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Abstract

As learning difficulty is crucial for machine learning (e.g., difficulty-
based weighting learning strategies), previous literature has proposed
a number of learning difficulty measures. However, no comprehensive
investigation for learning difficulty is available to date, resulting in
that nearly all existing measures are heuristically defined without a
rigorous theoretical foundation. In addition, there is no formal defini-
tion of easy and hard samples even though they are crucial in many
studies. This study attempts to conduct a pilot theoretical study for
learning difficulty of samples. First, a theoretical definition of learning
difficulty is proposed on the basis of the bias-variance trade-off theory
on generalization error. Theoretical definitions of easy and hard sam-
ples are established on the basis of the proposed definition. A practical
measure of learning difficulty is given as well inspired by the formal
definition. Second, the properties for learning difficulty-based weighting
strategies are explored. Subsequently, several classical weighting meth-
ods in machine learning can be well explained on account of explored
properties. Third, the proposed measure is evaluated to verify its rea-
sonability and superiority in terms of several main difficulty factors. The
comparison in these experiments indicates that the proposed measure sig-
nificantly outperforms the other measures throughout the experiments.

Keywords: Learning difficulty, bias-variance trade-off, model complexity.
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1 Introduction

The partition of training data into different subsets according to their learn-
ing difficulties and adoption of separate learning schemes (e.g., weighting) are
proven to be useful in many learning tasks [21, 43, 46, 68]. The learning diffi-
culty investigated in this study refers to the degrees of easy or hard to learn of
training samples in a given learning task. Although learning difficulty has no
formal and consensus definition, it has been widely discussed and utilized in
previous machine learning literature, including noise-aware, curriculum, and
metric learning.

Numerous methods are proposed to measure the learning difficulty of a
training sample. The most common practice is to leverage the training output
(e.g., loss and the predicted value on the true category) of a sample to construct
the measurements. In Self-paced Learning (SPL) [26, 68], the training loss is
used to determine whether a sample is easy or not, and easy samples are first
learned. We assume that pi,yi is the prediction on the ground-truth category
for a training sample xi. In object detection, the value of (1− pi,yi) is used to
indicate the learning difficulty for xi [43] . Given that the training output in
an epoch may be unreliable, some methods utilize the average training output
of a sample during the training to measure the difficulty. Huang et al. [33]
designed a cyclic training procedure, and the model is trained from under-
fitting to over-fitting in one cycle. The average training loss in the whole cyclic
procedure is used as the noisy indicator for a training sample. Feng et al. [20]
utilized the magnitude of the loss gradient to measure the learning difficulty
of a training sample. A large gradient magnitude indicates a high degree of
difficulty.

Due to lack of a theoretical basis, different learning difficulty measures
are based on different heuristic cues or empirical observations, resulting that
each measure usually only suits specific application scenarios. A clearer under-
standing of the essence of a sample’s learning difficulty can at least facilitate
explaining difficulty-based weighting methods and designing more effective
learning difficulty measures. However, we are still far from concluding that we
have a comprehensive understanding of learning difficulty:

(1) There is no formal definition of the learning difficulty of a sample. Different
studies exhibit different understandings of learning difficulty. A one-sided
understanding usually results in a biased measure.

(2) There is no formal definition of the easy and hard samples in a learning task.
In most existing studies, easy and hard samples are heuristically judged.
Consequently, it is nearly impossible to conduct a theoretical analysis for
difficulty-based weighting strategies with existing heuristic considerations.

(3) There has been few experimental studies particularly on the learning diffi-
culty measure. Most studies only refer to the noisy learning or uncertainty
settings. An extensive empirical evaluation under different settings is useful
for the understanding the learning difficulty.
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This study attempts to establish a preliminary theoretical definition for
learning difficulty on the basis of the basic machine learning theory, namely
bias-variance trade-off theory, for generalization errors of samples. The pro-
posed definition leverages the optimal model complexity of a sample to capture
its learning difficulty, inspired by previous observations that easy samples are
modeled by simple patterns [6]. The definitions of easy, medium and hard
samples are subsequently proposed based on our theoretical definition. As
it is nearly infeasible to calculate the optimal model complexity, a practical
approach is proposed to approximate the theoretical definition. Then, the prop-
erties for difficulty-based weighting learning methods are explored to support
the rationality of the theoretical definitions. Several typical weighting strate-
gies, including SPL and Focal loss, are theoretically analyzed and explained.
The results of the extensive experiments verify the superiority of the proposed
measure.

Our contributions are summarized as follows:

• An attempt in theoretical definition of learning difficulty is made based on
the basic machine learning theory, namely, bias-variance trade-off. To our
knowledge, this work is the first step on the formal description of learning
difficulty.

• Formal definitions of easy and hard samples are established. As far as we
are aware, this is the first attempt on this formalization.

• A measure of learning difficulty is proposed and is attested to be rational
and exceptional.

• The theoretical properties of difficulty-aware weighting strategies in machine
learning are explored, and the theoretical explanations based on definition
of learning difficulty are presented for several typical weighting methods,
which enhance understanding over effective strategies.

2 Related Work

2.1 Learning Difficulty Measurement

Learning difficulty is considered as an intrinsic property of data in machine
learning [46, 75]. Existing measurements are usually based on heuristic cues
or inspirations, and they can be divided into the following main categories:

• Loss-based measurement. This category directly uses the loss as the mea-
sure. Most measures fall into this category because it is simple yet effective
in various learning tasks. Some methods [68] directly utilize the loss in one
epoch as the degree of difficulty. Accordingly, the degrees for the same sam-
ples vary in different epochs. Some others utilize the average loss [45] during
the partial or whole training procedure for measurement.

• Cross-validation-based measurement. This category adopts a cross-
validation strategy [65]. For example, five-fold cross-validation is performed,
and the whole cross-validation is repeated ten times. Consequently, each



Springer Nature 2021 LATEX template

4 ELDD

training sample receives ten predictions. The value of error predictions is
used as the indicator of difficulty.

• Uncertainty-based measurement. This category uses the (model) uncertainty
of a sample to measure the difficulty. Aguilar et al. [3] identified hard samples
based on the epistemic uncertainty (also known as the model uncertainty).
They leveraged the Bayesian Neural Network [67] to infer the epistemic
uncertainty.

• Margin-based measurement. This category uses the margin (distance) of a
sample to the underlying decision surface as the measurement. The rationale
is that a small margin denotes a large difficulty [42, 68].

• Gradient-based measurement. This category uses the loss gradient of a sam-
ple to measure the difficulty. Agarwal and Hooker [2] proposed the variance
of gradients (VOG) across different epochs to rank data from difficult to
easy. They considered that samples with high VOG values are far more dif-
ficult for the model to learn. Santiago et al. [54] applied the norm of the
gradients to measure the difficulty, and high norms indicate large difficulty
for learning.

The above-mentioned categories are highly correlated. For example,
margin-based measurement is indeed a loss-based one when margin-based loss
(e.g., hinge loss) is used.

2.2 Noisy-label Learning

Noisy labels are inevitable even in benchmark data sets [28, 33, 34, 40].
Various methods are explored to detect noisy labels. Existing noise detection
methods are usually based on the information used for learning difficulty mea-
surements, such as loss and gradient, because samples with noisy labels are
usually considered as quite hard samples. Some studies model the generation
process of the noisy labels to detect them [18, 38]. A recent survey can be
referred to [27].

2.3 Curriculum Learning

Curriculum learning [10] draws lessons from the human learning process,
which begins with the simplest and progresses to more difficult courses. Easier
samples should be learned at the beginning of a learning process and gradually
advance towards harder samples. SPL pertains to curriculum learning and the
difficulty is measured by loss.

2.4 Uncertainty-aware Learning

Uncertainty in learning mainly refers to aleatoric uncertainty and epistemic
uncertainty. Aleatoric uncertainty is also called data uncertainty. A related
work [4] wisely estimated uncertainty in labeling, which is also recognized as
aleatoric uncertainty, since accurate and consistent labeling has high unsure-
ness in real-world. To reduce the influence of high-uncertainty samples, they
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lower the weights of samples with high density and label entropy. Epistemic
uncertainty is also called model uncertainty. It occurs when there is no fixed
annotation for a given training sample in some learning tasks. The predictive
entropy [35] and Bayesian Neural Network [67] have been used to measure
epistemic uncertainty.

3 Theoretical Definition of Learning Difficulty

Existing learning difficulty measurements mentioned in Section 2.1 are
empirically utilized in diverse situations. Despite the effect emerges under
difficulty-based learning schemes, there is still a lot of room of improvement.
Because existing measurements are proposed heuristically without a theo-
retical basis. Moreover, incentives of difference between learning difficulty
of samples are multifarious. Existing measurements are mainly of unilateral
considerations, which could not cover the majority incentives.

Arpit et al. [6] gave a descriptive definition for easy (as well as hard) sam-
ples that “easier examples are explained by some simple patterns, which are
reliably learned within the first epoch of training”. This definition implies that
easy samples can be modeled by simple models, which motivates us to build
a theoretical description with model complexity. Model complexity is a key
concept in the classical bias-variance trade-off theory, which is the basis of
machine learning and is about the generalization error of a learning task.

