropriate configuration.

/-- The function taking an element of P to its
square, which lies in the kernel K. -/

def P.sq : P - K
| ((p, q,), .8 =>(p+p,q+tq, r+r
| (<, a, 0, .b) => (0, g+q+1, 0)
I (p, =, 2, ;@) =>(+p+t1,0,0)
| ((_, _, r), .c) = (0, 0, r+r +1)

/-- A proof that the function sq indeed takes an
element of P to its square in K. -/
theorem sq_square : Vg : P, g xg = (P.sq g,

I ((p, @,), x) =>
match x with
| .e | .a |

.e)

b

Listing 11. Square of torsion element

.Cc => by ...

The result stated in Listing 12 shows that the group K in
the construction of P is a torsion-free additive group, using
typeclass inference. As K = Z3, the facts that Z is torsion-
free and the products of torsion-free groups are torsion-free
are sufficient for Lean to infer this.

/-- The kernel Z*3 is torsion-free. -/
instance K.torsionFree : AddTorsionFree K :=
inferInstance

Listing 12. The kernel is torsion-free

Thus, g2 is contained in a torsion-free group. However,
it can be deduced from general group theory that if g is a
torsion element, then 92 is also a torsion element. It follows
that if g is a torsion element, then g? = e. On the other hand
the explicit formula for g? lets us conclude that if g2 = e then
g = e. The proof of this in Listing 13 is again by cases and
automation.

/-- The only element of P with order dividing 2 is
the identity. -/
theorem square_free
g=(@0:P)
| ((p, 9,), x) => by
match x with
| .e = ...
b | .c

Listing 13. The group P has no elements of order two

:V{g:P}gxg=0Q:P) >

| .a | = ...

It follows that if g is a torsion element, then g = e, i.e. P is
torsion-free. This argument is summarised in Listing 14.

11 /UnitConjecture/TorsionFree.html

./UnitConjecture/TorsionFree.html

Formalizing Gardam’s disproof of the Unit Conjecture

-/
instance P.torsionFree :

/-- P is torsion-free.
TorsionFree P where
torsionfFree := ...

Listing 14. P is torsion-free

The explicit description of the group P is once again con-
venient here for proving these facts. While the above state-
ments can be quite difficult to prove using an arbitrary de-
scription of the group P, in this case it merely amounts to a
proof by four cases on Q followed by reductions and simpli-
fications that can be automated. The kernel subgroup also
happens to be explicitly identified in the construction of P
as a metabelian group, which allows for a convenient de-
scription of the function 11 that takes an element of P to its
square.

4.7 The Unit Conjecture

With the group P constructed, its torsion-freeness proved,
and the group ring constructed, Gardam’s disproof of the
Unit conjecture is a simple verification!?. Note that P is a
product of types with decidable equality, so has decidable
equality - this is part of Lean. Similarly the field F; has de-
cidable equality. It follows that F,[P] has decidable equality.

As mentioned earlier, Gardam has given an explicit for-
mula for a non-trivial unit « and its inverse.

/-- The non-trivial unit a. -/
def a« : Fo[P] :=p + q*a +
b

r*b + sx*xax

of the non-trivial unit a -/
' '+ g'*a + r''*xb + s'x

/-- The inverse «a'
def a' : Fy[P] :=p
axb
[_
Listing 15. The unit

-]

We define a trivial element of a free module to be one that
has a unique non-zero coordinate. To show that & is non-
trivial we produce distinct coordinates that are non-zero 16.

/-- The definition of an element of a free module
being trivial, i.e., of the form kx for x : X
and k nonzero.-/

def trivialNonZeroElem {R X : Type _} [Ring R]
[DecidableEq X1 (a : FreeModule R X) : Prop :=

3! x : X, FreeModule.coordinates x a # @

/-- A proof that the unit is non-trivial. -/

theorem a_nonTrivial : = (trivialNonZeroElem a) :=

by ...

Listing 16. Non-trivial unit

12 /UnitConjecture/GardamGroup.html

187

CPP ’24, January 15-16, 2024, London, UK

We simply use the native_decide tactic to show, using
Lean’s evaluation, that « is a unit in P.

/== A proof of the existence of a non-trivial unit
in F_2[P]. -/
def Counterexample :
{u = (B[P 7/
= (trivialNonZeroElem u.val)} :=
{a, a', by native_decide, by native_decide),
a_nonTrivial)

Listing 17. The counterexample

Putting these together, we conclude Gardam’s theorem.

