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Abstract

Parallel critical pairs (PCPs) have been used to design suf-
�cient criteria for con�uence of term rewrite systems. In
this work we formalize PCPs and the criteria of Gramlich,
Toyama, and Shintani and Hirokawa in the proof assistant
Isabelle. In order to reduce the amount of bureaucracy we de-
viate from the paper-de�nition of PCPs, i.e., we switch from a
position-based de�nition to a context-based de�nition. This
switch not only simpli�es the formalization task, but also
gives rise to a simple recursive algorithm to compute PCPs.
We further generalize all mentioned criteria from con�uence
to commutation and integrate them in the certi�er CeTA, so
that it can now validate con�uence- and commutation-proofs
based on PCPs. Because of our results, CeTA is now able to
certify proofs by the automatic con�uence tool Hakusan,
which makes heavy use of PCPs. These proofs include term
rewrite systems for which no previous certi�ed con�uence
proof was known.

CCS Concepts: • Theory of computation→ Logic and

veri�cation; Equational logic and rewriting.
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1 Introduction

Con�uence is an important property of term rewriting sys-
tems (TRSs), which has been extensively researched using
a wide variety of approaches [6, 10, 12, 28, 29, 31, 33]. One
of the common approaches to investigate con�uence is to
use critical pairs. In particular, it is well-known that a termi-
nating TRS is con�uent i� every critical pair of it is joinable.
This is a simple and straightforward method for proving
con�uence, but the assumption of a terminating TRS is a
rather strong assumption for proving con�uence of a TRS.

There are also many approaches for proving con�uence of
a TRS without assuming termination. Here, parallel critical
pairs (PCPs) play an important role (see, for example, [6,
23, 28, 33]). Speci�cally, con�uence criteria using PCPs for
left-linear TRSs subsume many earlier con�uence criteria
for left-linear TRSs [23, 28, 33].

The �rst aim of this paper is to formally prove several PCP-
based con�uence criteria in a proof assistant. In detail, we
formalize the PCP-based con�uence criteria by Gramlich [6]
(G96), Toyama [28] (T81), and Shintani and Hirokawa [23,
Theorems 31 and 38] using Isabelle/HOL [22]. In this way, our
formalization, in particular the combination of the two crite-
ria by Shintani and Hirokawa (SH22), subsumes Knuth and
Bendix’ criterion [12] in left-linear cases (KB70), Toyama’s
almost parallel closedness [29] (T88), PCP-based rule label-
ing [33] (ZFM15), the con�uence criteria based on critical
pair system [7] (HM11), and the generalization of Knuth–
Bendix criterion and PCP-based rule labeling by Dowek et
al. [4] in �rst-order cases (DFJL22); see Figure 1 for the rela-
tionships among these criteria in con�uence proving power.
In order to improve the reliability of automated con�u-

ence tools such as ACP [1] and CSI [32], their generated
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Figure 1. Comparison of the con�uence criteria.

proofs can be certi�ed. This is done by CeTA [25], a veri�ed
certi�er that checks whether con�uence techniques have
been applied correctly in such proofs. However, the power
of CeTA is limited, as prior to this work it did not support any
con�uence technique that uses PCPs. Consequently, Haku-
san [23] was unsupported by CeTA, since Hakusan is solely
based on PCPs. The second aim of this paper is therefore,
to integrate veri�ed checkers into CeTA that are capable of
certifying PCP-based con�uence proofs. The third aim is to
evaluate the new support of PCPs by CeTA. To this end, we
add certi�cate generation toHakusan. With the newly added
support of PCPs by CeTA and the certi�cate generation of
Hakusan, now all proofs of Hakusan can be certi�ed by CeTA,
in particular there are 20 TRSs for which a certi�ed proof
has been generated for the �rst time, i.e., where ACP and
CSI could not �nd a certi�able proof.

Our formalization is based on the library IsaFoR [27], the
Isabelle Formalization of Rewriting. In this way we can reuse
many known notions, results and algorithms that are re-
quired for this work, e.g., the (parallel) rewrite relation, mul-
tihole contexts, and a uni�cation algorithm for �rst-order
terms. However, prior to this work IsaFoR did not even con-
tain the notion of a parallel critical pair, and hence also none
of those mentioned con�uence criteria that are based on
PCPs.
We like to stress that our formal proofs deviate from the

existing proofs in three di�erent ways. First, we provide
an alternative de�nition of PCPs. The original de�nition is
based on parallelism of positions, uni�cation, and renaming
(U-conversion), but they are factors to complicate the use
of (structural) induction. The new de�nition, using multi-
hole contexts and a dedicated uni�cation, facilitates both the
formalization task and the (veri�ed) computation of PCPs.

Second, we generalize all these aforementioned con�uence
criteria into commutation criteria. This was often conve-
niently possible with the help of the proof assistant: Isabelle
quickly identi�ed those places where the proofs needed ad-
justment when generalizing from con�uence to commuta-
tion. Third, we do not impose the typical variable conditions
for TRSs.

The remainder of this paper is organized as follows. In Sec-
tion 2 we brie�y give preliminaries on Isabelle, term rewrit-
ing, and parallel critical pairs. In Section 3 we achieve the
�rst aim: we provide a new context-based de�nition of PCPs
and discuss our formalization of PCP-based commutation
techniques that generalize PCP-based con�uence techniques.
In Section 4 we tackle the second aim and describe the de-
velopment of the veri�ed checkers that support the various
PCP-based con�uence and commutation criteria. The third
aim is discussed in Section 5. E�ectiveness of the formal-
ized criteria and performance of certi�cation are evaluated
on problems taken from the Con�uence Problem Database
(COPS) [8]. We summarize in Section 6.

The formalizations that are described in Section 3 and in
Section 4 are now part of IsaFoR, and IsaFoR also contains
the full soundness proof of CeTA. Both IsaFoR and CeTA are
available at the website:

h�p://cl-informatik.uibk.ac.at/isafor/

Throughout this paper we illustrate the newly developed
parts either in Isabelle syntax or in standard mathematical
text. In the former case, there might be slight deviations
to the actual Isabelle source, e.g., intermediate let-bindings
might have been introduced in this paper so that the Isabelle
text �ts into the 2-column layout. In both cases, the precise
Isabelle sources can be observed at a dedicated webpage of
IsaFoR/CeTA.1 To this end, there are numerous hyperlinks in
this paper. These are always indicated by a small version of
the Isabelle logo and a �rst such hyperlink provides an
overview of the new results.

The con�uence tool Hakusan used for evaluating our for-
malization work is available at:

h�ps://www.jaist.ac.jp/project/saigawa/

The website includes experimental data discussed in Sec-
tion 5.

Related work. We are not aware of any other formaliza-
tion of parallel critical pairs. However, commutation tech-
niques have been formalized prior to this work.

Nagele and Middeldorp mechanized a criterion to ensure
commutation for parallel closed TRSs [20], a result that is
fully subsumed by our new commutation criteria for PCPs:
Shintani and Hirokawa proved the subsumption for con�u-
ence instead of commutation [23], and their subsumption
proof generalizes to commutation.

1h�p://cl-informatik.uibk.ac.at/isafor/experiments/pcp/
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Furthermore, Kohl and Middeldorp formalized a commu-
tation criterion for development closed TRSs [13, 14]. Their
result is incomparable to our results, i.e., neither does their
criterion subsume our PCP-based criteria, nor vice-versa.
However, there is a common theme in these formalizations,
namely the avoidance of explicit positions. They use proof
terms to concisely describe multistep rewriting without po-
sitions, and we use multihole contexts to concisely describe
parallel rewriting and PCPs without positions. Both parallel
and development closedness results have been formalized as
part of IsaFoR and proofs based on them are certi�able by
CeTA.
Finally, Mitterwallner et al. veri�ed decision procedures

for the �rst-order theory of rewriting [17], a theory that is
strong enough to express (ground) commutation. However,
their approach is limited to TRSs that satisfy strong syntactic
criteria, namely, every variable may occur at most once in a
rule. In particular, variables that occur in ℓ must not be used
in A for all rules ℓ → A . Their work is incomparable to ours
in two ways. The formalization is di�erent as their main
algorithms are tree-automata based, and in this work tree-
automata are not used at all. Moreover, their certi�er FORTify
implements a veri�ed decision procedure for a sub-class of
TRSs, whereas here we formalize just su�cient criteria, but
for the much broader class of left-linear TRSs.

2 Preliminaries

2.1 Isabelle

Isabelle [22] is a generic proof assistant and we use it in com-
bination with higher-order logic, i.e., Isabelle/HOL. Although
we develop our formalization in a speci�c proof assistant,
most of our formalization could have been conducted in any
proof assistant.

