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Describing and analysing learner behaviour using sequential data and analysis is becoming more and more popular in Learning
Analytics. Nevertheless, we found a variety of definitions of learning sequences, as well as choices regarding data aggregation and the
methods implemented for analysis. Furthermore, sequences are used to study different educational settings and serve as a base for
various interventions. In this literature review, the authors aim to generate an overview of these aspects to describe the current state
of using sequence analysis in educational support and learning analytics. The 74 included articles were selected based on the criteria
that they conduct empirical research on an educational environment using sequences of learning actions as the main focus of their
analysis. The results enable us to highlight different learning tasks where sequences are analysed, identify data mapping strategies for
different types of sequence actions, differentiate techniques based on purpose and scope, and identify educational interventions based
on the outcomes of sequence analysis.
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1 INTRODUCTION

Educational Technologies (EdTech) have rapidly scaled teachers’ capacity for instruction, for example through live,
virtual and recorded lectures [20, 56]. EdTech, has also increased the opportunity for learners to actively engage with
learning materials, from practice problems in electronic environments to automated assessments, or annotation tools
[16, 44]. However, some processes that link teaching and learning in a continuous cycle, such as formative assessment,
and personalized support and feedback, have not scaled at the same rate [80]. From its origins, Learning Analytics (LA)
intends to close this cycle using data generated by learners in educational systems, and processing it to obtain insights
grounded in learning theory and provide (semi) automated learning support and feedback [13].

Existing implementations of LA, such as dashboards or nudges, are often based on descriptive analytics of performance
metrics [90], designed for summative assessment and (self) monitoring [97]. However, analytics of the learning process
with the detail level to enable timely assessment and support are an ongoing development [80]. Learning is a process that
unfolds and changes over time, and aggregating or counting the actions the learner executes is limited in its narrative
power [76]. For that reason, it is critical to understand the execution of learning tasks as a temporal and sequential
notion [53]. Using sequential data to observe, understand, and support learning is not exclusive to LA, but has a history
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in fields such as Educational Data Mining (EDM), Intelligent Tutoring Systems (ITS), and Artificial Intelligence in
Education (AIED) [93]. This results in a lack of common definitions of concepts such as learning sequences or sequence
units. Furthermore, there are no established best practices of the analysis methods that can be applied for specific
purposes, educational settings or scenarios [41]. As a consequence, research is often in the exploratory stage, using
data from scenarios where the analysed course or task is over, without intervention [55].

In this article, we work towards a broader understanding of the variety of definitions, data points, methods, and
interpretations used for the analysis of learning as a sequence. We aim to enable a broader understanding of the learner
context to be taken into account for intelligent feedback and analytics interventions. In the following, we will first
introduce the state-of-the-art of learning sequence analytics and then present the analysis of 74 articles considering the
given dimensions.

2 SEQUENCE ANALYSIS AND LEARNING SEQUENCES

Sequence Analysis (SA) of human behaviour, where a sequence is an ordered list of events, allows the contextualization
of these events, their relationships with each other, and the effects of part of or the whole sequence [1]. SA is especially
useful to research phenomena that occur as a process across time, where the use of static attributes and frequency
rates may not be informative enough to understand their development [1]. The analysed sequences can include actions
executed by a person as well as reactions of others in their environment, i.e. a peer or an intelligent agent.

Sequences can have different interpretations in education, in this review, we focus only on the sequences of actions
that learners execute during a learning task. For example, the steps followed to solve a problem [93] or the sequences
of answers that learners provide in guided practice environments, and how certain sequences may relate to learners’
behaviours [91] or characteristics [5].