/-- The statement of Kaplansky's Unit Conjecture:
The only units in a group ring, when the group is
torsion-free and the ring is a field, are the
-/
def UnitConjecture : Prop :=
V {F : Type _} [Field F] [DecidableEq F]
{G : Type _} [Group G] [DecidableEq G]
[TorsionFree G],
V u : (FIGD™, trivialNonZeroElem (u :

trivial units.

FIGD)

/-- Giles Gardam's result - Kaplansky's Unit
Conjecture is false. -/
theorem GardamTheorem : — UnitConjecture :=
fun conjecture => Counterexample.prop <|
:= Fy) (G := P) Counterexample.val

Listing 18. Gardam’s theorem

conjecture (F

4.8 Extra theorems for verification

Essentially the only main way in which a formally proved
result can be wrong is if the statement, or some definition
involved in the statement, is wrong. One can greatly reduce
the chance of this happening by proving extra results about
the definitions which are not used in the main result. This
approach was taken in the Liquid Tensor Experiment [44]
where test theorems were proved. Definitions from mathlib
have effectively been very well tested by use in many results.
A relatively complex definition we make is that of the
Group Ring of a group, which depends on our construction
of Free Modules. To test the correctness of this definition, we
prove a few results that are not needed in the main theorem
(the injectivity results were suggested by Gardam).
e The group ring of a group is a ring, in particular the
product is associative.
o The inclusion map G — R[G] givenby g > g - 11is
a monoid homomorphism. Further, if R = k is a field,
then the map g — ¢ - 1 is injective.
e The inclusion map R — R[G] givenby r — r-1lisa
ring homomorphism and is injective.
Note that these are highly non-generic properties. Further,
injectivity will fail for degenerate structures. So it is highly

./UnitConjecture/GardamGroup.html

CPP ’24, January 15-16, 2024, London, UK

unlikely that we could prove these if there were errors in our
definition. An additional check on the definition of Free Mod-
ules is that we defined two different quotients and proved
that they were equivalent. Further, we proved a universal
property for the quotient.

Another test (which we first accidentally carried out) is
to slightly vary the formulas for Gardam’s units, and check
that these are not units.

Our statement involved the definition of non-trivial units.
While this is a relatively simple definition, it involved our
construction of the group ring and not just its structure. To
avoid errors arising from this, we proved that our definition
was equivalent to the standard one.

Observe that the correctness of our formalization of a dis-
proof Kaplansky’s unit conjecture does not need our group
P to coincide with the group Gardam considered, as we have
a self-contained construction of P, proof that it is a group
and a proof that it is torsion-free. It would be bizarre if our
construction of P were wrong but still gave a counterexam-
ple to Kaplansky’s conjecture (and we are confident that we
did in fact consider the correct group), but this will not affect
the correctness of the formalization.

On the other hand, our construction of Metabelian groups
may be useful elsewhere. As a test for its correctness we
prove that a Metabelian group satisfies the defining short
exact sequence (our main theorem is a much stronger test of
the correctness of our construction).

4.9 Concluding Remarks

We hope that such a blend of computation and proving will
be useful for many results, both formal proofs and proved
algorithms. While computations have been used many times
in formal proofs, they have not been used much in conjunc-
tion with mathlib, which is a large collection of formalised
mathematics.

This formalization was fairly quick, suggesting that the
gap between formalization and human exposition is not too
large, at least for certain results (including, like Gardam’s
theorem, some important mathematical results).

References

[1] Yves Bertot. 2008. A short presentation of Coq. In International Con-
ference on Theorem Proving in Higher Order Logics. Springer, 12-16.

[2] Thomas F Bloom. 2021. On a density conjecture about unit fractions.

arXiv preprint arXiv:2112.03726 (2021).

Edwin Brady. 2013. Idris, a general-purpose dependently typed pro-

gramming language: Design and implementation. Journal of functional

programming 23, 5 (2013), 552-593.

Kenneth S Brown. 2012. Cohomology of groups. Vol. 87. Springer

Science & Business Media.

Kevin Buzzard, Johan Commelin, and Patrick Massot. 2020. Formalis-

ing perfectoid spaces. In Proceedings of the 9th ACM SIGPLAN Interna-

tional Conference on Certified Programs and Proofs. 299-312.