3.1 Bias-Variance Trade-Off for Generalization Error

Bias-variance trade-off is a basic theory for the qualitative analysis of the
generalization error in machine learning [31]. It is initially constructed on
regression and mean square error (MSE) is used [31]. The features and the
label of a sample are seen as two random variables, and are denoted as x and
y respectively. Realizations of a sample are in form of {(xi, yi)}. We assume
that x and y conform to the joint distribution P (x, y), where (x, y) ∈ Ω with
Ω = ΩX×ΩY = {(x, y)|x ∈ ΩX , y ∈ ΩY } . Let T be a random training set and
λh ∈ Rλ be the hyper-parameter(s), where Rλ is the feasible region1. Simplify
(x, y) as x in the rest of paper. Given a basic learner f and a fixed value of λh,
a model can be trained on T and is denoted by f(x; T, λh). The generalization
error over different realizations of the training samples [43] is

Err(λh) = Ex∈ΩET [‖y − f(x; T, λh)‖22]. (1)

Eq. (1) can be factorized into

Err(λh) = Ex∈Ω[‖y− f(x; λh)‖22] +Ex∈ΩET [‖f(x; λh)− f(x; T, λh)‖22] + δe ,
(2)

1Note that the hyper-parameter should locate in a feasible region. For example, if λh is the
learning rate, then λh < 0 is meaningless.
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where f̄(x; λh) = ET [f(x; T, λh)], and δe is known as the irreducible noise, and
is independent of the basic learner and λh. The first and the second terms of
the right side of Eq. (2) are the learning bias and variance terms, respectively,
shown as follows:

Bias2(λh) = Ex∈Ω[‖y − f(x; λh)‖22]. (3)

V ar(λh) = Ex∈ΩET [‖f(x; λh)− f(x; T, λh)‖22]. (4)

In classification, the above derivation becomes complex [73]. Nevertheless,
the following expression holds, with BiasT and V arT denoting the bias and
the variance terms respectively:

Err(λh) = BiasT (λh) + V arT (λh) + δe. (5)

Variable y is categorical in classification. We suppose that x is continu-
ous in order to consider in the total space, and facilitate the inference for
classification. Therefore, the generalization error for a region Ωr ⊂ Ω s.t.
Ωr = ΩrX × ΩY = {(x, y)|x ∈ ΩrX , y ∈ ΩY } is defined as

Err(Ωr, λh) =
∑
y∈ΩY

P (y)

∫
x∈Ωr

X

ET [l(y, f(x; T, λh))]p(x|y)dx, (6)

where l(·, ·) measures the error between the label and a prediction. P (y) sig-
nifies the probability when the label equals to y and p(x|y) is the conditional
probability density function of x when the label equals to y. Denote m(·)
as the model complexity defined by a function of parameters of a specific
model f(x; T, λh) trained on a sampled training set T with λh. Let c be the
expectation of the model complexities given λh. It is defined as follows:

c = ET [m(f(x; T, λh))]. (7)

In the rest of the paper, the model complexity expectation is briefly termed
as “model complexity”. c depends on the base network (e.g., AlexNet, Trans-
former, and ResNet-34), λh (e.g., learning rate and the maximum learning
epoch), and the distribution of T . When f and the distribution are fixed, c is
the function of λh, i.e.,

c = g(λh), λh ∈ Rλ. (8)

In this study, the base network is assumed to be fixed. Therefore, Err(λh)
can be seen as the function of c according to Eqs. (1) and (10). The following
widely accepted assumption2 holds for both regression and classification.

2Most professional books and papers explicitly or implicitly apply this assumption without
giving a strict proof. Some recent studies point out that the variance curve is not increasing any
more in some cases [43]. However, the structures of base models in these studies are also varied.
Meanwhile, the structures of base models in this study are assumed to be fixed.
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Fig. 1 Illustration of bias-variance trade-off under non-linear regression.

Assumption 1 The bias term is a decreasing function of the expectation of model
complexity c, whereas the variance term is an increasing function of c when the basic
learner is fixed. The generalization error decreases first and then increases.

An example of non-linear regression learning is utilized to empirically
support Assumption 1.

Example 1 4000 realizations of random variable x are sampled uniformly from [0, 5].
The true target value y of a sample x is given by the target model f(x) = 3 −
sin(3x)/x. The target value is then perturbed by Gaussian noise, i.e., ŷ = y + ε =
f(x) + ε, where ε ∼ N (0, 1.2).

A 10-degree polynomial function is used and trained by ridge regression,
i.e., f̂(x) ∼ O(10). The hyper-parameter λ in ridge regression is searched in
{e−7, e−6, e−5, e−4, e−3, e−2, e−1, e0, e1}. Under different values of λ, the complex-
ities of fitting models differ accordingly. For each value of λ, 40 fitting models are
learned using different random training sets. Each training set is composed by 200
samples randomly sampled from the 4000 realizations. An additional test set is
constructed in the same way as training sets and is of the same size. �

Let ŵt = (ŵt,1, · · · , ŵt,10)T be the model parameter learnt on a training
set Tt. The model complexity of a learnt model fŵt

parameterized by ŵt is
calculated as follows:

m(fŵt
) =

10∑
i=1

(
i

10
ŵt,i)

2,

and the model complexity expectation is calculated as:

c(ŵ(λ)) =
1

40

40∑
t=1

m(fŵt
) =

1

40

40∑
t=1

[

10∑
i=1

(
i

10
ŵt,i)

2] (9)
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Fig. 2 The bias-variance trade-off curve.

Details of the calculation are presented in Appendix A.

The bias, variance, and generalization error curves of Example 1 are given
in Fig. 1. Assumption 1 holds with regard to this example. A clear bias-variance
trade-off is presented. The bias curve decreases with respect to the employed
model complexity while the variance term increases. The generalization error
first decreases to its minimum, and then increases. The minimum of the aver-
age generalization error over all samples is 0.018 and is attained around the
intersection of the bias curve and the variance curve.

According to Assumption 1, the minimum generalization error is achieved
when the partial derivatives of generalization error with respect to c equals to
zero, i.e., the sum of the partial derivatives of its bias term and the correspond-
ing variance term with respect to c equals to zero. A diagrammatic drawing
of the bias-variance curve is shown in Fig. 2 [25, 29]. In the rest of the paper,
the model complexity expectation is briefly termed as “model complexity”.

The optimal λh and c are obtained with

λ∗h = argmin
λh

Err(λh) (10)

c∗ = g(λ∗hyper). (11)

3.2 Definition of Learning Difficulty

Eq. (1) is defined on the whole space Ω. P (x, y) is often unknown. According
to Eq. (1) we define the generalization error for a sample as follows:

Definition 1 Generalization error for x with label y:

Err(x, λh) = ET [l(y, f(x; T, λh))], (12)

where l(·, ·) measures the error between the label and a prediction.
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Accordingly,
BiasT (x, λh) = l(y, f(x; λh)) (13)

V arT (x, λh) = ET [l(f(x; λh), f(x; T, λh))] (14)

Similar to Assumption 1, we have the following assumption:

Assumption 2 Assume that the basic model is given and fixed. The bias term for x is
a decreasing function of c, whereas the variance term for x is an increasing function
of c. The generalization error for x decreases first and then increases.

An example of non-linear regression learning is still utilized to empirically
support Assumption 2.

Example 2 The target model and the calculation of model complexity in Example 1
are still used. The simulation of samples is same as described in Example 1 except
the sampling strategy for x. Imbalance sampling is applied and each training set
is consists of 100 random samples with x ∈ [0, 1.5), 50 random samples with x ∈
[1.5, 3.5), and 25 random samples with x ∈ [3.5, 5]. The samples in the additional data
set are sampled with the same imbalance strategy. Under each value of λ, 40 models
are learned using different training sets sampling from the initial 4000 realizations. �

The imbalance sampling aims to generate three regions comprising easy,
medium, and hard samples, respectively. Samples with x ∈ [0, 1.5) are rela-
tively easy and those with x ∈ [3.5, 5] are relatively hard. The learning curves
are shown in Figs. 3 and 4. Fig. 3 shows the bias-variance trade-off curves for
the entire data set (Fig. 3(a)), the samples from [0, 1.5) (Fig. 3(b)), the samples
from [1.5, 3.5) (Fig. 3(c)), and the samples from [3.5, 5] (Fig. 3(d)), respectively.
Under all cases, the bias term decreases with respect to the employed model
complexity, while the variance term increases. The generalization error firstly
decreases to its minimum, and then increases. The minimum values of gener-
alization error varies: 0.022 for the entire data set (Fig. 3(a)), 0.018 for the
majority sampling part ([0, 1.5)) (Fig. 3(b)), 0.025 for the medium sampling
part ([1.5, 3.5)) (Fig. 3(c)), and 0.05 for the minority sampling part ([3.5, 5])
(Fig. 3(d)). Comparing the minimum of generalization errors of three cases
above(Fig. 3(b-d)), the learned models perform the worst in the hard region
([3.5, 5]) shown in Fig. 4(d), as the learned models under various λ can hardly
match the target model. The learned models perform the best in the easy
region shown in Fig. 4(b), as the learned models basically coincide with the
target model. Alternatively, both Assumptions 1 and 2 hold in this example.

According to Assumption 2, the minimum of Err(x, λh), denoted as Err∗x,
is also attained when the partial derivatives of generalization error for x on c
equals to zero, i.e., the sum of the partial deviation of the bias term and the
variance term for x on c is zero. The corresponding value of c for sample x is
denoted by c∗x.
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(a) Entire data set (b) Samples with x in [0,1.5)

(d) Samples with x in [3.5,5](c) Samples with x in [1.5,3.5)

Fig. 3 Illustrations of bias-variance trade-off under imbalance sampling.

Accordingly, we define a theoretical measure for the learning difficulty.

Definition 2 Given a fixed basic learner3 f , the theoretical learning difficulty for a
sample x is

LD(x) = c∗x = g(λ∗h)

s.t., λ∗h = argmin
λh

Err(x, λh). (15)

The relative learning difficulty between two samples x1 and x2 is obtained
according to Definition 2. If LD(x1) > LD(x2), then x1 is more difficult than
x2, and vice versa.