• We do not require any advanced features of the proof
assistant, i.e., we mostly specify our properties and
algorithms with algebraic data types, sets, and func-
tional programs.
• It was helpful to specify subtypes that restrict a given
type to satisfy certain properties. For instance, in Is-
abelle typedef sub_ty = {x :: ty. p x} de�nes a new
type sub_ty that contains all elements x of type ty that
satisfy the property p. Afterwards one can easily de�ne
functions involving sub_ty by lifting functions that
use ty. The corresponding command is lift-de�nition
from the lifting and transfer package [11].
• The only real dependence on the Isabelle proof assis-
tance is the usage of the IsaFoR library.

We just provide a brief explanation of Isabelle notation
that is used in this paper, and refer to the Isabelle documen-
tation for further details [26].
We illustrate the syntax of types in Isabelle by the exam-

ple type ′a :: infinite × nat ⇒ ′a set. It indicates a
polymorphic type since it uses a type variable ′a, and this

variable can be instantiated with any concrete type that is
in�nite. The example type is the type of functions that take
a pair of an element of type ′a and a natural number (nat)
and return a set of elements of type ′a.
Function de�nitions in Isabelle allow standard program-

ming concepts like pattern-matching, case-analysis, lambda-
abstractions, and let-bindings. Moreover, de�nitions do not
need to be executable, e.g., they may also contain quanti�ers
and set-comprehension. We use all of these concepts without
further explanation.

The Isabelle distribution already contains many function
de�nitions known from functional programming, e.g., fst
and snd are the selectors of pairs (x,y); xs ! n is the n-th
element of list xs; concat merges a list of lists into a single
list; @ is append; set converts a list into a set; map2 :: (′a

× ′b ⇒ ′c) ⇒ ′a list ⇒ ′b list ⇒ ′c list applies a
function on two zipped lists; and None and Some x are the
two possible shapes for a value of the option-type in Isabelle.

2.2 Term Rewriting

We recapitulate basic notions from term rewriting [2].
We consider �rst-order terms over some signature F (con-

sisting of function symbols 0, 1, . . . , 5 , 6, . . .with �xed arities)
and some in�nite set of variables G,~, . . . ∈ V . A position

within a term is a list of indices where Y denotes the empty
position, also called the root position. The set of positions of a
term C is de�ned as P>B (C), andVar(C) is the set of variables
that occur in C . Given ? ∈ P>B (C) wewrite C |? for the subterm
of C at position ? , i.e., C |Y = C and 5 (C1, . . . , C=) |8? = C8 |? . The
operation of replacing in a term C the subterm at position ?

by B is written C [B]? . Two positions are parallel i� they are
not pre�xes of each other. Given an indexed set of pairwise
parallel positions % = {?1, . . . , ?=}, we de�ne C [B1, . . . , B=]%
as the parallel replacement of all subterms C |?8 by B8 within C .
A substitution f is a function from variables to terms, and
we write Cf for the term that is obtained from C by simulta-
neously replacing all variables G by f (G) within C . A set of
term-pairs {B8 ≈ C8 | 8 ∈ � } is uni�able i� there exists some
substitution f such that B8f = C8f for all 8 ∈ � , and in that
case a most general uni�er (mgu) exists.

A term C is linear if every variable in C occurs exactly once.
A context � is either a variable, or a hole □, or a func-

tion symbol 5 of arity = which is applied to = contexts:
5 (�1, . . . ,�=). We de�ne #□ (�) to be the number of holes
in � . Given a context � with #□ (�) = = and given = terms
C1, . . . , C= , we write � [C1, . . . , C=] for the term which is ob-
tained by �lling all holes of� by terms C1 to C= when travers-
ing the holes from left to right, e.g., if� = 5 (□, 6(G,□)) then
� [~, 0] = 5 (~,6(G, 0)). Applying a substitution on a context
only substitutes the variables, and it will leave the holes in
the context untouched. We sometimes write singlehole con-
text to restrict to contexts with exactly one hole, or we write
multihole context to emphasize that now the �exibility of
several holes is required.
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A TRS R is a set of ordered pairs of terms, called rules,
where a rule is usually written ℓ → A . We call a subset of
R a subsystem. A TRS R is left-linear if ℓ is linear for all
ℓ → A ∈ R. The induced rewrite relation of a TRS R is
written as →R and can be de�ned either via positions or
via contexts: B →R C i� there exist a rule ℓ → A ∈ R and a
substitution f such that B |? = ℓf and C = B [Af]? for some ? ∈
P>B (B) (or equivalently B = � [ℓf] and C = � [Af] for some
singlehole context �). Similarly, we also de�ne the parallel
rewrite relation −−→R in two equivalent ways: B −−→R C i�
there are = rules ℓ1 → A1, . . . , ℓ= → A= ∈ R and substitutions
f1, . . . , f= such that B |?8 = ℓ8f8 for all 8 ∈ {1, . . . , =} and
C = B [A1f1, . . . , A=f=]% for some parallel set of positions % =

{?1, . . . , ?=} ⊆ P>B (B) (or equivalently: B = � [ℓ1f1, . . . , ℓ=f=]

and C = � [A1f1, . . . , A=f] for some multihole context �). We
sometimes just write −−→ if R is �xed by the context, and we

write
�
−−→ or

%
−−→ if we want to explicitly state the context �

or the set of positions % that have been used for rewriting.
A relation→ is terminating if there exists no in�nite se-

quence C0 → C1 → · · · . We say that a TRS R is relatively
terminating modulo S if →

R
· →∗

S
is terminating. Here

→∗ denotes the re�exive and transitive closure of→, and
→1 · →2 is de�ned as follows: B →1 · →2 D if B →1 C →2 D

for some C .
A relation of form C ∗← B →∗ D is called a peak, while

terms C and D with C →∗ · ∗← D are said to be joinable. A
relation→ is con�uent if C →∗ · ∗← D holds for all peaks
C ∗← · →∗ D. Similarly, two relations→1 and→2 commute

if C →∗
2
· ∗
1
← D holds for all peaks of form C ∗

1
← · →∗

2
D.

Con�uence is a special case of commutation:→ is con�uent
i�→ and→ commute.

2.3 Parallel Critical Pairs

Critical pairs are useful for investigating local peaks of two

potentially diverging rewrite steps ←− ·
Y
−→, and similarly,

parallel critical pairs are helpful to analyse a local peak of

two parallel rewrite steps←−− ·
Y
−→; in both situations, one

of the steps must be a rewrite step at the root position Y. To
de�ne the notion of parallel critical pair, we introduce a few
terminologies. A substitution f is called a renaming if f is a
bijective function on variables. A pair (ℓ ′, A ′) of terms (or a
rule ℓ ′ → A ′) is a variant of a pair (ℓ, A ) if ℓ ′f = ℓ and A ′f = A

for some renaming f . For instance, 5 (0,~, I) → 6(~,~) is
a variant of 5 (0, G,~) → 6(G, G), where the corresponding
renaming is {G/~,~/I, I/G}.

De�nition 2.1 (Parallel Critical Pairs and Peaks [2, 6]). Let
R be some TRS. Let ℓ0 → A0 ∈ R. Consider any non-empty
set of positions % = {?1, . . . , ?=} where all these positions
are

• non-variable positions of ℓ0, i.e., ℓ0 |?8 ∉ V , and
• pairwise parallel.

Assume ℓ8 → A8 are variants of rules inR for all 8 ∈ {1, . . . , =}
and assume that f is an mgu of the uni�cation problem
{ℓ8 ≈ ℓ0 |?8 | 1 ≤ 8 ≤ =}. In the case % = {Y} further assume
that ℓ1 → A1 is not a variant of ℓ0 → A0.

De�ne B = ℓ0f , C = ℓ0f [A1f, . . . , A=f]% , and D = A0f . Then

• C
%
←−− B

Y
−→ D is a parallel critical peak of R, and

• (C,D) is a parallel critical pair of R, also written as

C ←−− ⋊
Y
−→ D.

Note that standard (non-parallel) critical pairs are just
parallel critical pairs where the set of positions % in the peak
is restricted to be a singleton set: |% | = 1.

3 Formalization

Our �rst aim is to formalize several con�uence criteria that
are based on parallel critical pairs in a proof assistant.Wewill
�rst illustrate the problems that already arise when trying to
formalize De�nition 2.1, a problem that motivated us to de-
sign a modi�ed formal de�nition of PCPs; and afterwards we
describe our formalization of the various con�uence criteria.

3.1 Uni�cation with Variable Renamings

The �rst problem one encounters in the formal de�nition
of PCPs w.r.t. De�nition 2.1 is the renaming of variables to
build critical pairs.

Consider the TRS R consisting of the following two rules.