Marcelo Campos, Simon Griffiths, Robert Morris, and Julian Sa-

hasrabudhe. 2023. An exponential improvement for diagonal Ramsey.

arXiv:2303.09521 [math.CO]

(3]

188

Siddhartha Gadgil and Anand Rao Tadipatri

[7] William Carter. 2014. New examples of torsion-free non-unique prod-

uct groups. Journal of Group Theory 17, 3 (2014), 445-464.

Sander R Dahmen, Johannes Holzl, and Robert Y Lewis. 2019. Formaliz-

ing the solution to the cap set problem. arXiv preprint arXiv:1907.01449

(2019).

Nicolaas Govert De Bruijn. 1994. A survey of the project AUTOMATH.

In Studies in Logic and the Foundations of Mathematics. Vol. 133. Elsevier,

141-161.

Giles Gardam. 2021. A counterexample to the unit conjecture for group

rings. Annals of Mathematics 194, 3 (2021), 967-979.

Georges Gonthier et al. 2008. Formal proof-the four-color theorem.

Notices of the AMS 55, 11 (2008), 1382-1393.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril

Cohen, Francois Garillot, Stéphane Le Roux, Assia Mahboubi, Russell

O’Connor, Sidi Ould Biha, et al. 2013. A machine-checked proof of the

odd order theorem. In International conference on interactive theorem

proving. Springer, 163-179.

Georges Gonthier and Assia Mahboubi. 2010. An introduction to small

scale reflection in Coq. Journal of Formalized Reasoning 3, 2 (Jan. 2010),

95-152. https://doi.org/10.6092/issn.1972-5787/1979

W. T. Gowers, Ben Green, Freddie Manners, and Terence Tao. 2023.

On a conjecture of Marton. arXiv:2311.05762 [math.NT]

Benjamin Grégoire and Laurent Théry. 2006. A purely functional

library for modular arithmetic and its application to certifying large

prime numbers. In International Joint Conference on Automated Rea-

soning. Springer, 423-437.

Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John

Harrison, Hoang Le Truong, Cezary Kaliszyk, Victor Magron, Sean

McLaughlin, Tat Thang Nguyen, et al. 2017. A formal proof of the

Kepler conjecture. In Forum of mathematics, Pi, Vol. 5. Cambridge

University Press.

Thomas C Hales. 2005. A proof of the Kepler conjecture. Annals of

mathematics (2005), 1065-1185.

Thomas C Hales. 2007. The Jordan curve theorem, formally and

informally. The American Mathematical Monthly 114, 10 (2007), 882—

894.

[19] John Harrison. 2009. Formalizing an analytic proof of the prime
number theorem. Journal of Automated Reasoning 43, 3 (2009), 243-
261.

[20] John Harrison. 2009. HOL light: An overview. In International Confer-

ence on Theorem Proving in Higher Order Logics. Springer, 60—66.

Marijn Heule, Warren Hunt, Matt Kaufmann, and Nathan Wetzler. 2017.

Efficient, verified checking of propositional proofs. In International

Conference on Interactive Theorem Proving. Springer, 269-284.

G Higman. 1940. The Units of Group Rings. Londres. Proc. London

Math. Soc 46 (1940).

F Immler. 2018. A Verified ODE Solver and the Lorenz Attractor. §

Autom Reasoning 61 (2018), 73-111.

Irving Kaplansky. 1970. “Problems in the theory of rings” revisited.

The American Mathematical Monthly 77, 5 (1970), 445-454.

Matt Kaufmann and J Strother Moore. 1996. ACL2: An industrial

strength version of Nqthm. In Proceedings of 11th Annual Conference

on Computer Assurance. COMPASS’96. IEEE, 23-34.

[26] Jannis Limperg and Asta Halkjeer From. 2023. Aesop: White-Box Best-
First Proof Search for Lean. In Proceedings of the 12th ACM SIGPLAN
International Conference on Certified Programs and Proofs. 253-266.

[27] Per Martin-Lof and Giovanni Sambin. 1984. Intuitionistic type theory.
Vol. 9. Bibliopolis Naples.

[28] Patrick Massot, Floris van Doorn, and Oliver Nash. 2022. Formalising
the h-principle and sphere eversion. arXiv preprint arXiv:2210.07746
(2022).