We also define a learning difficulty coefficient as follows:

Definition 3 Given the optimal model complexity c∗ on the whole space Ω and the
learning difficulty of the sample x, the learning difficulty coefficient (LDC) is defined
as

LDC(x) =
LD(x)

c∗
=
c∗x
c∗

(16)

3Essentially, when Err(λh) = EfE(x,y)∈ΩET [‖y− f(x; T, λh)‖22] is used, the learning difficulty
is independent of the basic learner f .
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(a) Entire data set (b) Samples with x in [0,1.5)

(c) Samples with x in [1.5,3.5) (d) Samples with x in [3.5,5]

Fig. 4 Illustrations of comparisons between learned and true models under imbalance
sampling.

The larger the value of LDC is, the more difficult the sample x will be. The
succeeding subsection will define the easy and hard samples based on LDC.

3.3 Definitions of Easy and Hard Samples

Many existing studies are based on the two or three splits for training
samples, namely easy/hard and easy/medium/hard, respectively. With LDC,
the dichotomy is defined as follows:

Definition 4 Given a sample x and its learning difficulty coefficient LDC, if
LDC(x) ≤ 1, then x is an easy sample; if LDC(x) > 1, then x is a hard sample.

Definition 4 is flexible because the threshold can be a parameter instead of
a fixed value. Let τ be the threshold. If LDC(x) ≤ τ , then x is an easy sample;
if LDC(x) > τ , then x is a hard sample.

In the trichotomy, distinguishing between easy and medium or medium
and hard is difficult. Accordingly, we propose the following definition for these
partitions:

Definition 5 Given a sample x and its learning difficulty coefficient LDC(x), let τe
and τh be two positive parameters and 0 < τe < 1 < τh. If LDC(x) ≤ τe, then x is
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hardeasy

(a) 

hardmedium

(b)

= 1

0 1

0 1

easy

Fig. 5 Illustrations for dichotomy (a) and trichotomy (b) of samples.

an easy sample; if τe < LDC(x) ≤ τh, then x is a medium sample; if τh < LDC(x),
then x is a hard sample.

The two parameters depend on the concrete application tasks and data
characteristics. The above two definitions describe the dichotomy and tri-
chotomy for samples as shown in Fig. 5. Some samples are quite hard and
are harmful to learning process. We can also define quite-hard samples if
LDC(x) > τq and τq > τh.

Our definition for easy/medium/hard samples is consistent with the
descriptive definition given by Arpit et al. [6], as the model complexity will
increase with the increasing of training epoch gradually. Some other studies
also hold the similar view. For example, Charrerjee and Zielinskix [15] observed
that easy ImageNet samples are learned early and hard ImageNet samples are
learned late.

This section mathematically defines learning difficulty of samples as well as
easy/medium/hard samples. Unfortunately, these mathematical definitions are
not ready for algorithmic implementation due to lack of a consensus calculation
for model complexity (the function m(·) in Eq. 7). There are two strategies
to measure the learning difficulty with the illumination of our definitions. The
first is to seek an existing measure that best suits our definitions; the second
is to derive a new measure on the basis of the definitions. This study chooses
the second path. Results in Example 2 indicate a positive correlation between
optimal model complexity and minimum generalization error. Moreover, the
definition of optimal model complexity is closely related to the generalization
error. As a consequence, we propose a new measure for learning difficulty with
generalization error.

4 The Proposed Measure for Learning Difficulty

The learning difficulties of samples depend on various factors4. Each of
existing measures focuses on one or partial factors. This section first summaries
the main factors that determine the learning difficulty of a sample. Then, the

4This study does not consider the factors from the employed learning models.
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connection between the model complexity and generalization error is analyzed
based on the summarized influential factors. Finally, the concrete measure is
introduced and the algorithmic steps are presented.

4.1 Influential Factors for Learning Difficulty

So far, there has been no study that comprehensively summarizes the fac-
tors that determine the learning difficulty of a sample. In machine learning,
differences among samples mainly lie in noise level, spacial location, neigh-
bourhood, and overall distribution. Illuminated by these differences and the
heuristic inspirations considered in previous measures for learning difficulty,
the main influential factors are roughly summarized as follows:

• Data quality. Both feature and label noises affect the learning difficulty
of samples. Young et al. [71] found that high signal-to-noise ratio signifies
high feature noise level and generates low data quality, which hinders the
optimization of the learning task and is harder to be well learnt. Su et al. [58]
revealed that mislabeled images are low-quality data for the learning task
and are of high difficulty.

• Sample margin. The sample margin is defined as the distance between the
sample and the true decision boundary. Huang and Yang [32] considered
that samples with small margins are hard to learn.

• Uncertainty. The (model) uncertainty of a sample is usually measured by
the information entropy of its prediction [19]. The higher the information
entropy is, the ampler the information is contained by the sample. Samples
with higher uncertainty are more difficult to adequately learn [69].

• Category distribution. Oinar et al. [51] showed that category with fewer
samples, which is also called tail category, is usually more challenging than
category with more samples, which is known as head category.

The learning difficulty of a specific sample is usually determined simulta-
neously by two or more factors. A measure that only considers partial factors
will perform poorly when the application scenario changes.

4.2 Connection Between Model Complexity and
Generalization Error

To our knowledge, there is no study that directly investigates the con-
nection between model complexity and generalization error for a sample5.
Nevertheless, a positive correlation can be approximately established for them
bridging by the four influential factors.

First, previous studies explicitly mention a positive correlation between the
aforementioned influential factors and the optimal model complexity (defined
as learning difficulty of a sample in this study). 1) Noisy samples result in
a higher model complexity if these samples are well-learned [53, 56]. 2) To

5Perez and Louis [59] observed a linear relation between model complexity and the overall
generalization error (in Fig. 1 in their paper) instead of that for each sample.
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correctly learn a sample in tail categories, strategies such as over-sampling is
usually introduced and leads to a higher model complexity [1, 47]. 3) To well
learn the sorts of small-margin samples, the learned boundary turns to be
more complex [48, 72]. 4) A more uncertain sample has a larger variance of
prediction. A more complex model is needed to reduce its variance, which is
to correctly classifying [4, 5, 17].

Second, the positive relationship between the influential factors and the
generalization error is also discussed in previous literature6. In terms of data
quality, Wang et al. [62] revealed that negative impacts of noisy implicit feed-
back occurs to the minimization of generalization error. Castells et al. [14]
concluded that noisy samples tend to be harder and injure the model general-
ization. In terms of sample margin, Zhang et al. [73] concluded that samples
close to boundary, are further from reaching near-zero generalization error than
samples away from boundary. In terms of uncertainty, Pagliardini et al. [52]
improved the model’s generalization by estimating uncertainty quantification
and perturbing high uncertain samples. In terms of category distribution, Gau-
theron et al. [23] derived a bound of generalization error in metric learning by
involving the proportion of minority examples who throw higher generalization
error values.

Based on above-mentioned analysis, an approximately positive correlation
between generalization error (Err∗x) and model complexity (c∗x) is drawn and
motivates a practical measure of learning difficulty. Indeed, Fig. 3 also demon-
strates a direct and positive correlation between Err∗x and c∗x. A higher Err∗x
corresponds to a larger c∗x. A solid proof under typical cases is left as our future
work.

4.3 The Proposed Measure

Under the discussion in Section 4.2, an approximate approach is proposed
based on Err∗x, and is utilized as the practical measure of learning difficulty.
Most existing measurement methods utilize the training loss (or loss variance)
which can be considered as an approximation of the bias (or the variance)
term of Err∗x as a measurement of learning difficulty. Nevertheless, few studies
consider the bias and the variance terms simultaneously.

Considering that it is also infeasible to calculate Err∗x traversing all values
of λh, we only calculate the generalization errors Err(x, λh) for each sample
with the same7 reasonable λh to approximate the learning difficulty. Specifi-
cally, the proposed approach adopts the cross-validation strategy to calculate
the average learning errors for each sample. First, the whole training set is
divided into M folds. M − 1 folds are alternatively used for training, and
the trained model is used to predict the label of all training samples. This

6In fact, existing studies focus on the generalization error over the whole data space rather
than a local region or a single sample. Nevertheless, the positive correlation between factors and
Err∗x of a single sample is theoretically verified in our continuous study. The theoretical proofs
are uploaded to Github source repository.

7In the experiments, there are slight differences among different samples as the optimal epochs
are not identical in different training runs.
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cross-validation process is repeated for K times. Each sample receives K ∗M
predictions, with which can we calculate the average prediction of each sam-
ple. Second, average losses and variance of losses for each training sample are
calculated using corresponding average predictions.

Let pki,m be the prediction of xi in the mth cross-validation of the kth repeat.
Then, according to [70], we calculate:

pi = exp{ 1

M ∗K
∑
m,k

log(pki,m)}. (17)

Subsequently, the bias and the variance terms are calculated as follows

Biasi ≈ lCE(yi, pi), (18)

V ari ≈
1

M ∗K
∑
m,k

lCE(pi, p
k
i,m), (19)

where lCE is the standard cross-entropy loss. The actual value of learning
difficulty of xi is

Err(xi, λh) ≈ Biasi + µV ari , (20)

where µ is a tuning factor for the variance. The value of Err(xi, λh) is used
as the learning difficulty for xi. This approach is called generalization error-
based learning difficulty (GELD) measurement. The detailed steps of GELD
are shown in Algorithm 1. The primary difference between our approach
and the existing loss-based/cross-validation-based methods lies in that our
approach does not discard the variance term but combines the importance of
both term of generalization error. If µ = 0, then GELD is similar to the con-
ventional cross-validation-based methods. Several existing methods including
O2UNet [33] also point out that hard samples have high loss variances.