5 (G, 0,~) → 6(G,~)

5 (1, G,~) → ℎ(G,~)

A local peak consisting of two root steps must be captured by
some PCP, e.g., the peak 6(1,6(1,1)) ← 5 (1, 0, 6(1, 1)) →

ℎ(0,6(1, 1)).
The PCPs of R arise from unifying the left-hand side

5 (G, 0,~) with the renamed version of the other left-hand
side 5 (1, G ′, ~′), resulting in the PCP (6(1,~), ℎ(0,~)) via
mgu {G/1, G ′/0,~′/~}. Indeed, this critical pair captures the
peak via the substitution {~/6(1, 1)}. Renaming is clearly
required as 5 (G, 0,~) and 5 (1, G,~) do not unify, i.e., with-
out renaming there would not be any PCP. However, taking
De�nition 2.1 literally is not desirable, as every renaming of
variables in rules is considered. This would lead to a de�ni-
tion where (6(1, I), ℎ(0, I)) is a PCP for every variable I.
In IsaFoR this problem (which also occurs for standard

critical pairs) was previously solved by using a globally �xed
renaming scheme—which was hardcoded for strings—and
by using a �xed uni�cation algorithm. As a consequence, all
formal results of IsaFoR that rely upon critical pairs were
restricted in a way that variables had to be strings.
Our new formalization is more generic in the sense that

PCPs are de�ned by taking an arbitrary renaming function
as parameter.2 We just require two renaming functions

2We also adjusted the de�nition of critical pairs in IsaFoR, so that these are

now parametric, too.
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on variables + : ren1 : N × + → + is used to rename each
variable G of a rule ℓ8 → A8 in De�nition 2.1 into ren1(8, G),
and ren2 : + → + renames the variables in rule ℓ0 → A0
that is applied at the root). Both ren1 and ren2 need to be
injective and their range must be disjoint.

In Isabelle wemodel these two functions in a separate type
that enforces the assumptions, and rename_many and rename_

single are the selectors .3

typedef (′v :: infinite) renamingN =

{ (ren1 :: nat × ′v ⇒ ′v, ren2 :: ′v ⇒ ′v).

inj ren1 ∧ inj ren2 ∧ range ren1 ∩ range ren2 = {} }

lift-de�nition rename_many ::
′v :: infinite renamingN ⇒ nat × ′v ⇒ ′v is fst

lift-de�nition rename_single ::
′v :: infinite renamingN ⇒ ′v ⇒ ′v is snd

The advantage of using a dedicated type is that we get
the properties of rename_many and rename_single for free, i.e.,
without having to carry around assumptions on injectivity
in the remainder of the formalization.

There is also one disadvantage, namely we have to prove
that suitable renaming functions always exist, because types
must be non-empty in Isabelle/HOL. Here, we use the as-
sumption that ′v is an in�nite type, and then the result fol-
lows by using the library on cardinalities: if |+ | = ∞, then
there is a bijection between + and N ×+ ⊎+ .
We further implement string_renameN, an executable in-

stance of a renaming for strings . Here, ren1 maps pairs
(=, E) to G=_E and ren2 maps E to ~E . In these de�nitions,
G , ~ and _ are concrete characters, E represents some input
variable name, and = is a natural number in (=, E) which is
converted to a string in G=_E .

Based on the generic renaming interface, we next de�ne a
wrapper function mgu_vd_list which combines an existing
uni�cation algorithm with an arbitrary renaming ren. The
important fact is that mgu_vd_list takes care of the renaming
internally, so no explicit renaming has to be performed when
de�ning PCPs.
The idea behind the wrapper is as follows. It takes a list

of = pairs of terms for uni�cation. But instead of returning
a single uni�er, it returns = + 1 uni�ers which tell us how
the terms in the pairs should be instantiated. These uni�ers
are produced by combining the renaming functions with the
mgu that is obtained from the uni�cation algorithm. The
following two lemmas show the crucial properties of mgu_
vd_list . Here, Some represents a successful result of the
uni�cation algorithm (None would represent that the input
pairs are not uni�able), ` is a list [`0, . . . , `=] of substitu-
tions with the same length as the input pairs, and in the

3In proof assistants that do not support such a type-de�nition, one could

write a predicate is_renaming_function instead, that encodes the desired

properties of the renaming functions. In this way, one can still achieve

the �exibility of using arbitrary renaming functions, though at the cost of

having to add the assumption is_renaming_function (ren1, ren2) to several

statements.

completeness result f is a function from natural numbers 8
to substitutions f8 . Therefore, `8 and f8 are obtained by ` !

i and f i, respectively. Application Cf of a substitution is
denoted by C · f within Isabelle code.

lemma mgu_vd_list_sound:

assumes mgu_vd_list ren pairs = Some (`, g)

and i < length pairs

shows fst (pairs ! i) · (` ! i) = snd (pairs ! i) · g

lemma mgu_vd_list_complete:

assumes ∀ i < length pairs.

fst (pairs ! i) · f i = snd (pairs ! i) · \

shows ∃ ` g X. mgu_vd_list ren pairs = Some (`, g) ∧

\ = g ◦ X ∧ ∀ i < length pairs. f i = (` ! i) ◦ X

So the soundness lemma claims that the pair (`, g) repre-
sents a uni�er, while the completeness lemma claims that it
is even an mgu. Note that the completeness lemma in IsaFoR

actually contains some more properties of the substitutions,
a fact that we will explain later on.

3.2 Formal De�nition of Critical Pairs via Contexts

After having solved the problem of renamings, let us now
tackle the other problem in the de�nition of PCPs: Sets %
of parallel positions need to be managed in a way that it is
always ensured that the positions in % are indeed parallel
and moreover are valid positions of certain terms.

Making all these conditions explicit is cumbersome at least,
and therefore, we will provide a new de�nition of parallel
critical pairs that is based on contexts (in the same spirit as
one can de�ne −−→ via positions or via contexts.) Contexts
automatically by construction have their holes at parallel
positions and there is only a minimal side-condition when
working with contexts: the number of holes must coincide
with the number of terms that are used to �ll the holes. As a
result, all our proofs in this paper can be performed by a sim-
ple structural induction on contexts with low administrative
overhead.
We �rst provide a formal de�nition of PCPs between a

TRS R for performing the parallel step, and a single rule
ℓ0 → A0 that performs the root step. There is no condition
that ℓ0 → A0 belongs to R; it can be a rule from a di�erent
TRS. Later on we then de�ne PCPs between two TRSs R
and S where ℓ0 → A0 can be taken arbitrarily from S. We
start with a de�nition in plain text for a better comparison to
De�nition 2.1. In the de�nition, we assume thatmgu_vd_list
is a uni�cation algorithm with renaming integrated, i.e., it
satis�es the following two properties.

• soundness: ifmgu_vd_list [(B1, C1), . . . , (B=, C=)] results
in ( [`1, . . . , `=], g) then B8`8 = C8g for all 8 ∈ {1, . . . , =}.
• completeness: if B1f1 = C1\ and . . . and B=f= = C=\ ,
then there are substitutions `1, . . . , `=, g, X such that
mgu_vd_list [(B1, C1), . . . , (B=, C=)] = ( [`1, . . . , `=], g),
\ = g ◦ X , and f8 = `8 ◦ X for all 8 ∈ {1, . . . , =}.
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De�nition 3.1 (Parallel Critical Pairs and Peaks using Con-
texts ). Let R be a TRS and ℓ0 → A0 a rule. We de�ne the
set of parallel critical pairs and peaks of R and ℓ0 → A0 as
follows.
Consider any decomposition ℓ0 = � [ℓ0,1, . . . , ℓ0,=] where

the hole-positions of � are non-variable positions of ℓ0 and
= ≠ 0. Further let ℓ8 → A8 ∈ R for all 1 ≤ 8 ≤ = and assume
mgu_vd_list [(ℓ1, ℓ0,1), . . . , (ℓ=, ℓ0,=)] = ( [f1, . . . , f=], g).
Then we de�ne C = �g [A1f1, . . . , A=f=], B = ℓ0g = �g [ℓ1f1,

. . . , ℓ=f=], and D = A0g in order to construct

• C {ℓ8→A8 |8∈{1,...,=}}
�g
←−− B

Y
−→ D as a parallel critical peak

of R and ℓ0 → A0, and
• (C,D) as a parallel critical pair of R and ℓ0 → A0, also

written as C ←−− ⋊
Y
−→ D.

Let us brie�y compare De�nition 3.1 with De�nition 2.1
to see their close relationship: In De�nition 3.1 a context �
with = holes is constructed and the hole-positions of � are
exactly the = positions that are used in De�nition 2.1. In both
de�nitions renamings take place, however in De�nition 3.1
these are obtained via mgu_vd_list (they are included in g

and the f8 ’s), whereas in De�nition 2.1 the renamings are
performed explicitly.