2.1 Sequences of Actions in Learning Tasks

Learning tasks refer to situations when learners actively engage with the learning materials which require them to
integrate domain-specific knowledge and procedures with more general critical thinking and analysis skills [62], such
as solving complex problems [40] or scientific inquiry tasks [93]. For tasks in different domains, there are behavioural
patterns that appear with different levels of practice. For example, experts in a domain may show deeper categorization
of a problem, use forward-thinking strategies in their execution of the solution or iteratively evaluate intermediate
solutions [62]. In these tasks, learners have a large number of operators or actions available in the problem space, or
learning environment, making the combinations leading to a solution difficult to observe. Furthermore, defining and
describing such combinations is not trivial, since they are "automated", or stored in one’s memory as procedural learning,
making it difficult to explain by experienced individuals [62]. As a consequence, the assessment and monitoring of
learners are particularly difficult for teachers, especially considering the scale provided by educational technologies and
learning platforms [32]. The data produced by these systems, however, can be leveraged to scale the capabilities of
teachers, by analysing sequences of learner’s data records to identify behaviours and reveal learning processes [51].

2.2 Trace Data Sequences and Analysis

The reliability of trace data comes from its ability to express dynamic events, more than as aggregated, static aspects of
a measure [93]. Using analytics to find patterns in the sequences that indicate specific tactics or common issues can help
practitioners obtain insights into the use of different strategies. Such patterns can be a set of learning actions that occur
in succession for a proportion of the learners, from partial segments to complete sequences. In addition, given that the
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patterns are extracted from sequences of actions, they can be interpreted by the teacher and even learners themselves
[86]. For example, in a 3D geometry game where learners can insert, remove, and rotate shapes to solve puzzles, teachers
cannot assess nor give feedback to learners based on the gameplay records without assistance. Common patterns that
lead to a failed assignment can be identified as mistakes and teachers can prioritize which to address [25].

Analysing sequences of trace data throughout a learning task offers practical advantages as well [87]: when systems
process data traces as sequences of learner actions, there is a constant input of information to incrementally update the
learner model, enabling the system with the flexibility to constantly adapt to the learner’s level or intervene whenever
necessary [15]. This allows practitioners, and eventually, an intelligent system, to predict if the current path is trending
towards an undesirable outcome, to determine which action patterns are leading to that result and how to leverage
these insights to optimise learning [72, 85].

2.3 Related Work

The analysis of learning sequences is emerging from several fields, and while there are no surveys specifically on the
topic, there are related works from the EDM, LA and AIED communities. Regarding the use of educational data to
observe learner behaviour and predict performance, Xiao et al. [100] analyse EDM methods in the age of big data
to discover the trends around the complete data mining pipeline, such as data collection and preprocessing, feature
engineering, classifier and ensemble method selection, and interpretation of results. While they mention techniques
that analyse sequential data, there are no definitions of learning sequences or sequence units. On the other hand, the
survey by Bogarín et al. [7] focuses on Educational Process Mining (EPM), a field that studies the process-oriented
view of EDM, particularly as an end-to-end process. The authors describe Virtual Learning Environments (VLE) and
the Event Logs they produce as valuable data sources for sequential analysis, as they are detailed records of learners’
actions. They mention methods handling learning as sequences, including Sequential Pattern Mining, but the definitions
outside of process mining are not addressed.

Regarding the use of trace data to observe learners’ actions, the review by Wang et al. [93] analyses research on the
use of log data from Open-Ended Learning Environments (OELEs) to understand scientific inquiry and problem-solving.
Their conceptual framework consists of 4 points: the competencies measured, mainly problem-solving and inquiry; the
observations used, ranging from multiple-choice questions to log data; the feature extraction and modelling processes
and the interpretation of the analysis. While the focus is not only on sequential methods, almost half of the 70 reviewed
papers use sequential features for analysis, with 29 applying pattern mining to identify behaviours. The review by
Nadimpally et al. [58] surveys Artificial Intelligence techniques for adaptive learning systems, identifying two main
types: to model learner behaviour and to organize learning content. Concerning modelling learner behaviour, they found
that the most common methods are Similarity-based Pattern Recognition, Probabilistic Graphical Models, and Deep
Learning: all of them capable of processing sequential data. Existing literature explores the growing use of temporal
data to identify, classify or predict learner behaviours, which often involves sequence analysis. However, a focused
study of when to use sequence analysis, the data units that can be leveraged and which methods to implement, is less
covered.