Algorithm 1 GELD

Input: T = {xi}Ni=1 = {(xi, yi)}Ni=1, validation data, M , K, µ, and λh.
Output: Err(xi, λh), i = 1, · · · , N .

1: for k ← 1 to K:
2: Randomly split T into T

(k)
1 , · · · , T (k)

M ;
3: for m← 1 to M :
4: Perform the training on T − T (k)

m ;
5: Select the model with the validation data;
6: Predict pki,m of each xi.
7: Calculate pi using Eq. (17) for each xi.
8: Calculate Biasi and V ari using Eqs. (18) and (19).
9: Calculate Err(xi, λh) using Eq. (20).
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5 Theoretical Analysis Based on Theoretical
Definitions

Definitions 1-5 theoretically describe our learning difficulty measure and
clarify easy, medium, and hard samples. This section conducts a theoretical
analysis for the weighting strategies to further illuminate the rationality and
intrinsic value of our theorem, given that the weighting strategies in machine
learning are mainly based on learning difficulties, such as Adaboost [21],
SPL [26, 68], and Focal loss [43]. Under our definition of learning difficulty,
above-mentioned weighting strategies can be better rationalised and further
comprehended. First, the weighted generalization error8 is defined as follows:

Errw(λh) =
∑
y∈ΩY

P (y)

∫
x∈ΩX

ω(x)Err(x, λh)p(x|y)dx

=
∑
y∈ΩY

P (y)

∫
x∈ΩX

ω(x)BiasT (x, λh)p(x|y)dx

+
∑
y∈ΩY

P (y)

∫
x∈ΩX

ω(x)V arT (x, λh)p(x|y)dx

+ δ
′

e ,

(21)

where the non-negative weighting function ω(x) is defined over the entire
sample space Ω, and δ

′

e is the irreducible noise.

5.1 Propositions

Both the bias and the variance terms will change when the weighting strat-
egy is used on samples as shown in Eq. (21). Thus, a special case is first
analyzed.

Proposition 1 Assume that BiasT (λh) and V arT (λh) change. Let BiasT (λh),
V arT (λh), and Err(λh) be the new bias, variance terms, and the generalization
error, respectively. If the partial deviation of Err(λh) on the current c∗ is negative,
then the new optimal model complexity c∗ will be larger then c∗, and vice the versa.

The proof is contained in Section B.1. in Appendix.

Proposition 2 If ω(x) in Eq. (21) is a constant value, then c∗ remains unchanged.

The proof is simple and omitted.

8When generalization error is defined over the entire sample space, regard Err(λh) as
Err(Ω, λh) for simplicity.
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Proposition 3 Consider a sample region Ωr ⊂ Ω in which the value of LDC for
each sample in Ωr is larger than one. If a constant weight ω larger than one is placed
on each sample of Ωr and the weights of other samples in Ω remain one, then the
new optimal model complexity will become larger.

The proof is contained in Section B.2. in Appendix.
This proposition is in accordance with the idea that when the weights of

hard samples are increased, the learned model will become more complex than
the original model. Based on this proposition, we could extend a corollary
more generalized.

Corollary 1 Consider a sample region Ωr ⊂ Ω whose learning difficulty coefficient
LDC for each sample in Ωr is larger than one. If a weight larger than the original
weight is placed on each sample in Ωr, and the weights on other regions remain
unchanged, the new optimal complexity will become larger.

The proof is contained in Section B.3. in Appendix.

Proposition 4 Consider a sample region Ωr ⊂ Ω whose value of LDC for each
sample in Ωr is smaller than one. If a constant weight larger than one is placed on
each sample of Ωr, and the weights of other samples in Ω remain one, then the new
optimal model complexity c′∗ will become smaller.

The proof is similar to that for Proposition 3 and Corollary 1 and omitted.
In numerous weighting strategies, the rationale is to modify the contributions
of easy, medium, and hard samples. Therefore, the following propositions are
presented.

Proposition 5 Assuming that the original weight of each sample is ω0(x). Let
ω(x) = u(LD(x)) be a new weighting function for a sample x. If u is non-decreasing
and satisfies that 0 ≤ minω(x) < maxω(x), then the new optimal complexity is larger
than the original optimal complexity.

The proof is contained in Section B.4. in Appendix.

Corollary 2 Let Ωe, Ωm, and Ωh be a trichotomy for the whole space Ω, and they
represent the regions for easy, medium, and hard samples, respectively. Let ω(·, ·) be
a region weighting function over the three data regions, and assume that the weights
in each region are identical for each sample. Note x ∈ Ωe; x′ ∈ Ωm; x′′ ∈ Ωh. If
ω(x) ≤ ω(x′) ≤ ω(x′′) and ω(x) < ω(x′′) hold, then the new optimal complexity will
become larger.

The proof is simple and omitted.
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Proposition 6 Assume that the original weight of each sample is ω0(x). Let ω(x) =
u(LD(x)) be a weighting function for a sample x. If u is non-increasing and satisfies
that 0 ≤ minω(x) < maxω(x), then the new optimal complexity is smaller than the
original optimal complexity.

Corollary 3 Let Ωe, Ωm, and Ωh be a trichotomy for the whole region Ω and they
are the regions for easy, medium, and hard samples, respectively. Let ω(·, ·) be a
region weighting function over the three data regions, and assume that the weights
in each region are identical for each sample. Note x ∈ Ωe; x′ ∈ Ωm; x′′ ∈ Ωh. If
ω(x) ≥ ω(x′) ≥ ω(x′′) and ω(x) > ω(x′′) hold, then the new optimal complexity will
become smaller.

Propositions 1-6 and the associated corollaries are about the weighting on
generalization errors and also the losses. They establish a theoretical frame-
work for the analysis of the learning difficulty-aware weighting strategies in
learning.

5.2 Explanations for Several Classical Methods

We rationalises several typical learning methods which assign weights on
samples based on learning difficulties9.

5.2.1 Adaboost

Adaboost is a classical ensemble learning algorithm. In each epoch, it learns
a new model based on the updated weights on samples defined as follows:

ωti =
ωt−1
i

zt−1
exp(−αyif t−1(xi)), (22)

where ωti is the weight in the tth epoch, zt−1 is a normalized factor, f t−1 is
the learned weak classifier in the (t−1)th epoch, and α is a positive weight for
f t−1. According to Eq. (22), if xi is mis-predicted by f t−1, then the weight of
xi will become larger in the next epoch. If xi is correctly predicted by f t−1,
then the weight of xi will become smaller in the next epoch. In essence10, the
weight in Eq. (22) can be written as follows:

ωti = ωt−1
i u(LD(xi)), (23)

9It should be noted that the difficulty measures in these methods are not equal to our proposed
theoretical measure. Nevertheless, we assume that their employed measures are in accordance with
ours in their contexts to facilitate further theoretical investigation.

10Indeed, the LDC(xi) can be seen as being approximated by exp(yif(xi)) in Adaboost.
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where

u(LD(xi)) =


exp(α)

zt−1
if LDC(xi) > 1

exp(−α)

zt−1
otherwise

(24)

Obviously, u(LD(xi)) is an increasing function over learning difficulty.
According to Proposition 5, the new model complexity becomes larger than
the original one. Specially, the learned new classifier f t is more complex than
that in the (t−1)th epoch if the learner is not as simple as the decision trump.
Therefore, the new classifier and the whole ensemble classifier become more
complex with the increase in epoch.

Two aspects determine the complexity of the final ensemble model greatly:

• Power of the basic model. If the basic model has strong classifier, such as
SVM, the learned model will become highly complex with the increase in
epoch and overfitting is inevitable. A weak learner can avoid this situation.

• Number of maximum epochs. If the maximum epoch is large, then the ensem-
ble model in the last few epochs will become highly complex when noises
exist. Accordingly, overfitting may occur.

A natural improvement is that high weights above a threshold are
restricted. This condition makes the model less complex. A famous modifica-
tion with solid theoretical basis is soft margin boosting [74]. The weight is
calculated as follows:

ωti =
ωt−1
i

zt−1
exp(−αyif t−1(xi)− Cζt−1

i |bt−1|), (25)

where C(≥ 0) is a hyper-parameter, ζt−1
i is the average weight of the ith sample

up until the (t−1)th iteration, and bt−1 is a factor that reflects the classification
performance in the (t−1)th iteration. If C > 0, then the above weight is smaller
than the weight in Eq. (22) when the sample is often misclassified up until the
(t− 1)th iteration, and vice versa. Based on Corollary 1, on the contrary, the
optimal complexity of the learned model based on the above weighting scheme
will be smaller than that of the model based on Eq. (22).

5.2.2 SPL

SPL trains models from easy samples and adds hard samples with the
increasing training epoch. Its objective function is as follows:

min
Θ,vi∈{0,1}

∑
i

vili − λvi, (26)
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Fig. 6 Curves of Focal loss with different values of γ.

where Θ is the model parameter, vi is the sample weight, and λ > 0 is a hyper-
parameter and increased with the epoch. Theoretically11, the weight in SPL
is defined as follows

ωi =

 1 LD(xi) ≤ λ

0 otherwise.
(27)

In each new epoch, the weights of some hard samples are changed from zero
to one with the increase in λ. According to the Corollary 1, the optimal model
complexity will become larger. Alternatively, SPL obtains simple models in
the initial epochs and gradually yields complex models.