There are however also some di�erences. Of course there
is the di�erence of how parallel positions are encoded, ei-
ther via contexts or via sets of positions; but there also is a
di�erence between the considered rules: in De�nition 2.1,
ℓ0 → A0 is a rule of R and for % = {Y} there is a special case
where ℓ0 → A0 is the same rule as ℓ1 → A1; in contrast in
De�nition 3.1, there is no such special case and membership
condition ℓ0 → A0 ∈ R is not required.Whereas the encoding
of positions via contexts will simplify the formal treatment of
the de�nition in Isabelle, the other di�erence admits a better
applicability. In particular dropping condition ℓ0 → A0 ∈ R

will be essential to obtain commutation results and dropping
the special case is required for supporting TRSs with extra
variables, i.e., where variables in right-hand sides of rules
need not occur in left-hand sides.

To illustrate how naturally De�nition 3.1 can be encoded
in a proof assistant, we here also provide the full Isabelle def-
inition , where ren is some renaming function that is �xed
in a local context, and where mgu_vd_list of De�nition 3.1
is instantiated by mgu_vd_list ren. After this de�nition we
no longer distinguish betweenmgu_vd_list and mgu_vd_list

ren.

de�nition parallel_critical_peaks_of_rule R (l0,r0) =

{ (C · g, (C · g)[map2 (_ (li,ri) fi. ri · fi) rls f],

l0g, r0g, rls) | C lps rls f g.

l0 = C [ lps ] ∧ hole_poss C ⊆ fun_poss l ∧

mgu_vd_list ren

(map2 (_ (li,ri) l0i. (li, l0i)) rls lps)

= Some (f, g) ∧

#□C ≠ 0 ∧ set rls ⊆ R ∧ length rls = #□C}

In the de�nition we use the notation C[ts] for �lling a con-
text Cwith a list of terms ts. The �ve-tuples that are produced
in the Isabelle de�nition contain the entries (�g, C, B,D, [ℓ1 →
A1, . . . , ℓ= → A=]) of a parallel critical peak. Further, lps is
the list [ℓ0,1, . . . , ℓ0,=] of De�nition 3.1 and rls is the list
[ℓ1 → A1, . . . , ℓ= → A=]. Interestingly, there is only one side-
condition which we have to make explicit and which one
would take for granted when reasoning more informally: it
is the last condition length rls = #□C. The remainder is a
one-to-one translation of De�nition 3.1, demonstrating that
indeed our new notion of PCPs is suitable for mechanized
proofs. In particular, multihole contexts are easily de�ned as
an algebraic datatype, and there is no demand to formally
de�ne the notion of sets of pairwise parallel positions.
Note that once PCPs4 between R and a rule ℓ → A have

been de�ned, it is easy to extend these notions to two TRSs.
The set of PCPs of R and S is the union of all PCPs be-
tween R and any rule of S, and we write PCP(R,S) to
indicate this set. Note that PCP(R,S) = PCP(S,R) is of-
ten violated. For instance, taking R = {5 (0, 1) → 2} and
S = {0 → 0′, 1 → 1′} yields PCP(R,S) = ∅, whereas
PCP(S,R) contains three elements: (5 (0′, 1), 2), (5 (0, 1′), 2),
and (5 (0′, 1′), 2). We de�ne the PCPs of a single TRS R as
PCP(R) := PCP(R,R). We further write CP(R,S) for the
standard critical pairs of R and S, i.e., those elements of
PCP(R,S) where the number of holes in the context is ex-
actly one.

3.3 The Key Lemma

After having de�ned PCPs we are now ready to prove the key
lemma of PCPs. It states that a peak arising from a parallel
step of R and a root step with rule ℓ → A can be captured
by a PCP of R and ℓ → A .

We will �rst state the lemma, then discuss its relationship
to similar lemmas in the literature, and afterwards brie�y
discuss its formal proof.

Lemma 3.2 (Capturing a Root-Overlap ). Let ℓ → A be a

left-linear rule and let R′ and R be two TRSs with R′ ⊆ R.

Consider a peak of the form C R′
�
←−− B

Y
−→{ℓ→A } D. Then one of

the following two statements is satis�ed.

1. There exists a term E such that C
Y
−→{ℓ→A } E R′←−− D.

2. There exists a parallel critical peak C ′ R′′
�′

←−− B′
Y
−→{ℓ→A }

D′ of R and ℓ → A with R′′ ⊆ R′ and there are sub-

stitutions X and W such that C = C ′W , B = B′X , D = D′X ,

X (G) −−→R′ W (G) for all G , and X (G) = W (G) for all

G ∉ Var(�′).

One usually �nds more speci�c versions of this lemma in
the literature, e.g., often R′ = R, sometimes the condition
X (G) = W (G) for all G ∉ Var(�′) is omitted, etc., cf. [33,

4In the sequel we use the abbreviation PCP for both parallel critical peaks

and pairs. The peaks contain the full information, and the pairs are just

peaks where some data has been discarded.
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Lemma 55] or [23, Lemma 16]. However, it will be essential to
have all these information and �exibility to support a variety
of con�uence and commutation techniques. For instance, for
rule labeling one often has to consider a case with R′ ⊂ R
and one further needs to know R′′ ⊆ R′. And for supporting
Toyama’s condition, the X (G) = W (G) property is essential.

The structure of the proof of the lemma is well-known
from the literature [5, 24]. One performs a case-analysis on
whether the parallel step is completely inside the substitu-
tion of the root-step (then the �rst statement is satis�ed), or
otherwise there is some overlap and a PCP can be obtained.
In the latter case the most di�cult part is to achieve the
equality X (G) = W (G) for G ∉ Var(�′).
We refer to the formalization for all the technical details,

and here brie�y mention one problem. In papers it is often
assumed that the renaming introduces fresh variables with-
out giving the precise information of what should be fresh.
Also in our formalization, mgu_vd_list takes as input just
the uni�cation problem without any reference of variable-
names that must be avoided. Hence, it can easily happen that
mgu_vd_list renames a variable into a “fresh” one, which
actually occurs somewhere else in the proof as part of a term
or context that is not contributing to the uni�cation problem.

Example 3.3. Consider the rule 5 (6(G1, 0), ~) → ℎ(G1, ~)

as ℓ → A and let R = {6(G1, G2) → : (G1, G2)}. For building
a PCP between them we choose the context � = 5 (□, ~)

and invokemgu_vd_list [(6(G1, G2), 6(G1, 0))]. The renaming
might internally switch from6(G1, 0) to6(I, 0) and we obtain

the desired PCP 5 (: (I, 0), ~) ←−− 5 (6(I, 0), ~)
Y
−→ ℎ(I,~).

However, mgu_vd_list [(6(G1, G2), 6(G1, 0))] might also
decide to internally switch from 6(G1, 0) to 6(~, 0), since ~
does not occur in the uni�cation problem. Consequently,
then just taking the uni�er {G1/~, G2/0} would result in

5 (: (~, 0), ~) ←−− 5 (6(~, 0), ~)
Y
−→ ℎ(~,~). This is not the de-

sired PCP as the previously di�erent variables ~ and I now
became identical. The cause is a clash of the variable ~ from
the uni�er with the variable ~ that appeared in the context
� = 5 (□, ~). This problem is resolved by the fact that in
the de�nition of PCPs, g is also applied on � , and g has to
rename ~ to some other variable, e.g., ~′, so the PCP would

be 5 (: (~, 0), ~′) ←−− 5 (6(~, 0), ~′)
Y
−→ ℎ(~,~′).

That the renaming inmgu_vd_list always results in the in-
tended PCPs is something where we need to know the behav-
ior of the resulting substitutions ofmgu_vd_list on variables
that do not occur in the uni�cation problem (in the example
g (~) ≠ ~ had to be ensured), and such a property is exactly
what is not yet listed in lemma mgu_vd_list_complete. So,
here is what we additionally proved for mgu_vd_list.

Lemma 3.4 (Extended completeness result of mgu_vd_list
). Let [(B1, C1), . . . , (B=, C=)] be an input for mgu_vd_list

where uni�cation succeeds with resulting substitution list `

and substitution g . Let + =
⋃

1≤8≤=Var(C8 ) and let, be the

complement of +. Then all of the following facts are satis�ed.

• g is injective on, ,

• if G ∈, then g (G) is a variable, and

• if G ∈, then g (G) does neither occur in Var(C8g) nor

inVar((` ! 8) (~)) for any 8 and ~.

The full completeness lemma can actually be derived
from lemma mgu_vd_list_complete , but the proof is not
immediate: we need 120 lines of Isabelle, and apply mgu_vd_

list_complete on four di�erent combinations of substitu-
tions.

Using these extended results on mgu_vd_list, we are �-
nally able to formally prove Lemma 3.2 , but still this is
a major e�ort. For instance, six auxiliary substitutions are
de�ned or obtained in the proof, before being able to de�ne
the �nal desired substitutions X and W .