3 RESEARCH QUESTIONS

Addressing the shortcomings from the previous section, this study intends to establish a common ground for Sequence
Learning Analytics from the literature, so researchers can use this to find similar works, compare their approach to the
state-of-the-art, and leverage insights of existing work, allowing the community to also focus on the intervention design.
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In this review, a learning sequence is defined as an ordered list of context-specific actions, with each unit being a
systematically mapped learning action from one or more data traces. The following questions guide our analysis:

(1) How are learning sequences analyzed to describe and support learners’ actions in computer systems?
(a) Which types of learning tasks are analysed as sequences?
(b) What is the motivation or purpose when using learning sequences?
(c) Which actions are used as the learning sequence units?
(d) Which methods are used to analyse learning sequences? And what are the interpretations of the patterns that

result from them?
(e) Which educational interventions are designed with the obtained insights? Which learning principles are used

to support and evaluate them?

4 METHOD

In this review, we followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) [67], to
answer the questions above, in Section 3. The queries, information sources and eligibility criteria are described in this
section, followed by the document collection and inclusion process, and the data extraction method.

The queries were executed in SCOPUS and Web of Science (WoS), for the domains of Educational Data Mining
(EDM), Artificial Intelligence in Education (AIED), Learning Analytics (LA), Intelligent Tutors and Learner Modeling,
exploring the fields of title, abstract and author-defined keywords. SCOPUS and WoS were selected as they include
most of the top publications in such domains, such as the proceedings of the conferences on Learning Analytics and
Knowledge, Educational Data Mining, and the International Conference on Computers in Education, as well as the
Journal of Learning Analytics, British Journal of Educational Technology, Journal of Educational Data Mining, and
Computers and Education: Artificial Intelligence. The queries were executed on September 2023, including articles from
2010 to 2023, and they focus on the use of sequential analysis in an educational setting, where the obtained patterns are
leveraged for an educational intervention. Two queries were executed, one per database, using the query below, with
the results described in Section 4.2.

("data mining" OR "artificial intelligence" OR "learning analytics" OR "intelligent tutor*" OR "learner model*") AND (

sequen* OR procedur* OR series ) AND ( educatio* OR student OR teacher OR instructor ) AND ( feedback OR assessment

OR predict* )

4.1 Study Selection Process and Eligibility Criteria:

The results were included if they were full-length articles, published in a peer-reviewed source, and written in English.
This was followed by two rounds of screening, the first one based on the abstracts and the second on full text for those
that were unclear from the first screening. To be included, the publication had to be implemented in an educational
setting, where the learning sequences refer to an ordered series of actions during a learning task. Non-empirical
works are excluded, as are works that only mention education as part of the institution name or a possible use case.
Additionally, publications were excluded if they analysed unrelated sequencing, like proteins, or where sequences were
part of the methodology, such as “a sequence of trials” or “a series of interviews”. Finally, works exploring learner
patterns across multiple tasks were excluded, such as navigation patterns on the elements accessed in MOOC or the
courses in a curriculum.
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4.2 Data Collection Process and Data Items

Fig. 1. Document Flow Diagram

Reference lists were exported from SCOPUS and WoS, and
then transferred to Google Sheets for screening. The reason for
exclusion or inclusion was recorded for each article, and the
values are shown in Figure 1. Of the articles obtained from the
queries, 953 were unique, then in the abstract screening 717
were excluded since they were not in an educational setting,
not empirical work, the use of learner action sequences was not
part of the analysis or did not focus on a single learning task.
The full text of the remaining 236 articles was screened, and 162
were excluded based on the criteria described above, resulting
in 74 articles included. Document collection and inclusion were
performed by the first author, using the criteria previously
defined with the rest of the team.