5.2.3 Focal loss

Focal loss assigns each sample a weight as follows:

ωi = (1− pi,yi)γ , (28)

where pi,yi is the estimated SoftMax value of xi on the ground-truth label in
the current model, and γ is positive. The motivation of Focal loss is to exert
(relatively) larger weights on hard samples than simple ones. Focal loss utilizes
the value of 1−pi,yi as an indicator of learning difficulty. To better understand
Focal loss, we first theoretically define a weight:

ωi =

(
LD(xi)

maxLD(xi)

)γ
. (29)

According to Proposition 5 and Corollary 2, the new optimal complexity
will be increased. We further obtain the following conclusion:

11Indeed, the LD(xi) can be seen as being approximated by li in SPL.
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Corollary 4 The larger the value of γ, the larger the optimal complexity will be, i.e.,
∀γ1 < γ2, c

∗(γ1) < c∗(γ2).

The proof is similar to that for Proposition 4. Alternately, γ controls the
model complexity. Consequently, if γ is quite large, then the learned model will
be quite complex which affects the generalization capability of the model. If γ
is smaller than zero, then the learned model will be simpler than the learned
model when no weights are used (i.e., γ = 0). Fig. 6 shows the curves of Focal
loss when γ is searched in {−4,−3,−2,−1, 0, 1, 2, 3, 4}. Corollary 4 is also
supported by the empirical observations [11] shown in Fig. 7. A small(large)
γ will result in under-fitting(over-fitting).

Focal loss is actually the strategy that uses the weight in Eq. (28) to
approximate the weight defined in Eq. (29):(

LD(xi)

LDmax

)γ
≈ (1− pi,yi)γ . (30)

Fig. 7 Detection performance with the variations of γ [11].

Remark 1 The proposed propositions and corollaries in Section 5.1 are in accor-
dance with intuitions on the model complexity variations when applying weighting
for learning. The explanations for the three classical methods are also reasonable and
partially supported by empirical observations as shown in Fig. 7. The above analysis
and explanations support the rationale of our proposed learning difficulty theory.

6 Experiments

As previously mentioned, learning difficulty is heavily affected by the data
quality, sample margin, uncertainty, and category distribution. Therefore, four
different scenarios are designed to evaluate the effectiveness of the proposed
practical measure.
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6.1 Measurement under Noise Detection

Two benchmark image classification data sets [36], namely, CIFAR10 and
CIFAR100 are used. There are 10 classes in CIFAR10 and 100 classes in
CIFAR100. On both sets, there are 50,000 images for training and 10,000
images for testing. The test images are used as the validation data for CIFAR10
and CIFAR100. In this scenario, noises contain two types. The first type is
noisy labels (y), while the second consists of noisy images (x). The competing
methods are as follows:

• Loss. The losses for each sample in the epoch with the highest validation
accuracy are used for measurement.

• Average loss (AveLoss). The average values of losses of the last 100
epochs are used for measurement.

• O2UNet [33]. As previously introduced, this method adopts a cyclical
training procedure and the average loss of each sample in the procedure is
used.

• MentorNet [34]. This method pertaining to curriculum learning, uses the
output weights of the teacher network with the highest accuracy on the
validation set to present the possibility of being correct. A smaller weight
indicates the sample is more difficult to learn.

• Co-teaching [28]. Two networks are trained. For each sample, the smaller
one of the two losses given by the two networks is regarded as the learning
difficulty.

• Variance of gradients (VOG) [2]. This method relies on the variances
of the gradient norms of each sample cross different training epochs. A high
VOG value indicates a large difficulty for a sample.

• Our proposed method GELD. The detailed steps are presented in
Algorithm 1.

In the methods of Loss, AveLoss, O2UNet, VOG, and our GELD, ResNet-
34 [30] is used as the base network. The hyper-parameters of ResNet-34 used
in [30] are followed. Specifically, the batch-size is 128, the SGD optimizer has
a momentum of 0.9, and the weight decay is 1e-4. The learning rate of the first
40 epochs is 0.1 and is multiplied by 0.1 for every 40 epochs. Each model is
learned for 200 epochs. The default settings of MentorNet and Co-teaching are
borrowed from the corresponding papers [28, 34]. O2UNet and VOG contain
specific hyper-parameters other than those of ResNet-34. These parameters
follow the setting in the original paper [2, 33]. In our GELD, K and M are
set as 5 and 6 respectively, for GELD, except for the part E (the discussion of
the impact of (K,M) value). The tuning factor µ of GELD is set as 1.

Let v be the noise rate. The result evaluation scheme used for O2UNet [33]
is followed. In each method, the top-50000 ∗ v ∗ r samples are selected as
its detected noisy samples according to its estimated difficulties, where r ∈
{0.8, 0.9, 1, 1.1, 1.2}. Then, the whole detection is repeated three times for each
method and the average F1 values on the detection results are calculated
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Fig. 8 The F1 scores (%) of the competing methods on CIFAR10 under different sub-types
and rates of label noises.

and compared. A high F1 value indicates a good performance in noisy label
detection and thus the learning difficulty measurement.

6.1.1 Noisy Label Detection

Two sub-types of noises are used, namely, symmetric and pair-flip. The
symmetric noise describes mislabeling to each other classes of equal possibility.
In pair-flip, labelers may make mistakes only within very similar class. The
noise rate is set as 20%, 40%, and 60%, respectively. The detailed noise setting
in [28] is followed.

Figs. 8 and 9 show the detection performances of the competing methods on
CIFAR10 and CIFAR100, respectively. Our proposed approach GELD achieves
the highest F1 values in most cases. Although O2UNet outperforms GELD
under the symmetric noise sub-type on CIFAR100 (Figs. 9(a), (b) and (c)),
its performances are quite poor under the pair-flip noises. The performance of
the widely-used method Loss is poor and it achieves the worst F1 scores in
several cases. Loss is not an ideal measurement for the easy and hard samples
even though it does not require additional computational cost.

In our approach GELD, µ can be tuned. Table 1 shows the performance
variations of GELD under the pair-flip noise sub-type and different values of µ
in Eq. (20). When the value is larger than one, higher F1 values are achieved.
These results reveal the importance of the variance term during the evaluation
of the learning difficulty.

6.1.2 Noisy Image Detection

In this experiment, salt-and-pepper noises are leveraged [22]. The noise is
simulated by adding white (salt) or black (pepper) noises into the original RGB
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Table 1 F1 scores (%) of GELD under various values of µ.

µ 0.5 0.75 1 1.25 1.5 2

C
IF

A
R

1
0 20% 90.48 92.01 93.67 93.99 94.83 95.06

40% 93.95 93.99 96.03 96.00 96.00 95.39

60% 91.60 92.47 95.80 95.67 95.52 94.99

C
IF

A
R

1
0
0 20% 89.74 90.00 90.50 90.71 91.00 91.67

40% 90.04 91.39 91.51 92.00 92.33 92.97

60% 90.33 91.05 91.39 91.49 92.41 93.22

Fig. 9 The F1 scores (%) of the competing methods on CIFAR100 under different sub-types
and rates of label noises.

images with a parameter of signal-to-noise ratio (SNR). In our experiment, the
SNR is set as 0.4 for each image. Fig. 10 shows an example for nosiy images
with different SNR levels. The noise rate on the whole data is set as 20% and
40%, respectively.

Fig. 10 Noisy images with different SNR levels.



Springer Nature 2021 LATEX template

ELDD 25

Fig. 11 The F1 scores (%) of the competing methods on CIFAR10 and CIFAR100 under
different rates of salt-and-pepper noise.

Fig. 11 shows the performances of the competing methods on CIFAR10 and
CIFAR100, respectively. The settings of competing methods remain unchanged
compared with the label noise experiments. Our method GELD still achieves
the highest F1 values under all the noise rates. Few noisy data were detected
by methods that rely merely on the loss.

6.2 Measurement under Small-margin Data Detection

A sample with a small margin (the distance to the oracle decision bound-
ary) is considered to be hard in learning [68]. This experiment evaluates a
learning difficulty measure in terms of the detection of small-margin samples.

In this experiment, four UCI [8] data sets are used, namely, Iris, Mammo-
graphic, Haberman, and Abalone. To better construct the ground-truth, only
binary classification is considered. Only two categories are selected for both
Iris (the “Setosa” and “Versicolour” categories) and Abalone (the “9” and “10”
categories). Mammographic and Haberman contain only two categories. The
details of used data in this experiment are presented in Table 2. The classical
margin-based learning method SVM [16] is used to construct the ground truth,
i.e., the small-margin samples. Specifically, the SVM with RBF kernel is used.
Two parameters C and g are searched in {10−3, 10−2, 10−1, 1, 10, 102, 103} and
{10−3, 10−2, 10−1, 1, 10, 102, 103}, respectively, via five-fold cross-validation.
The optimal parameter setting is used and the SVM is trained on the whole
training set. Constantly, the margin of each sample is calculated as the ground-
truth difficulty. The margin is yf(x) for the sample x, where y is the label and
f(x) is the output of the kernel SVM. Let N be the #Instances. The top-N ∗v
samples with small margins are selected as the ground-truth samples to detect.
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Table 2 Details of the four UCI data sets.

Data set #Dimensions #Classes #Instances

Iris 4 2 100

Mammographic 5 2 961

Haberman 3 2 360

Abalone 8 2 1323

Fig. 12 Histograms of F1 scores (%) under various data sets using margin as ground-truth.