• f is the substitution of the root step
• g is the substitution that is obtained from f by per-
forming those parallel rewrites that happen within f ;
g exists since ℓ is linear
• f8 are the substitutions for the parallel step that over-
laps with the root step
• f ′8 , g

′ and X ′ are the substitutions obtained from the
completeness result of mgu_vd_list
• X is a merge of substitution f and X ′ that also inverts
the renaming that might have happened on variables
that do not appear in the uni�cation problem
• W merges X and X ′ and deals with extra variables that
might occur in A

The overall formal proof of Lemma 3.2 is about 400 lines, not
including auxiliary lemmas. It is thereby the most complex
part of our formalization. In comparison, the formalization
of all upcoming con�uence and commutation techniques in
this section has a size of just 1500 lines.

3.4 Gramlich’s and Toyama’s Con�uence Criteria

Themost immediate consequences of Lemma 3.2 are the PCP-
based criteria of Gramlich and Toyama to ensure con�uence.
Their formalization is mostly straight-forward and it turned
out that both criteria easily extend to a commutation version
that fully covers the con�uence case.

Theorem 3.5 (Gramlich’s con�uence criterion [6], gener-
alized to commutation ). Two left-linear TRSs R and S

commute if

• C →∗
S
D for all C R

�
←−− ⋊

Y
−→S D ∈ PCP(R,S) with

� ≠ □, and

• C −−→
R
· ∗
S
← D for all C S←− ⋊

Y
−→R D ∈ CP(S,R).

The formalization contains this theorem, but not its origi-
nal proof. Instead we formalize Toyama’s criterion that fully
covers Gramlich’s one.
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Theorem 3.6 (Toyama’s con�uence criterion [28], gener-
alized to commutation ). Two left-linear TRSs R and S

commute if

• C →∗
S
· R

Var(� )
←−−−−− D for all C R

�
←−− ·

Y
−→S D ∈ PCP(R,S)

with � ≠ □, and

• C −−→
R
· ∗
S
← D for all C S←− ⋊

Y
−→R D ∈ CP(S,R).

The major advantage of Toyama’s criterion is the ad-
ditional parallel step that is allowed to join PCPs. How-
ever, here a variable restricted version of parallel rewrit-
ing is considered where Var(�) is a set of forbidden vari-
ables. We formalize it—for arbitrary sets of variables +—as

B
+
−−→ C if there is a parallel step B = � [ℓ1f1, . . . , ℓ=f=] −−→

� [A1f1, . . . , A=f=] = C such that Var(A8f8 ) ∩ + = ∅ for all
1 ≤ 8 ≤ =.

Example 3.7. Consider the TRSs R = {0 → 1,6(G,~) → 2}

and S = {1 → 2, ℎ(G, 2) → 2, ℎ(G, 0) → 6(G,~)}. There are
no CPs of S and R and there is one PCP of R and S:

ℎ(G, 1) R
ℎ (G,□)
←−−−−− ℎ(G, 0)

Y
−→S 6(G,~).

The PCP can be joined in the desired way

ℎ(G, 1) →S ℎ(G, 2) →S 2 R
Var(ℎ (G,□) )
←−−−−−−−−− 6(G,~)

sinceVar(2) ∩ Var(ℎ(G,□)) = ∅. Therefore by Theorem 3.6
we conclude that R and S commute. Note that it is allowed
that S contains an extra-variable ~ in the right-hand side of
the last rule.

Our formalized proof of Theorem 3.6 closely follows Gram-
lich’s proof of Theorem 3.5, where we add additional rea-
soning steps to support the stronger joining condition of
Toyama. Gramlich considers an arbitrary peak between a
rewrite step and a parallel rewrite step. Then he proves by
induction on the contexts of these steps that every such peak
is joinable in a speci�c way, in particular only one parallel
step is allowed in the join.

Since our de�nition of PCPs is context based, it is actually
easy to exactly follow the original proof structure in Isabelle.
We just compose and decompose contexts that occur in par-
allel rewrite steps, in PCPs, etc., with little formalization
overhead.
The only remaining interesting aspect in this part of the

formalization is the integration of Toyama’s condition. At
this point, we prove a crucial property about the variable-
restricted parallel rewrite relation. It states that steps in a
substitution and a parallel step can be merged into a single
parallel step under certain assumptions.

Lemma 3.8 ( ). Let X (G) −−→ W (G) for all G , let X (G) = W (G)

for all G ∉ + . Then B
+
−−→ C implies BX −−→ CW .

Lemma 3.8 provides a way to merge the parallel step from
X to W in Lemma 3.2 with the parallel step from joining a
PCP in Theorem 3.6 into a single parallel step. This merge
is required in the soundness proof of Theorem 3.6, and this

merge is also the part of the proof that was the most chal-
lenging one: It forced us to add the condition X (G) = W (G) for
certain G in Lemma 3.2, i.e., the condition that was di�cult
to prove.

Note that once Theorem 3.6 has been formalized, one can
also derive the (almost) parallel closedness theorem as a corol-
lary, cf. [23]. However, we did not formalize this subsumption
relation, since the parallel closedness theorem was already
available in IsaFoR [20].

3.5 Formalizing PCP-based Rule Labeling

Techniques

The decreasing diagrams [31] technique is a powerful method
for proving con�uence and commutation of TRSs. Manywell-
known con�uence criteria including Knuth and Bendix’ crite-
rion [12], Huet’s parallel closedness and strong closedness [10],
and Toyama’s con�uence criterion based on PCPs [28] can be
proven by using decreasing diagrams. Rule labeling [31, 33]
is a direct application of using decreasing diagrams for con-
�uence and commutation proofs for TRSs.
Both decreasing diagrams and rule labeling are already

part of IsaFoR [19]. However, IsaFoR did not cover those
results that combine rule labeling with PCPs [23, 33].

De�nition 3.9 (cf. [23]). Let R and S be left-linear TRSs. A
labeling function q for R (resp. k for S) is a function from
R (resp. S) to N. Given a labeling function q for R (resp. k
for S) and a number : ∈ N (resp.< ∈ N), we de�ne the TRS
Rq,: and Sk,< as follows:

Rq,: = {ℓ → A ∈ R | q (ℓ → A ) ≤ :}

Sk,< = {ℓ → A ∈ S |k (ℓ → A ) ≤ <}

We say that a local peak C
�
←−− ⋊

Y
−→ D is (k, q,S,R, :,<)-

decreasing if

C
∗
←→
⋎:
· −−−−→
Sk,<

·
∗
←−→
⋎:<
·
Var(� )
←−−−−−
Rq,:

·
∗
←−→
⋎<

D.

Here, ←→
⋎:

stands for
⋃

: ′<: (Rq,:′← ∪ →Sk,:′
) and simi-

larly,←−→
⋎<

stands for
⋃

<′<< (Rq,<′← ∪→Sk,<′
). Also,←−→

⋎:<

stands for←→
⋎:
∪ ←−→

⋎<
.

The following theorem generalizes Theorem 31 in [23]
to its commutation version, where Theorem 31 in [23] sub-
sumes the earlier con�uence criterion of Theorem 56 in [33]
based on rule labeling and PCPs.

Theorem 3.10 (Shintani and Hirokawa’s rule labeling crite-
rion with PCPs, generalized to commutation ). Let R and

S be left-linear TRSs, and q andk the labeling functions for

R and S, respectively. Suppose that Rq,0 and Sk,0 commute.

The TRSs R and S commute if the following conditions hold

for all (:,<) ∈ N2 \ {(0, 0)}.

1. Every parallel critical peak of form C
�
←−−−
Rq,:

B
Y
−−−−→
Sk,<

D is

(k, q,S,R, :,<)-decreasing.
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2. Every parallel critical peak of form C
�
←−−−−
Sk,<

B
Y
−−−→
Rq,:

D is

(q,k,R,S,<, :)-decreasing.

Again, we formalize Theorem 3.10 by closely following
the original proofs. This formalization is feasible since many
underlying results are available, in particular Lemma 3.2 and
existing results on decreasing diagrams.
Since the original proofs are quite detailed already, we

highlight one deviation from the original proof. It reveals a
small gap that luckily can easily be �xed.