4.3 Analysis Procedure

The included studies were coded by the first author using AT-
LAS.ti (a qualitative research software) with the Research Ques-
tions from Section 3) as a guide, following negotiated consen-
sual validation with the rest of the authors to iteratively review the codes [77]. For each question, we determined 3
or 4 possible categories from the related work in Section 2.3, and then the full text of the articles was reviewed and
coded using the questions and categories. If a code answered one of the questions but did not fit any of the categories, a
new category was created. Additionally, a second coder reviewed a sample of 10% of the articles and the results were
compared to ensure the reliability of the coding process, which showed an inter-rater reliability kappa of 0.922, where
any differences were discussed and addressed.

For the first question, we identified the learning tasks considering the educational construct they are based on:
deliberate practice, solving a problem or scientific inquiry [93]. The first one refers to tasks where learners practice a
skill through repetition, usually with a system tracking their progress and adjusting accordingly. The second one refers
to tasks where learners have to solve a complex problem in a virtual environment, and the third one refers to tasks
where learners have to obtain and aggregate information.

On the other hand, the purpose of sequence analysis can be defined similarly to the goal of data mining and analytics
tasks, such as clustering, classification or prediction [100], in line with the findings in [93]. While all the reviewed
works identify patterns using sequence analysis, some of them go further and compare the patterns between groups of
learners, for example, to identify behaviour differences among learners who received different experimental treatments,
or to classify them by the use of strategies. Finally, some works use the identified patterns to predict the next action of
a sequence, the success of such action, or a learner’s state.

Regarding the units of the sequences, the reviewed research uses data sources such as log files or event records
[95], which have to be mapped to representations of meaningful actions, to be analysed and understood as part of the
learning sequence [59]. These sequence units can categorised as learning actions, which are domain or system-specific
actions such as selecting and using a system tool in an OELE [93], or metacognitive actions, usually defined based on

5



LAK ’24, March 18–22, 2024, Kyoto, Japan Valle Torre, et al.

an educational theory, such as self-explanation [38]. The third category is problem attempts, the series of submissions
in a guided practice system [58, 101].

For the implemented methods, we obtained the categories of methods that use sequential data from related literature
on AI in Education and Process Mining [7, 58]: Probability Modeling, Deep Learning, Sequential Pattern Mining,
Educational Process Mining and Knowledge Tracing. Additionally, we identify the scope of the resulting sequences as
the reference for interpretation, from system-specific tactics to general strategies for a complete task [7].

Regarding interventions and educational theories, we seek to identify which works go beyond the observation and
exploration stage, which is why we included assessment, prediction and feedback in our query, in Section 4. However,
considering the challenge of implementing and evaluating an educational intervention [55, 71], we classify if articles
implement an intervention, or if they explicitly mention a potential intervention or not. Additionally, the impact of
interventions relies on a strong theoretical foundation [96], so we identify the educational theories used to support or
interpret the results of sequential analysis [37].

4.4 Limitations

The search was limited to Web of Science and SCOPUS, while these libraries include a wide range of publications, the
results are not exhaustive. Additionally, there are no established practices to mention sequence analysis in the title,
keywords, or abstract, in consequence, some articles may not have appeared in our queries. Furthermore, abstracts were
used to assess the first round of inclusion, there is the possibility that articles were erroneously excluded. Regarding the
analysis, the articles were coded only by the first author, however, we addressed this limitation by following negotiated
consensual validation with the author team [77] and assessing the agreement of a sample with a second coder.

5 RESULTS

Our analysis included 74 articles, with the number of publications doubling in the second half of our search range,
suggesting a constant increase in interest in the field, shown in Figure 2. The articles were analysed following the
Research Questions in Section 3, to establish the trends of the different types of learning tasks, the different purposes of
the sequence analysis, the types of units and analysis methods used, and any implemented interventions. The following
sections address each of these questions, with the results available as an open-access dataset [89], and as an interactive
interface at https://sequence-dashboard.learn.ewi.tudelft.nl/.