As the base network ResNet-34 is inappropriate in this experiment, a
three-layer perception with the Sigmoid activation function is used as the
base network. The number of epoch is set as 10000. Its hyper-parameters are
also pursed via five-fold cross-validation. Considering that MentorNet and Co-
teaching are quite complex for this scenario, they are not compared in this
experiment. The competing methods include Loss, AveLoss, O2UNet, and our
GLED. The evaluation criteria and the whole calculate scheme follow the set-
ting in the previous experiments. The value of v is set as 20%, 40%, and 60%,
respectively; r is set as one.

The results are shown in Fig. 12. Our approach GELD achieves the highest
F1 values on all data sets. In addition, GELD is stable across different vs and
different data sets. By contrast, the other methods are not stable.

6.3 Measurement under Epistemic Uncertainty Detection

In this experiment, a data corpus containing epistemic uncertainty is
required. An image aesthetic assessment data corpus, namely, AVA bench-
mark image aesthetic data corpus [49], is then utilized and each photo receives
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Table 3 F1 scores (%) using the variance of scores as standard

Method Loss AveLoss O2UNet BNN GELD

20% 14.64 54.05 33.27 62.71 63.96

40% 28.38 33.33 35.67 54.30 78.39

60% 30.23 45.79 38.20 78.21 79.11

multiple rating scores from multiple different users. The variance of user rat-
ing scores of a photo reflects the epistemic uncertainty on the photo using
each user as a gold model. A large variance indicates a large uncertainty for
a photo. Specifically, the former 50,000 samples in the AVA corpus are down-
loaded and each sample receives 210 rates on average counting from 1 to 10.
We use ResNet-101 as the base network as the image quality of AVA is much
higher than CIFAR10 and CIFAR100. Given that the Bayesian Neural Net-
work (BNN) [67] is particularly designed for modeling uncertainty, we import
BNN as one of the competing methods, and its outputting confidence coeffi-
cient is used to detect uncertain photos. Therefore, the competing methods
include Loss, AveLoss, O2UNet, BNN, and our GELD.

The top-50, 000 ∗ v photos with high uncertain scores are taken as the
objective samples to detect. The v values are set as 20%, 40%, and 60%. The r
value is set as one. In the BNN method, the dropout strategy described in [67]
is followed. The parameter setting of ResNet-101 reported in [30] is adopted.
The photos are resized into shape of (3, 192, 192) to fit in the ResNet-101.

Table 3 shows the F1 scores of the competing methods in high uncertain
sample detection. GELD still performs the best and slightly outperforms BNN.
The rest of the three methods poorly perform in this detection task. Fig. 13
shows the top-5 high uncertain photos and the top-5 photos detected by our
GELD approach. The aforementioned figure (Fig. 14) also shows the last five
photos with small uncertainty and the last five photos detected by our GELD.

6.4 Measurement for Imbalance Data

The long-tail versions of the CIFAR10 and CIFAR100 are used in this
experiment. Buda et al. [13] compiled a series of data sets under different
imbalance ratios. The two data sets under the 20 : 1 ratio for CIFAR10 and
CIFAR100 are used. There is no ground-truth information for the learning
difficulties because the head categories can also contain difficult samples. Con-
sequently, we only plot the histograms of the numbers of hard samples detected
by the competing methods in the head and tail categories. The competing
methods are Loss, AvgLoss, O2UNet, VOG, and our proposed GLED. The
base network and the concerning setting in part A are followed.

The top-40% samples detected by each competing methods are regarded
as their detected hard samples. Figs. 15 and 16 show the histograms of the
detected hard samples by each method on CIFAR10 and CIFAR100 (the top
five head categories and the last five tail categories), respectively. All the com-
peting methods identically behave on the tail categories on both data corpora.
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Fig. 13 True highest uncertain photos and our detection results. The histograms of user
ratings are also presented.

Fig. 14 True lowest uncertain photos and our detection results. The histograms of user
ratings are also presented.

This condition is reasonable and accords well with the primary motivation for
imbalance learning that samples in tail categories are hard to learn. There
are slight differences between our GELD and other competing methods on the
head categories. The numbers of hard samples detected by GELD are larger
than those of other methods, which is reasonable because head categories still
contain hard samples.

6.5 Discussion

The above experiments on the four scenarios, namely, noise detection,
small-margin sample detection, uncertain sample detection, and hard sample
detection in imbalance learning, verify the superiority of the proposed GELD
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Fig. 15 Histogram of CIFAR10-LT top-40% detected hard
samples.

Fig. 16 Histogram of CIFAR100-LT top-40% detected hard
samples.

approach over existing classical and state-of-the-art methods. As previously
introduced, the primary difference between GELD and many existing methods
lies in that GELD explicitly considers variances. Fig. 17 shows the histograms
of the bias values and the variance values achieved by GELD on clean sam-
ples and label noisy samples under both pair-flip and symmetric noise types
on CIFAR10. The variance values between clean and noisy samples are also
considerably distinct as shown in Figs. 17 (b) and (d), which demonstrates
the usefulness of the variance term utilized in our GELD method. In addition,
the difference consist in histograms of noisy and clean samples under the pair-
flip noises is trivial, which rationalises the poor performances of the loss-based
methods such as O2UNet.

Although good results are achieved, GELD is only an appropriation for
theoretical difficulty in Definition 1. We evaluate the robustness of the method
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(a) Bias of pair-flip-type label noisy samples (b) Variance of pair-flip-type label noisy samples

(d) Variance of symmetric-type label noisy samples(c) Bias of symmetric-type label noisy samples

Fig. 17 Histograms of bias and variance values calculated by GELD under different types
of label noise (v = 40%).

Table 4 F1 scores (%) with various values of K ∗M .

K ∗M 20 (4×5) 30 (5 × 6) 40 (5 × 8) 50 (5 × 10)

C
IF

A
R

1
0 20% 96.83 97.51 96.91 97.04

40% 94.12 95.77 96.10 96.34

60% 94.81 95.82 94.95 95.34

C
IF

A
R

1
0
0 20% 90.36 91.00 92.67 91.46

40% 91.78 92.48 91.86 91.04

60% 90.02 92.00 91.17 90.89

in terms of the variations on the two key parameters, namely, K and M . Table
4 shows the performances of pair-flip noise detection (r = 1) on CIFAR10 and
CIFAR100. The results show that the performances of GELD are stable when
the value of (K,M) is set in {(4, 5), (5, 6), (5, 8), (5, 10)}.

We are interested in whether a simple model can also obtain better results.
A simple network, namely, AlexNet [37], is used as the basic leaner in pair-flip
noisy label. The base network and setting of other methods follow the previous
setting of the corresponding experiments in part A. The training setting of
AlexNet in [50] is followed, and the output-size is modified into 100 while
training CIAFR100. The results are shown in Table 5. GELD (AlexNet) is
inferior to GELD (ResNet-34). However, it is comparable to Co-teaching and
outperforms the rest of the methods.
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Table 5 F1 scores (%) of the competing methods plus GELD
using AlexNet as base model.

Method CIFAR10 CIFAR100

Label noise rate 20% 40% 60% 20% 40% 60%

GELD (ResNet-34) 97.51 95.77 95.82 91.00 92.48 92.00

O2UNet 92.31 80.76 33.69 61.29 54.03 46.98

Co-teaching 92.63 89.45 58.02 86.22 89.77 88.90

MentorNet 88.02 67.96 47.14 73.00 51.49 60.09

AveLoss 81.39 79.23 51.98 77.38 74.18 79.17

Loss 76.69 76.12 50.53 75.29 74.15 79.75

GELD (AlexNet) 82.58 88.77 83.54 82.96 86.51 84.39

Table 6 Time cost of different complex methods.

Method Time cost (hours)

O2UNet 7.95

GELD (1 GPU) 11.11

GELD (2 GPUs) 5.67

GELD (3 GPUs) 3.71

GELD (4 GPUs) 2.83

A large real-world data set, namely, Clothing1M [36], is used to further eval-
uate the performance of our GELD measure in terms of image classification.
There are 14 classes in Clothing1M containing 1,000,000 training images with
real noisy labels, 48,000 training samples verified to be clean, and 10,000 test-
ing images. The 48,000 clean training samples are used as the validation data
for Clothing1M. Clothing1M has a noise proportion of 38% approximately.
ResNet-101 is used and the settings of the network in [33] are employed. (K,M)
are set as (50, 50). Each model is learned for 50 epochs for GELD. The model
is selected using the 48,000 clean training samples. The learning rate remains
constant as 1e − 6. The batch size is set as 16 during the GELD calculation.
Other hyper-parameters follow the settings in [33]. The top 10% samples with
the highest Err(xi, λh) values are removed as detected noisy samples. Remain-
ing samples are used to learn the final image classifier. The batch size is set as
128 and the maximum epoch is set as 10 during this procedure. The settings of
other methods in [33] are followed. Table 7 shows the comparison of classifi-
cation accuracies (%) among the four competing methods. GELD outperforms
the other three methods. Results of methods beside GELD are directly from
the O2UNet study [33].

The computational cost of GELD is relatively high as K ∗M models should
be trained. However, it is still smaller than another SOTA method O2U-Net.
Moreover, several ways can significantly reduce the complexity. First, the task
can be performed in parallel. Four NVIDIA GeForce RTX 3090 GPUs are
used in our experiments. The average time costs for our GELD using different
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Table 7 Classification accuracy (%) on Clothing1M

MentorNet Co-teaching O2UNet GELD

79.30 78.52 82.38 82.94

number of GPUs on CIFAR10 using ResNet-34 as base network are shown in
Table 6. The settings follow the pair-flip label noise experiments’ in part A
with (K,M) is set as (5, 6). The time consumption is considerably reduced
when GELD is run on more GPUs in parallel. The time cost of O2UNet is also
large. More over, O2UNet cannot be performed in parallel. Second, a relatively
small training set instead of the entire can be used when dealing with large
corpora. Third, a dropout-based strategy (like the quantifying uncertainties in
BNN) can also reduce the time cost. To sum up, the time complexity of GELD
doesn’t hinder its applications based on these strategies.