In order to apply Theorem 3.10 one obviously cannot con-
sider all natural numbers : and <. To solve this problem,
one usually just computes : and < implicitly by comput-
ing the labels from a PCP (in Isabelle we de�ned these la-
beled peaks as critical_parallel_rule_peaks ) and just
demands that these peaks are joinable in Theorem 3.10. So,

given a PCP C ←−−−−−−−−−−−−−
{ℓ1→A1,...,ℓ=→A= }

B
Y
−−−−→
ℓ0→A0

D, one computes

: ′ = max{q (ℓ8 → A8 ) | 1 ≤ 8 ≤ =} and<′ = k (ℓ0 → A0).
It can be argued that it su�ces to consider the computed

values : ′ and<′: Consider any peak with numbers : and<.
Then< ≥ <′ and: ≥ : ′, because otherwise the applied rules
would not be contained in Rq,: and Sk,< . For checking the
decreasing conditions it therefore is su�cient to just check
that the PCP is decreasing w.r.t. : ′ and<′, since any join
w.r.t. : ′ and<′ implies a join w.r.t. : and<, as the increase
of : ′ to : and<′ to< can just add more rules to the TRSs
that are used in the join, e.g., Rq,: ′ ⊆ Rq,: .
Until now everything seems �ne, however there is one

gap that was revealed while performing the formalization.
Theorem 3.10 in particular excludes the case : =< = 0. So,
the whole point of this exclusion is that one does not have to
care about PCPs where : ′ =<′ = 0. Based on the idea, the
original proof [23, Proof of Theorem 31] assumed that a peak
comprising such a PCP is always labeled 0; in other words,
it assumed : = < = 0. However, according to the original
theorem one still has to consider e.g., : = 1 and< = 0 (or
: = 0 and< = 1) and show that the PCP with : ′ = <′ = 0

is (k, q,S,R, :,<)-decreasing. Fortunately, it can be shown
that such a peak can always be closed in a decreasing way,
i.e., even if one disregards PCPs with : ′ =<′ = 0. This case
was not covered in the original proof.

For completeness, we here provide the formalized state-
ment of Theorem 3.10 with the correction of computed la-
beling numbers. In the theorem, the computed numbers : ′

and<′ above appear as : and<, respectively.

Theorem 3.11 (Shintani and Hirokawa’s rule labeling crite-
rion with PCPs, generalized to commutation, with exclusion
of PCPs with label 0 ). Theorem 3.10 is still correct if one

replaces the decreasing conditions by the following ones.

• Whenever C ←−−−−−−−−−−−−−
{ℓ1→A1,...,ℓ=→A= }

B
Y
−−−−→
ℓ0→A0

D ∈ PCP(R,S),

: = max{q (ℓ8 → A8 ) | 1 ≤ 8 ≤ =} and< = k (ℓ0 →

A0) and (:,<) ≠ (0, 0), then the peak C ←−− B
Y
−→ D is

(k, q,S,R, :,<)-decreasing.

• (Symmetric version where the roles of R and S are

swapped, as well as q andk .)

Note that in this part of the formalization it was crucial to
add support for subsystems in Lemma 3.2 (R′ := Rq,: ⊆ R)
and it was further important that PCPs include the informa-
tion which rules contribute to forming a PCP.

3.6 Formalizing Commutation Techniques Based on

Parallel Critical Pair Systems

The last criterion that we cover in our formalization is based
on critical pair systems [7]. We consider the stronger com-
positional version of critical pair systems [23].

De�nition 3.12 (PCPS for con�uence [23, De�nition 34]
). Let R and C be TRSs. The parallel critical pair system

PCPS(R, C) of R modulo C is de�ned as the TRS:

{B → C, B → D | C ←−− B
Y
−→ D ∈ PCP(R) ∧ ¬(C ←→∗C D)}.

Theorem 3.13 (Compositional con�uence criterion based
on PCPS [23, Theorem 38] ). Let R be a left-linear TRS

and C a con�uent TRS with C ⊆ R. The TRS R is con�uent

if C →∗
R
· ∗
R
← D for all C R←−− ⋊

Y
−→R D ∈ PCP(R) and

PCPS(R, C) is relatively terminating modulo R.

Formalizing Theorem 3.13 is not a big challenge at this
point: the original proofs are quite detailed; and they are us-
ing decreasing diagrams in a similar way as the criteria based
on rule labeling, so that many parts of the formalization in
Section 3.5 can just be reused.
The actual challenging part was on the question how to

generalize this criterion to commutation, a task that did not
pose major problems for the criteria of the previous sections.
For instance, does one have to demand C ⊆ R∩S, or can one
take two TRSs C ⊆ R and D ⊆ S. In the latter case, what
is the proper way to generalize←→∗

C
, e.g., ∗

C
← · →∗

D
? After

several variations, we came up with following de�nition and
formalize the upcoming theorem in Isabelle.

De�nition 3.14 (PCPS for commutation ). Let R, S, C,
and D be TRSs. The commutation version of the parallel
critical pair system PCPS(R,S, C,D) is de�ned as the TRS:

{B → C, B → D | C←−− B
Y
−→ D ∈ PCP(R,S)∧¬(C →∗

D∪C−1
D)}.

Note that PCPS(R, C) in De�nition 3.12 is an instance
of PCPS(R,S, C,D) in De�nition 3.14 when S = R and
D = C.
The following lemma is the formalized commutation ver-

sion of Theorem 38 in [23]. It is easy to see that it subsumes
the original theorem by choosing S = R and D = C.

Theorem 3.15 (Compositional commutation criterion based
on PCPS ). Let R and S be left-linear TRSs, and C and D

be commuting TRSs with C ⊆ R andD ⊆ S. The TRSs R and

S commute if
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• C →∗
S
· ∗
R
← D for all C R←−− ⋊

Y
−→S D ∈ PCP(R,S),

• C →∗
R
· ∗
S
← D for all C S←−− ⋊

Y
−→R D ∈ PCP(S,R),

and PCPS(R,S, C,D) ∪ PCPS(S,R,D, C) is relatively ter-

minating modulo R ∪ S.

We illustrate the power of our new compositional com-
mutation criterion in Theorem 3.15 in the upcoming Ex-
ample 3.16. Using this theorem, commutation can easily be
proven, but the example cannot be solved by any participant
of the Con�uence Competition 2023.

Example 3.16. Consider the following rewrite rules that
include two di�erent implementations of the Fibonacci func-
tion, a recursive one and an iterative one.

start → �bRec(s(s(s(0)))) (1)

start → �bIter (s(s(s(0)))) (2)

�bRec(0) → 0 (3)

�bRec(s(0)) → s(0) (4)

�bRec(s(s(G))) → add (�bRec(s(G)), �bRec(G)) (5)

�bIter (G) → �bIterMain(0, s(0), G) (6)

�bIterMain(G,~, 0) → G (7)

�bIterMain(G,~, s(I)) → �bIterMain(~, add (G,~), I) (8)

add (0, ~) → ~ (9)

add (s(G), ~) → s(add (G,~)) (10)

add (G,~) → add (~, G) (11)

We de�ne R = {(1), (3) − (5), (9) − (11)} and S = {(2), (6) −

(8), (9) − (11)}, i.e., both TRSs share the implementation of
addition and contain exactly one of the two implementations
of the Fibonacci function.
By applying Theorem 3.15 we can �rst remove rules (1)

and (2) by choosing C = {(3) − (5), (9) − (11)} and D =

{(6) − (8), (9) − (11)}. Note that both parallel critical pair
systems are empty, since all critical pairs can be joined by
C and D. Therefore the relative termination obligation is
trivial and it su�ces to prove commutation of C and D.

We again apply Theorem 3.15 where we choose C′ = D′ =
{(9) − (11)}. Again, all pairs can be joined by C′ andD′, and
PCPS(. . . ) = ∅. Hence, it su�ces to prove commutation of
C′ andD′, i.e., con�uence of C′. At this point the con�uence
tool CSI is able to �nd a certi�able proof, and this completes
the commutation proof of R and S.

The full proof of Example 3.16 is available in the supple-
mentary material and it is certi�ed by CeTA. How this is
done will be described in the upcoming section.

4 Certi�cation of PCP-Based Criteria

In the previous section we formalized several con�uence and
commutation criteria in Isabelle. In this section we proceed
by developing veri�ed algorithms that can certify whether

these criteria have been applied correctly in untrusted con-
�uence and commutation proofs, i.e., proofs that are gen-
erated by automated tools that are potentially buggy, or
semi-automatically generated proofs such as Example 3.16.
At this point we face the problem that nearly all of the

de�nitions and theorems of the previous section are not
executable. We will tackle these problems one by one.

4.1 Computing Parallel Critical Pairs

The �rst problem is that De�nition 3.1 is not executable, in
particular the decomposition ℓ0 = � [ℓ0,1, . . . , ℓ0,=] with exis-
tentially quanti�ed�, ℓ0,1, . . . , ℓ0,= is not formulated construc-
tively at all.5 To solve this problem we design an algorithm
that computes all possible decompositions in a bottom-up
way, i.e., by recursion on the term structure of ℓ0, and it
further eliminates contexts that cannot contribute to a PCP.