5.1 Which types of learning tasks are analysed using sequences?

This review focuses on tasks that require active engagement from the learner, which instructional design models such
as the 4C/ID model [40], consider as authentic problems and practices. However, they can follow different educational
designs. We identify three main types of tasks: guided practice, problem-solving, and knowledge building; the yearly
number of publications is shown in Figure 2. The first type is guided practice, characterized by a set of practice questions
that are part of a topic, where a system uses the sequence of answers to constantly measure and adapt to the learner’s
knowledge level. We registered 40 articles of this type, 2 of them using dialogue [27, 57], and 2 as a quiz [35, 68].

The second type of task is problem-solving, a complex task integrating domain knowledge with domain-specific and
general skills. In these tasks, the learner’s interactions with the system can be interpreted as the operations executed
towards a solution state [4]. While these tasks generally have a defined objective, they can be satisfied with different
sequences of actions or applied operators, from a wide variety of actions available within the educational system. The
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Fig. 2. Articles, and Task Types, per Year

17 articles using data from a variety of problem-solving tasks, including programming assignments [36], mechanical
engineering problems [81] or procedures in a biotechnology virtual lab [72, 73].

Finally, some of the tasks require that the learner collects and processes information, from video lectures or reading
materials, and then generates and evaluates a representation of knowledge, such as a concept map [8]. In these tasks,
the final result may be similar for learners who followed different strategies, or sequences of steps, and would benefit
from personalized feedback. We identified 17 articles that can be classified as knowledge-building tasks, for example,
where a learner interacts with articles on climate change and then generates a causal model to explain the relationships
between the learned concepts [64].

In summary, we identified 40 guided practice tasks, 17 problem-solving and 17 knowledge-building tasks, with
the first type gaining ground in recent years, shown in Figure 2. This may be due to the introduction of increasingly
sophisticated deep learning methods or the availability of public datasets [61, 98, 101], eliminating the need to design
new systems or collect data. Additionally, it might be related to the research objectives, described below.

5.2 What is the motivation or purpose of using learning sequences for analysis?

There are many affordances to the use of learning sequences and sequence analysis methods in EDM and LA, such as
the ability to extract the sequential patterns from data [49], to identify them as tactics or strategies [54], or to include
temporal structures in behaviour analysis [44]. Most articles identify the patterns as a learning behaviour, tactic or
strategy, however, some of them go further and use these patterns for classification or for prediction. We found 8 cases
of pattern identification, for example, as the self-regulatory processes that occur before a help-seeking event. These
patterns can be used to anticipate the struggle of learners who may not use help-seeking tools correctly [42]. Another
case of identification is when groups of learners receive different experimental treatments, such as a feedback strategy
[83], and then the patterns of the groups are compared. This means that in these 6 cases, the identified sequences are
used as part of the evaluation of an educational intervention [39].

Going a step further, in the 24 articles where the purpose of the sequence is to serve for classification, researchers
first separate the learners by a given characteristic, such as proficiency in the task [69] and then identify the patterns
per group. In these cases, like in traditional data mining classification tasks, a small percentage of the data is used to
evaluate the accuracy of the method, or how well can it classify a learner by their behaviour [31, 69, 70]. In only one

7



LAK ’24, March 18–22, 2024, Kyoto, Japan Valle Torre, et al.

article the grouping is done by applying clustering algorithms on the sequences of all learners, and then samples of the
groups are reviewed and labelled as a certain strategy, such as Efficient Completion [54].

Regarding prediction, the purpose is to use a sequence as input but there is a variety of outputs: in 8 cases it is the
learner’s performance, such as success or failure on the task [12, 81], in 2 is the learner’s state such as emotional or
cognitive states [5, 15] and for 1 it is the next action they might do [72]. For those works focusing on prediction, this is
often with the vision of an early warning system or even automated interventions. Finally, in 24 cases, the purpose is to
predict the success of a learner’s next action, often to determine their knowledge level for a given topic [92].