Although four key factors, namely, data quality, sample margin, uncer-
tainty, and category distribution, are summarized and the proposed method
achieves quite competing performance, a directly theoretical connection
between the four factors and the learning difficulty is not established in this
study. We leave this theoretical investigation as our future work.

7 Conclusion

This study has conducted a comprehensive investigation on learning dif-
ficulty of data in machine learning. We established a theoretical definition of
learning difficulties of data based on the bias-variance trade-off on generaliza-
tion error. The well discussed and explored concepts, easy and hard samples,
are formally described based on the theoretical definition and the associated
difficulty coefficients. Influential factors of learning difficulty are summarized
and correlations between generalization error, model complexity, and influ-
ential factors are surveyed and analysed. A practical measure, namely, the
generalization error-based learning difficulty (GELD) measurement, is then
proposed in virtue of influential factors to calculate the learning difficulty of
each training sample. Finally, the properties of the weighted learning strat-
egy are presented and three classical methods are explained on the basis of
the theoretical formalization. Extensive experiments validate the effectiveness
of our proposed measure, which outperforms existing state-of-the-art methods
under different scenarios considering concluded influential factors.

This study conducts an attempt to establish a theory for learning diffi-
culty of samples. Our future work aims to reveal the mathematical correlations
between the theoretical definition (i.e., optimal model complexity) and the
measure (i.e., generalization error) for learning difficulty.
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Appendix A Calculation of Model Complexity

The model complexity used in this study is on the basis of minimum
description length (MDL) [9] and the Kolmogorov complexity [41]. MDL
and Kolmogorov complexity are combined and used to describe the model
complexity under various learning tasks in [19].

Let w = (w1, .., wd−1)T be the model parameter of a regression model
where d signifies the dimension of inputs. Let p(w) be the probability den-
sity of w. According to MDL, the model complexity expectation c(w) is the
expectation of model complexity

m(w) = − log p(w),

over different training set T , i.e., c(w) = ET [m(w)]. Suppose that each com-
ponent of w is independent to each other and follows the identical Gaussian
distribution wi ∼ N (0, σ2). Therefore, the model complexity defined on the
basis of MDL equals to

m(w) = − log p(w)

= −
d∑
i=1

log p(wi)

= − log

d∏
i=1

p(wi)

= − log

d∏
i=1

[
1√
2πσ

exp(− w2
i

2σ2
)]

=

d∑
i=1

w2
i

2σ2
+ d log(

√
2πσ)

=
‖w‖22
2σ2

+ d log(
√

2πσ)

(A.1)

When the construction of the basic learner and σ2 is fixed, the model
complexity only concerns ‖w‖22.

Under the ridge regression, with the input denoted as x and its label
denoted as y, the objective function is

L =

N∑
n=1

l(f(x; w), y) + λ‖w‖22,

and the estimated parameters are given by

ŵ(λ) = (xTx+ λI)−1xT y.
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Based on the Assumption 1, the variance term is an increasing function
with respect to the model complexity, and as the loss function normally used
during the training procedure is in fact the bias term in the bias-variance
trade-off, the generalization error can be estimated by the following form:

L =

N∑
n=1

l(f(x; w), y) +m(w)

=

N∑
n=1

l(f(x; w), y) +
‖w‖22
2σ2

+ d log(
√

2πσ)

∼
N∑
n=1

l(f(x; w), y) + λ‖w‖22

Accordingly, an enlargement of λ leads to a reducing of ‖w‖22, and moreover,
a lower model complexity. The above analysis indicates that the MDL-based
model complexity well explains the ridge regression. However, the former cal-
culation is based on the identical distribution assumption for each wi. When
the model is a polynomial function, the contributions of each component of
w to the whole model complexity are not identical. For example, when using
a polynomial function g(x) ∼ O(3) to perform ridge regression, w3 should
contributes more to the model complexity comparing to w0. Therefore, an
identical distribution for all components of w is unreasonable. A more reason-
able assumption is that wi ∼ N (0, σ2

i ) with the condition that σ2
i < σ2

j if
i > j. From Eq. (A.1), we have

m(w) = − log p(w)

= −
d∑
i=1

log p(wi)

= − log

d∏
i=1

p(wi)

= − log

d∏
i=1

[
1√

2πσi
exp(− w2

i

2σ2
i

)]

=

d∑
i=1

w2
i

2σ2
i

+ d log(
√

2πσi)

(A.2)

In our practical calculation, let σ2
i = (

d

i
σ)2. Denoting ŵt(λ) as parameters

of model learnt on training set Tt. Ignoring the constant term, the model
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complexity becomes

m(ŵt(λ)) =

d∑
i=1

(
i

d
ŵt,i(λ))2.

Given M training sets, the model complexity expectation is

c(ŵ(λ)) =
1

M

M∑
i=1

d∑
i=1

(
i

d
ŵt,i(λ))2. (A.3)

Appendix B Proofs of Propositions

B.1 Proof of Proposition1

Proof According to Assumption 1, the partial derivatives of the generalization error
with respect to c is negative before the generalization error achieve the minimum.
Accordingly, if

∂Err(λh)

∂c
|c=c∗ < 0,

then c′∗ should be larger than c∗. �

B.2 Proof of Proposition3

Proof

Errw(λh) =
∑
y∈ΩY

P (y)

∫
x∈ΩX

ω Err(x, λh)p(x|y)dx

=
∑
y∈ΩY

P (y)

∫
x∈Ωr

X

ω Err(x, λh)p(x|y)dx

+
∑
y∈ΩY

P (y)

∫
x∈ΩX/Ωr

X

Err(x, λh)p(x|y)dx

= Err(λh) +
∑
y∈ΩY

P (y)

∫
x∈Ωr

X

(ω − 1)Err(x, λh)p(x|y)dx

.

Note that
∂Err(λh)

∂c
|c=c∗ = 0. Given that LDC(x) > 1,

∂Err(x, λh)

∂c
|c=c∗ < 0, ∀x ∈

Ωr. With ω > 1, we have
∂Errw(λh)

∂c
|c=c∗ < 0.

According to Proposition 1, the new optimal model complexity c′∗ will be larger than
c∗. �

B.3 Proof of Corollary1

Proof The optimal complexity c∗ under the original weights ω can be theoretically
inferred under the (original) weighted distribution P1 ∼ ωP . The learning with new
weights ω̃ equals to the learning with the weights ω̃/ω for each sample in Ωr under
the distribution P1. Because the new weights are larger than the original weights
on Ωr, ω̃/ω is larger than one on Ωr. According to Proposition 3, the new optimal
complexity becomes larger. �
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B.4 Proof of Proposition5

Proof Let Ωe and Ωh be the regions containing the easy and hard samples according
to c∗, respectively.

∂Errw0 (λh)

∂c
|c=c∗ =

∑
y∈ΩY

P (y)

∫
x∈Ωe

X

ω0(x)
∂Err(x, λh)

∂c
|c=c∗p(x|y)dx

+
∑

y∈ΩY

P (y)

∫
x∈Ωh

X

ω0(x)
∂Err(x, λh)

∂c
|c=c∗p(x|y)dx

=0

.

Let ω∗e = max
x∈Ωe

ω(x) and ω∗h = min
x∈Ωh

ω(x). Moreover, ω∗e ≤ ω∗h. We have

∂Errw(λh)

∂c
=

∑
y∈ΩY

P (y)

∫
x∈Ωe

X

ω(x)
∂Errw0 (x, λh)

∂c
p(x|y)dx

+
∑

y∈ΩY

P (y)

∫
x∈Ωh

X

ω(x)
∂Errw0 (x, λh)

∂c
p(x|y)dx

Note that
∂Errw0 (x, λh)

∂c
|c=c∗ > 0, ∀ x ∈ Ω

e
X

∂Errw0 (x, λh)

∂c
|c=c∗ < 0, ∀ x ∈ Ω

h
X

.

Therefore,∫
x∈Ωe

X

ω(x)
∂Errw0 (x, λh)

∂c
p(x|y)dx

︸ ︷︷ ︸
1○

≤
∫
x∈Ωe

X

ω
∗
e

∂Errw0 (x, λh)

∂c
p(x|y)dx,

and ∫
x∈Ωh

X

ω
∗
h

∂Errw0 (x, λh)

∂c
p(x|y)dx ≥

∫
x∈Ωh

X

ω(x)
∂Errw0 (x, λh)

∂c
p(x|y)dx

︸ ︷︷ ︸
2○

1○ + 2○ ≤
∫
x∈Ωe

X

ω
∗
e

∂Errw0 (x, λh)

∂c
p(x|y)dx+

∫
x∈Ωh

X

ω
∗
h

∂Err′(x, λh)

∂c
p(x|y)dx

≤
∫
x∈Ωe

X

ω
∗
h

∂Errw0 (x, λh)

∂c
p(x|y)dx+

∫
x∈Ωh

X

ω
∗
h

∂Errw0 (x, λh)

∂c
p(x|y)dx

=ω
∗
h

∫
x∈ΩX

∂Errw0 (x, λh)

∂c
|c=c∗p(x|y)dx

=0

.

The equal relation holds if and only if

min
x∈Ωe

ω(x) = ω
∗
e = ω

∗
h = max

x∈Ωh
ω(x).