[8

—

[9

—

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]
(18]

[21]

[22]
[23]
[24]

[25]

https://arxiv.org/abs/2303.09521
https://doi.org/10.6092/issn.1972-5787/1979
https://arxiv.org/abs/2311.05762

—

Formalizing Gardam’s disproof of the Unit Conjecture

[29] The mathlib Community. 2020. The Lean Mathematical Library. In

Proceedings of the 9th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs (New Orleans, LA, USA) (CPP 2020). As-
sociation for Computing Machinery, New York, NY, USA, 367-381.
https://doi.org/10.1145/3372885.3373824

Norman Megill and David A Wheeler. 2019. Metamath: a computer
language for mathematical proofs. Lulu. com.

Dale Miller and Gopalan Nadathur. 2012. Programming with higher-
order logic. Cambridge University Press.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,
and Jakob von Raumer. 2015. The Lean theorem prover (system descrip-
tion). In International Conference on Automated Deduction. Springer,
378-388.

Leonardo de Moura and Sebastian Ullrich. 2021. The lean 4 theorem
prover and programming language. In International Conference on
Automated Deduction. Springer, 625-635.

Alan G Murray. 2021. More counterexamples to the unit conjecture
for group rings. arXiv preprint arXiv:2106.02147 (2021).

Adam Naumowicz and Artur Kornitowicz. 2009. A brief overview of
Mizar. In International Conference on Theorem Proving in Higher Order
Logics. Springer, 67-72.

Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. 2002. Is-
abelle/HOL: a proof assistant for higher-order logic. Springer.

U Norell. 2009. Dependently Typed Programming in Agda, Advanced
Functional Programming, P. Koopman, R. Plasmeijer, and D. Swierstra
(Eds.), Vol. 5832 of LNCS.

CPP ’24, January 15-16, 2024, London, UK

[38] Donald S Passman. 2011. The algebraic structure of group rings. Courier
Corporation.

[39] Christine Paulin-Mohring. 2015. Introduction to the calculus of induc-
tive constructions.

[40] Lawrence C Paulson. 1989. The foundation of a generic theorem prover.
Journal of Automated Reasoning 5, 3 (1989), 363-397.

[41] T. Peterfalvi. 2000. Character Theory for the Odd Order Theorem. Cam-
bridge University Press. https://doi.org/10.1017/CB09780511565861

[42] S David Promislow. 1988. A simple example of a torsion-free, non
unique product group. Bulletin of the London Mathematical Society 20,
4(1988), 302-304.

[43] Robert Sandling. 1981. Graham Higman’s thesis “Units in group rings”.
In Integral representations and applications. Springer, 93-116.

[44] Peter Scholze. 2022. Liquid tensor experiment. Experimental Mathe-
matics 31, 2 (2022), 349-354.

[45] Daniel Selsam, Sebastian Ullrich, and Leonardo de Moura. 2020. Tabled
typeclass resolution. arXiv preprint arXiv:2001.04301 (2020).

[46] Morten Heine B Sgrensen and Pawe 1 Urzyczyn. 1998. Curry-Howard
Isomorphism. Univ. of Copenhagen, Univ. of Warsaw (1998).

[47] Laurent Théry and Guillaume Hanrot. 2007. Primality proving with
elliptic curves. In International Conference on Theorem Proving in Higher
Order Logics. Springer, 319-333.

[48] The Univalent Foundations Program. 2013. Homotopy Type Theory:
Univalent Foundations of Mathematics. https://homotopytypetheory.
org/book, Institute for Advanced Study.

Received 2023-09-19; accepted 2023-11-25

https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1017/CBO9780511565861
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

	Abstract
	1 Introduction
	1.1 Significance of our formalization
	1.2 Related work
	1.3 Outline of the paper

	2 Lean 4: Foundations, Computations
	2.1 Lean Theorem Prover 4
	2.2 Typeclasses and Automation

	3 Mathematical Background
	3.1 Zero-divisors and Units in Rings
	3.2 Polynomials and Laurent Polynomials
	3.3 Group Rings
	3.4 Kaplansky's conjectures
	3.5 Gardam's theorem
	3.6 Metabelian Groups
	3.7 The Group P and its Torsion Freeness

	4 Formalization: proofs, enumeration, computation
	4.1 Free Modules
	4.2 Group Rings
	4.3 Lifting Decisions using Enumeration, Bases
	4.4 Constructing Metabelian Groups
	4.5 The Group P
	4.6 Torsion freeness of P
	4.7 The Unit Conjecture
	4.8 Extra theorems for verification
	4.9 Concluding Remarks

	References