It is formulated in Isabelle as follows , where the renam-
ing function ren has been locally �xed and where we write
f ts for a term 5 (CB) and x just represents terms that are
variables.

fun potential_overlaps R x = [(x, [])]

| potential_overlaps R (f ts) = let

root_os = crit_rules R (f ts);

merge oss = (f (map fst oss), concat (map snd oss));

rec_os = concat_lists (map (potential_overlaps R) ts)

in map merge rec_os @

map (_ lr. (□, [(lr, f ts)])) root_os

The function potential_overlaps R l computes an over-
approximation of all possible decompositions of term l and
returns these in a list. Each list element is of the form (C,

[(rule1, lp1), ...]), i.e., it contains the context, the sub-
terms lp1,. . . of l to be plugged into the context, and each
rule of R for which an overlap is detected. Here, the actual
detection for a root-overlap is computed via crit_rules R

(f ts): this function computes all root-overlaps of rules of
R with term f ts via mgu_vd_list. The expression concat_

lists [xs1, ... xsN] returns [[x1, ..., xN] | x1 <− xs1,

..., xN <− xsN]. Hence, rec_os stores a list of potential
overlaps lists, where each inner list oss contains exactly one
overlap information for each argument of f ts. These lists are
then merged by composing the new context f (map fst oss)

and by the concatenation of all overlaps of the arguments.

Example 4.1. We illustrate the computation of the potential
overlaps for Example 3.7 where we aim at computing the
PCPs of R = {0 → 1,6(G,~) → 2} and the rule ℎ(G, 0) →
6(G,~) ∈ S. Starting bottom up, we �rst compute the po-
tential overlaps of R and G , resulting in [(G, [])], and the
overlaps of R and 0, resulting in [(0, []), (□, [(0 → 1, 0)])].
Hence, the potential overlaps of R andℎ(G, 0) are recursively
computed as [(ℎ(G, 0), []), (ℎ(G,□), [(0 → 1, 0)])].

5A similar problem appears in De�nition 2.1 where one would have to

enumerate all parallel positions of ℓ .
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Note that the overapproximation is quite tight: nearly ev-
ery list entry in potential_overlaps R l will give rise to a
PCP. There are only two exceptions: �rst, a decomposition
with no holes will be computed and has to be dropped, and
second, in case of non-linear input terms l, a �nal uni�ca-
tion has to be performed. In our implementation of PCPs
we always perform the uni�cation test (mgu_vd_list ren

unifp) and only keep decompositions with non-empty con-
texts (pot_oss becomes ne_pot_oss). We verify in Isabelle
that our implementation correctly implements PCPs w.r.t.
De�nition 3.1 . The only di�erence is that the implemen-
tation is list-based, whereas De�nition 3.1 is set-based, so
we use Isabelle’s set function in the lemma to convert a list
into a set.

fun parallel_critical_peaks_of_rule_impl R (l,r) = let

pot_os = potential_overlaps R l;

ne_pot_oss = filter (_ (_,rls). rls ≠ []) pot_os;

generate_pcp (C, rule_lp) = let

unifp = map (_ ((li,ri),lp). (li,lp)) rule_lp

in case mgu_vd_list ren unifp of

None ⇒ []

| Some (f, g) ⇒ let

rls = map fst rule_lp;

t = (C · g)[map (_ (((li,ri),_),fi). ri · fi)

(zip rule_lp f)]

in [(C · g, t, l · g, r · g, rls)]

in concat (map generate_pcp ne_pot_oss)

lemma set (parallel_critical_peaks_of_rule_impl R lr)

= parallel_critical_peaks_of_rule (set R) lr

Example 4.2 (Continuing Example 4.1). After having com-
puted the potential overlaps of R and ℎ(G, 0) we see that
(ℎ(G,□), [(0 → 1, 0)]) is the only non-empty potential over-
lap. The resulting uni�cation problem [(0, 0)] is solvable and
the algorithm produces the PCP of Example 3.7, represented
as quintuple (ℎ(G,□), ℎ(G, 1), ℎ(G, 0), 6(G,~), [0 → 1]).

4.2 Checking Existence of Parallel Critical Pairs

After having a veri�ed algorithm to compute PCPs, the next
step is to match the PCPs that are given in a certi�cate—this
might have been computed by some untrusted tool—with
those of the veri�ed computation. Here, there might be two
di�erences. The �rst andmost obvious di�erence is the usage
of a di�erent renaming mechanism; and the second problem

is the treatment of trivial PCPs C ←−− ⋊
Y
−→ D where C = D.

The second problem might arise since our de�nition also
considers self-overlaps, in particular if ℓ → A ∈ R, then
(A, A ) ∈ PCP(R). However, tools might produce certi�cates
that do not include (A, A ). We still accept these proofs since
we just check that all non-trivial PCPs are present in the
certi�cate. This is sound, since all trivial PCPs automatically
satisfy the various joining-conditions in the commutation
criteria of Section 3.

To deal with the �rst problem, we formalize an algorithm
matching_cp that checks whether for each computed ver-

i�ed PCP C
�
←−− B

Y
−→ D, a matching PCP C ′

% ′

←−− B′
Y
−→ D′ is

present in the certi�cate. Note that in the format for certi�-
cates the more traditional De�nition 2.1 is used for PCPs,
i.e., a set of positions % ′ is provided instead of a context.
Given these parameters we then check whether (C, B,D) is
an instance of (C ′, B′, D′) (say via matching substitution f)
and whether the hole-positions of � are exactly % ′. Hence,
any joining sequence between C ′ and D′ (from the certi�cate)
also yields a joining sequence between C = C ′f and D = D′f ,
since (parallel) rewriting is closed under substitutions.
One �nal problem though is the usage of the variable re-

stricted version of parallel rewriting
+
−−→ in Theorems 3.6 and

3.11 (via De�nition 3.9): this relation is not closed under sub-
stitutions. However, it is closed under variable renamings f ,
provided the forbidden variables + are also renamed w.r.t.
the inverse of f . Therefore, our veri�ed algorithm get_

renaming_substs extracts the renaming f from the matching
algorithm and computes its inverse. Although this sounds
trivial, the de�nition of get_renaming_substs and its auxil-
iary function extend_finite_map are de�nitely not imme-
diate. For instance, the latter algorithm extends an injective
map on a �nite set of variables, e.g., {G ↦→ ~,~ ↦→ I}, to a bi-
jection on the set of all variables, e.g., {G ↦→ ~,~ ↦→ I, I ↦→ G}

and all other variables are mapped to theirselves.
Finally, we put everything together, e.g., we de�ne an

algorithm check_toyama_pcp_sequence_comm . It �rst uses
a combination of tests based on get_renaming_substs and
matching_cp to ensure that variants of all veri�ed PCPs are
present in the certi�cate, and then an algorithm is invoked to
compute that indeed all PCPs in the certi�cate are joinable in
a way that is required by the various commutation criteria.
Ultimately, our soundness results are of the following

form: whenever a checker accepts a certi�cate, then the pre-
conditions of one of the theorems in Section 3 is satis�ed,
e.g. check_toyama_pcp_sequence_comm ensures the �rst join-
ing condition in Theorem 3.6 .

4.3 Checking Joining Sequences

In Section 4.2 we just assumed that one can check whether a
PCP is joinable. Actually joinability is undecidable for all of
the criteria that are stated in Section 3, since these joinability
conditions always contain at least one occurrence of→∗, i.e.,
reachability.

Our checkers for joinability o�er two modes of operation,
both aiming at easy-to-produce certi�cates.

The �rst mode is the automatic mode where just an upper
limit = on the number of steps is given. For example, when
checking an application of Theorem 3.15, one needs to ensure
C →∗

S
· ∗
R
← D for all (C,D) ∈ PCP(R,S). Here the checker

will try to �nd some E such that C →=1

S
E =2

R
← D with=1+=2 ≤

= by breadth-�rst search. The advantage of this automatic
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mode is that the certi�cates are trivial to generate, at the
cost of high computation costs during certi�cate checking.
Moreover, the automatic mode cannot cope well with extra
variables in right-hand sides of rules or applying rewrite
steps in the “wrong” direction, as is allowed in the decreasing-
condition in De�nition 3.9.
Therefore, in the second mode of operation the joining

sequences have to be provided. To be more precise, to join a
PCP (C,D) the certi�cate has to provide a list of intermediate
terms, i.e.,

C = B0 ∼ B1 ∼ B2 ∼ . . . ∼ B= = D (A)

where the symbol ∼ represents some rewrite step. Of course,
the certi�cate might also contain information on which
rewrite step was applied, but this would make the certi�-
cates more bulky, and therefore we decided to leave this
information implicit, i.e., it has to be inferred by the certi�er.
Recall that in De�nition 3.9, the joins have a complex

shape

C →∗R1 · −−→R2 · →
∗
R3
·

+
←−−
R4
· →∗R5 D (B)

with �ve di�erent TRSs R1, . . . ,R5. Here, R1 is de�ned as
⋃

: ′<: (R
−1
q,: ′
∪Sk,: ′ ) such that→R1 is exactly←→

⋎:
in De�ni-

tion 3.9, and similarly one can de�ne R2, . . . ,R5.
The question is now how to map the steps in (A) onto the

desired shape in (B).
To this end, our implemented checker uses a greedy ap-

proach. It starts from the left (8 := 0) such that C = B8
and then increments 8 as long as B8 →R1 B8+1. It then in-
crements 8 if B8 −−→

R2
B8+1, then increments 8 repeatedly as long

as B8 →R3 B8+1, and in the same way it deals with R4 and R5.
Eventually it checks B8 = B= = D in order to report a valid
join.
Observe that this greedy approach is not rejecting any

valid joining sequences, since all the participating relations
are re�exive: any→∗ relation is re�exive and also a single
parallel step is a re�exive relation. So it might happen that the
actual intended joining sequence—the one that is detected
by the tool—is

C = B0 →R1 B1 −−→
R2

B2
+
←−−
R4

B3 →R5 B4 →R5 B5 = D,

but it is accepted by the checker as

C = B0 →R1 B1 →R1 B2 →R1 B3
+
←−−
R4

B4 →R5 B5 = D.