Note that minω(x) < maxω(x). Therefore,
∂Errw(λh)

∂c
< 0. Accordingly, the opti-

mal complexity becomes larger. �

References

[1] Abdi, L., and Hashemi, S., To combat multi-class imbalanced
problems by means of over-sampling techniques. IEEE Trans-
actions on Knowledge and Data Engineering, 28 (1), 238-251.
https://doi.org/10.1109/TKDE.2015.2458858



Springer Nature 2021 LATEX template

38 ELDD

[2] Agarwal, C., and Hooker, S., (2020). Estimating example difficulty
using variance of gradients. International Conference on Machine Learn-
ing Workshop on Human Interpretability in Machine Learning (WHI).
https://doi.org/10.48550/arXiv.2008.11600

[3] Aguilar-Torres, E., Nagarajan, B., Khatun, R., Bolaños, M., and Radeva,
P., (2021). Uncertainty modeling and deep learning applied to food
image analysis. Biomedical Engineering Systems and Technologies, 3-16.
https://doi.org/10.5220/0009429400090016

[4] Almeida, M., Zhuang, Y., Ding, W., and Crouter, S.E., (2021). Mit-
igating class-boundary label uncertainty to reduce both model bias
and variance. Journal of ACM Trans. Knowl. Discov.Data, 15 (2), 1-18.
https://doi.org/10.1145/3429447

[5] Arkesteijn, L., and Pande, S., (2013). On hydrological model complexity,
its geometrical interpretations and prediction uncertainty. Water Resources
Research. https://doi.org/10.1002/wrcr.20529.

[6] Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M.S,
Maharaj, T., Fischer, A., Courville, A.C., Bengio, Y., and Lacoste-Julien,
S., (2017). A closer look at memorization in deep network. Proceedings
of the 34th International Conference on Machine Learning, PMLR, 70,
233-242. https://doi.org/10.48550/arXiv.1706.05394

[7] Arsomngern, P., Long, C., Suwajanakorn, S., and Nutanong,
S., (2021). Self-supervised deep metric learning for pointsets.
IEEE International Conference on Data Engeneering, 2171-2176.
https://doi.org/10.1109/ICDE51399.2021.00219

[8] Astola, J., and Kuosmanen, P., (1997). Fundamentals of nonlinear digital
filtering. CRC Press. ISBN 9780367448257

[9] Barron, A., Rissanen, J., and Yu, B., (1998). The minimum description
length principle in coding and modeling. IEEE Transactions on Informa-
tion Theory , 14 (6), 2743 - 2760. https://doi.org/10.1109/18.720554

[10] Bengio, Y., Louradour, J., Collobert, R., and Weston, J., (2009). Curricu-
lum learning. International Conference on Machine Learning, 41-48.

[11] Ben-Baruch, E., Ridnik, T., Zamir, N., Noy, A., Friedman, I., Prot-
ter, M., and Zelnik-Manor, L., (2020). Asymmetric loss for multi-Label
classification. IEEE International Conference on Computer Vision, 2020.
https://doi.org/10.48550/arXiv.2009.14119

[12] Breiman, L., (2001). Random forests. Machine Learning, 45(1), 5–32.
https://doi.org/10.1023/A:1010933404324



Springer Nature 2021 LATEX template

ELDD 39

[13] Buda, M., Maki, A., and Mazurowski, M., (2018). A systematic study
of the class imbalance problem in convolutional neural networks. Neural
Networks, 106, 249-259. https://doi.org/10.1016/j.neunet.2018.07.011

[14] Castells, T., Weinzaepfel, and P., Revaud, J., (2020). SuperLoss: A generic
loss for robust curriculum learning. Conference on Neural Information
Processing Systems, 1–12.

[15] Chatterjee, S., and Zielinski, P., (2022). On the generalization mystery in
deep learning. arXiv :2203.1003.

[16] Cortes, C., and Vapnik, V., (1993). Support-vector networks. Machine
Learning. https://doi.org/10.1007/BF00994018

[17] Ding, Y., Liu, J., Xiong, J., and Shi, Y., (2020). Revisiting the evaluation
of uncertainty estimation and its application to explore model complexity-
uncertainty trade-off. IEEE Conference on Computer Vision and Pattern
Recognition. https://doi.org/10.1109/CVPRW50498.2020.00010

[18] Duan, Y., and Wu, O., (2016). Learning with auxiliary less-
noisy labels. IEEE Trans. Neural Netw. Learn. Syst., 1716-1721.
https://doi.org/10.1109/TNNLS.2016.2546956

[19] Dwivedi, R., Singh, C., Yu, B., and Wainwright, M.J., (2020). Revisiting
complexity and the bias-variance tradeoff. arXiv2006.10189.

[20] Feng, J., Xu, P., Pu, S., Zhao, K., and Zhang, H., (2020).
Robust visual tracking by embedding combination and weighted-
gradient optimization. Pattern Recognition, 104 (107339).
https://doi.org/10.1016/j.patcog.2020.107339

[21] Freund, Y., and Schapire, R.E., (1997). A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of Computer and
System Sciences, 55 (1), 119-139. https://doi.org/10.1006/jcss.1997.1504

[22] Fu, B., Zhao, X., Li, Y., Wang, X., and Reng, Y., (2018). A convolutional
neural networks denoising approach for salt and pepper noise. Multimedia
Tools and Applications, 1–18.

[23] Gautheron, L., Habrard, A., Morvant, E., and Sebban, M.,
(2020). Metric learning from imbalanced data with general-
ization guarantees. Pattern Recognition Letters, 133, 298-304.
https://doi.org/10.1016/j.patrec.2020.03.008.

[24] Ge, W., Huang, W., Dong, D., and Scott, M.R., (2018). Deep metric
learning with hierarchical triplet loss. European Conference on Com-
puter Vision, Lecture Notes in Computer Science, (11210), 272-288.



Springer Nature 2021 LATEX template

40 ELDD

https://doi.org/10.48550/arXiv.1810.06951

[25] Geman, S., Bienenstock, E., and Doursat, R., (1992). Neural networks
and the bias/variance dilemma. Neural Computation 4(1), 1-58.

[26] Han, B., Tsang, I.W., Xiao, X., Chen, L., Fung, S.-F., and Yu,
C.P., (2018). Privacy-preserving stochastic gradual learning. IEEE
Transactions on Knowledge and Data Engineering, 33 (8), 3129-3140.
https://doi.org/10.48550/arXiv.1810.00383

[27] Han, B., Yao, Q., Liu, T., Niu, G., Tsang, I.W., Kwo, J.T., and
Suigiyama, M., (2020). A survey of label-noise representation learning.
arXiv :2011.04406, 2020.

[28] Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., Tsang, I.,
and Sugiyama, M., (2018). Co-teaching robust training of deep
neural networks with extremely noisy labels. International Con-
ference on Neural Information Processing Systems, 8536-8546.
https://doi.org/10.48550/arXiv.1804.06872

[29] Hastie, T., Tibshirani, R., Friedman, J.H., (2009). The Elements of
Statistical Learning. ISBN 9780387848570. https://doi.org/10.1007/978-
0-387-21606-5

[30] He, K., Zhang, X., Ren, S., and Sun, J., (2016). Deep residual learning
for image recognition. IEEE conference on computer vision and pattern
recognition, 770–778. https://doi.org/10.1109/CVPR.2016.90

[31] Heskes, T., (1998). Bias-variance decompositions for likelihood-
based estimatiors. Neural Computation, 10 (6), 1425-1433.
https://doi.org/10.1162/089976698300017232

[32] Huang, H., and Yang, Q., (2020). Large scale analysis of general-
ization error in learning using margin based classification methods.
arXiv :1901.08057.

[33] Huang, J., Qe, L., Jia, R., and Zhao, B., (2019). O2U-Net:
A simple noisy label detection approach for deep neural net-
works. IEEE International Conference on Computer Vision, 3326-3334.
https://doi.org/10.1109/ICCV.2019.00342

[34] Jiang, L., Zhou, Z., Leung, T., Li, L., and Li, F., (2018). Mentor-Net
: learning data-driven curriculum for very deep neural networks with
extremely noisy labels. International Conference on Machine Learning,
2309-2318. https://doi.org/10.48550/arXiv.1712.05055



Springer Nature 2021 LATEX template

ELDD 41

[35] Kendall, A., and Gal, Y. (2017). What uncertainties do we
need in bayesian deep learning for computer vision? International
Conference on Neural Information Processing Systems, 5580-5590.
https://doi.org/10.48550/arXiv.1703.04977

[36] Krizhevsky, A., (2009). Learning multiple layers of features from tiny
images. Technical report, University of Toronto.

[37] Krizhevsky, A., Hinton, G., and Sutskever, I., (2017). Image-net classi-
fication with deep convolutional neural networks. Communications of the
ACM, 60 (6), 84–90.

[38] Krivosheev, E., Bykau, S., Casati, F., and Prabhakar, S., (2020). Detecting
and preventing confused labels in crowdsourced data. Proceedings of the
VLDB Endowment, 13 (12), 2522-253.

[39] Li, B., Liu, Y., and Wang, X., (2019). Gradient harmonized single-
stage detector. AAAI Conference on Artificial Intelligence, 8577-8584.
https://doi.org/10.48550/arXiv.1811.05181

[40] Li, P., Rao, X., Blase, J., Zhang, Y., Chu, X., and Zhang, C., (2021).
CleanML: a study for evaluating the impact of data cleaning on ML classi-
fication tasks. IEEE International Conference on Data Engeneering, 13-24.
https://doi.org/10.48550/arXiv.1904.09483
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