5.3 Which actions are used as the units of learning sequences?

In the analysed articles we found a broad variety of data records logged, including clicks on a web interface, sensor
data from haptic devices, and text input in command line interfaces. A single case uses the data as-is, as the authors
consider them detailed enough for the sensor data collected from a dentistry virtual reality simulator [70]. In the rest
of the publications, we found three different types of combining data records into traces: learning actions, problem
attempts, and meta-cognitive actions. We identified 26 articles that use learning actions as units, which usually represent
the different ways that learners apply operators in problem-solving tasks, defined in Section 5.1, such as editing code,
executing a command, or using a tool. Mapping the data records into such actions allows researchers, teachers and
students to easily analyse and interpret the results of sequence methods. The downside is that this mapping usually
requires expertise with the domain and system, to know which actions are possible, and it also limits the possibility to
generalize the analysis and results.

In the second case, identified in 37 of the reviewed works, the collected data records are better portrayed as problem
attempts because they are always delimited by a submission event: when a student submits a response to be evaluated
by the system, usually named Intelligent Tutoring System (ITS), and they correspond to those using the guided task
type. Considering that there is a clear definition of where one unit starts and ends, there is little focus on the process of
mapping data records to units.

Finally, for the 10 articles using meta-cognitive actions, we found that they introduced a conceptual background
from different learning theories, and then use the selected theory to construct the sequence units. Eight of them use
a Self-Regulated Learning (SRL) model to map certain records into a meta-cognitive action. From the rest, one maps
the data to meta-cognitive states, which they refer to as on-task and off-task states [83], and the other to a variety of
meta-cognitive and cognitive behaviours, such as evaluating, help-seeking, and skipping video [11]. Using conceptually
mapped actions reduces the granularity and length of the sequences to be analysed since they usually aggregate data
records into just a few possible options, compared with the simpler learning actions above. Additionally, this means
less variability during analysis and a more direct interpretation.

The sequence units used for analysis are strongly related to the type of learning task, the 26 articles with learning
actions tend to be on problem-solving, using specific actions in specific problems, and the 37 using problem attempts
are generally on guided practice tasks, focusing more on the accuracy of the learner’s model. Finally, the 10 cases of
meta-cognitive actions are usually in the knowledge-building tasks, focusing more on self-regulated learning processes.

5.4 Whichmethods are used for the analysis of learning sequences?

The methods in the reviewed articles usually take a set of sequences as input, where each one corresponds to learning
actions executed by one learner during a task. The methods that we found range from the manual analysis of game
logs [65] to deep learning models capable of predicting the performance of the learner [81], with many others among
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them. In our analysis, we classify the different methods into 5 categories: Sequential Probability Models, Educational
Process Mining, Deep Learning, Knowledge Tracing, and Sequential Pattern Mining (SPM). Sequential Probability Models

Scope Method Cate-
gory

Analysis Method References

Macro-level
Patterns

Educational
Process Mining

Fuzzy mining, PetriNet, Process Maps [35, 60, 69]

Other Methods N-gram processing, Network Visualization [32, 33, 49]
Sequential
Probability
Model

Markov Chain Model, Markov Chain Process,
Hidden Markov Model, Microsoft Sequence
Clustering, Markov Logic Networks, Proba-
bilistic Automata andHidden Conditional Ran-
dom Fields

[16, 17, 27, 29, 38, 52, 64, 70, 72,
73, 86]

Meso-level Pat-
terns

Deep Learning GRU, MLP, CNN, LSTM, SAE [12, 15, 20, 22, 56, 68, 81, 104]
Knowledge
Tracing

PFA, ModPFA, BKT, DKT, DKVMN, AKT, and
many more

[6, 14, 19, 21, 23, 26, 28, 30, 34,
47, 48, 50, 61, 74, 75, 78, 88, 92,
98, 99, 101–103]

Other Methods Dynamic Time Warping, Model-free bounded
optimization, Course-agnostic Student Perfor-
mance Model