For further convenience of tool authors, we implemented
the checker in a way that it automatically converts→∗ into
−−→∗, i.e., the steps from B8 to B8+1 can always be parallel steps.
In this way, a joining sequence 5 (0, 0, 0) → 5 (0, 0, 1) →

5 (0, 1, 1) → 5 (1, 1, 1) via rule 0 → 1 can be compressed into
a single parallel step 5 (0, 0, 0) −−→ 5 (1,1, 1) in the certi�cate.

4.4 Checking Full Con�uence and Commutation

Proofs

Already prior to our work, CeTA was capable to check certi�-
cates of con�uence and commutation proofs. These may con-
sist of a combination of various techniques. Whereas the sup-
port of con�uence was already quite good (CeTA supported 11
di�erent criteria to ensure con�uence), there was only little
support for commutation: being parallel closed [21] or being
development closed [13, 14] have been the only commutation
criteria in CeTA. We therefore added all of the techniques of
Section 3 to CeTA by integrating the corresponding checker
functions of this section as new alternatives.

Our extensions do not change the soundness result of CeTA:
whenever CeTA accepts a certi�cate of a con�uence proof or
of a commutation proof, then the input TRS is con�uent, or
the input TRSs commute, respectively. However, because of
our extensions now more proofs can be accepted by CeTA,
namely those proofs that require PCPs.

5 Evaluation

In order to evaluate the presented contributions we extended
the con�uence tool Hakusan to support certi�cate outputs
for the compositional con�uence criteria of rule labeling
based on PCPs (Theorem 3.11) and of the parallel critical
pair systems (Theorem 3.15).6 Since Hakusan only uses the
combination of Theorems 3.11 and 3.15 (assuming R = S

and C = D), by this extension all con�uence proofs of the
tool are certi�able by CeTA. Note that certi�cates generated
by the tool indicate joining sequences explicitly.
We brie�y recall how the criteria are automated in the

tool [23, Section 8]: Joinability of PCPs is tested by �nd-
ing suitable joining sequences of the form→=1 · =2← with
=1, =2 ≤ 5. Suitable labeling functions for rule labeling are
found by the SMT solver Z3 [3] (version 4.12.2) via SMT
encodings [7, Section 4], while relative termination is shown
by employing the termination tool TTT2 [15] (version 1.20.1).
Suitable con�uent subsystems for the compositional con�u-
ence criteria are found by enumeration.
The problem set used in experiments consists of 462 left-

linear TRSs taken from the con�uence problems database
COPS [8]. Out of the 462 TRSs, at least 233 are known to
be con�uent while at least 189 are non-con�uent. The tests
were run on a PC with Intel Core i7-8500Y CPU (1.5 GHz)
and 16 GiB memory of RAM using timeouts of 60 seconds.
Table 1 summarizes the experimental results for Theo-

rem 3.11, Theorem 3.15, and their combinations.

• R: Theorem 3.11 with Rq,0 = Rk,0 = ∅.
• C: Successive application of Theorem 3.15.
• RC: Theorem 3.11 but con�uence of an employed
subsystem is shown by (single) application of The-
orem 3.15 (with C = ∅).

6The tool and the experimental data are available from: h�ps://www.jaist.

ac.jp/project/saigawa/
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Table 1. Comparison of criteria on 462 left-linear TRSs.

R C RC CR k s a o rt cc

certi�ed 133 107 141 138 50 62 52 90 96 77

timeouts 30 67 116 42 102 0 3 96 102 102

Table 2. Comparison of tools on 462 left-linear TRSs.

Hakusan ACP CSI FORT-h total

proved 144 73 159 34 179

certi�ed 144 73 157 33 177

• CR: Theorem 3.15 where con�uence of a subsystem is
shown by Theorem 3.11 (with Rq,0 = Rk,0 = ∅).

Since searching suitable subsystems is time consuming, RC
applies Theorem 3.15 only once. Note that successive appli-
cations of Theorem 3.11 can be simulated by a single applica-
tion of it. For a comparison sake we also include in the table
the results of the con�uence criteria that CeTA supports:

• k: Knuth and Bendix’s con�uence criterion [12].
• s: Strong closedness [10].
• a: Almost development closedness [14, 30].
• o: The original rule labeling for linear TRSs [31].
• rt: Rule labeling enhanced by relative termination [33].
• cc: Successive application of the con�uence criterion
based on critical-pair-closing systems [9].

For the comparisons we employed the other con�uence tools
ACP version 0.72 and CSI version 1.2.7. The former tool was
used for k, s, and a, while the latter was for o, rt, and cc.

Table 1 indicates the numbers of problems proved by the
corresponding criterion and of problems that exceeded the
timeout. For instance, the numbers in column R are read
as follows: For 133 TRSs Hakusan produced certi�cates of
con�uence proofs by using R, and moreover, their certi�-
cates were successfully veri�ed by CeTA. For 30 TRSs the tool
could not �nish con�uence analysis within the time. For the
remaining 299 TRSs nothing is concluded by R.

The table clearly shows that the con�uence proving power
of R and C are comparable to those of the existing methods
listed above (k, s, a, o, rt, and cc). If a certi�cate provides
joining sequences, the execution time of CeTA is negligible.
In fact, any certi�cate produced by Hakusan was veri�ed
within a second.

Table 2 summarizes the experimental results for Haku-
san and the con�uence tools ACP, CSI, and FORT-h version
2.0 [17] supporting certi�cate outputs. The latter tools are
taken from the TRS category of the annual con�uence com-
petition (CoCo) [16] held in 2023.

• Hakusan applies RC and then CR after applying the
redundant rule elimination technique called the reduc-
tion method [24, Corollary 8.4].

• ACP uses s and a.
• CSI applies k, s, a, o, rt, and cc after applying redun-
dant rule addition/elimination techniques [18].
• FORT-h is a decision procedure for left-linear and right-
ground systems, and the generated answers are certi-
�ed by FORTify version 2.0. Note that our problem set
contains 122 left-linear and right-ground TRSs.
• total indicates the unions of their results.

The reduction method used in Hakusan is a special case of
Theorem 3.11. So all techniques in Hakusan are covered by
the presented formalization (Theorems 3.11 and 3.15).
Concerning the results,7 all problems handled by ACP

can also be handled by Hakusan. FORT-h and FORTify can
solve two problems that Hakusan cannot handle. CSI can
produce more certi�able con�uence proofs than Hakusan,
but nevertheless there are also 20 TRSs in our experiments for
which only Hakusan was able to provide a certi�able proof;
in detail, 16 TRSs are handled byR, 2 byRC, 1 byCR, and 1 by
RCwith the reductionmethod. The combination of Hakusan
and CSI amounts to 177. It is worth noting that Toyama’s
con�uence criterion (Theorem 3.6) and PCP-based parallel
rule labeling have already been implemented in ACP and
CSI, respectively. Therefore, if the tools support certi�cate
generation for these criteria, at least 82 proofs can be certi�ed
by ACP and 173 by CSI. Overall it is demonstrated that our
work signi�cantly increases the power of reliable con�uence
analysis.

6 Summary and Outlook

Our initial aim was to formalize existing PCP-based con�u-
ence techniques in Isabelle. This led to a new context-based
de�nition of PCPs, and to a generalization of all these tech-
niques to commutation.

In total, more than 4300 lines of Isabelle have been added
to IsaFoR. Here, 400 lines have been spent on combining
renamings with uni�cation, and 2400 lines cover all the over
results in Section 3. The remaining 1500 lines de�ne and
verify the checkers of Section 4.

The new version of CeTA is now able to certify all proofs
of Hakusan, leading to a signi�cant increase in certi�able
con�uence proofs. It remains as future work to �gure out,
whether our generalization to use PCPs for commutation
is also useful for automated commutation analysis. For in-
stance, the proof in Example 3.16 looks quite natural and
might be generated by automated tools in the future.
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