[10, 54, 79]

Micro-level Pat-
terns

Sequential Pat-
tern Mining

SPAM, Differential, Temporal Interestingness
of Patterns in Sequences (D-TIPS), Pex-SPAM,
Generalized Sequential Pattern Mining, Fre-
quent Item set,

[2, 3, 8, 24, 25, 31, 39, 43, 45, 57,
63, 87, 91, 94]

Manual Analy-
sis

Manual Labeling, Sequence of Action Tables,
State Permutations

[5, 18, 36, 83]

Other Methods Visualization, Lag Sequential Analysis,
GSEQ (Generalized Sequential Querier),
Time-embedded n-gram

[11, 44, 46, 84]

Table 1. Methods per Category and Scope

estimate the probabilities of transition between elements in a sequence, based on the previous one or more elements [17].
On the other hand, Educational Process Mining refers to the EDM technique to discover, visualise and compare process
models, focusing on the complete sequence [69]. Deep Learning methods use Artificial Neural Networks (ANN) to predict
the outcome of a sequence, mainly Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks,
as they are better suited to handle sequential data than other ANNs [12]. While Knowledge Tracing approaches leverage
probabilistic, machine learning or deep learning techniques, their main focus is to model the knowledge evolution of a
learner throughout their interaction with an educational system [28]. Sequential Pattern Mining methods refer to a
group of data mining techniques used to find statistically significant patterns—or subsequences—in sequence datasets,
such as actions that happen frequently in the same order across learners’ records [39]. Manual Analysis methods are
often used in combination with other methods but are also used on their own in a few cases, for instance by reviewing
and classifying the actions of individual learners in a small group [5]. These methods often relate to the scope of
the analysis, from the full-task strategies shown by a learner population to short tactics that certain students apply
depending on context: the Macro-level Patterns identify strategies that span across the complete task and are analysed
for a population or group. The Meso-level refers to behaviours that appear in large part of the task, but the focus is on
the individual level. Finally, the Micro-level patterns are short tactics that occur in a particular context. Shown in Table
1, we group the examples of each method and the scope that they belong to.
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5.5 Educational Interventions - What is the final intervention designed using the obtained insights?

Educational interventions provide students with the support required to acquire the skills and knowledge being taught.
However, interventions remain one of the main challenges in the learning analytics cycle [71]. This is reflected in our
findings, where most reviewed publications are exploratory studies with potential interventions, for instance, as an early
warning system that can notify teachers about learners using tactics that lead to poor performance [94], or automated
systems that can detect if a learner might go into a blocking state [15]. There were also 5 prototype teacher dashboards
[9, 24, 25, 35, 84], with one of them receiving a positive response from a usability survey with 56 participants [33].

In our review, we found 2 articles that design and implement an intervention. In the first, the authors integrate the
patterns obtained to provide suggestions to students in a programming tutoring system. The suggestions included
reading the manual or asking a peer for help when an error state is identified, to nudge the learners into a self-
regulation strategy, for example, reflection-then-success after a sequence that could lead to failure [91]. The impact of
this intervention, however, is not evaluated. The second one implemented and evaluated the use of learning sequences,
by creating a “good-learner path" model using a Markov Decision Process in a guided practice system, so it can
automatically generate the content sequence for first-time users. The model was then evaluated by comparing the test
results of learners who followed the created path and learners who were provided with exercises one by one based on
their prior results. Their approach produced 19.5% more good learners and 20.5% lower standard deviation than the
control group [52].

6 DISCUSSION

6.1 Learning Tasks and Analysis Purpose

Regarding the purpose of sequence analysis, the common objective is to extract patterns from the data and identify the
real-world behaviours they describe. In some cases, these patterns are then used to classify the learner between groups or
to predict the learner’s state, their subsequent action, or the outcome of the task. In most research using problem-solving
tasks, patterns are closely related to the scenario, for example, how novices implement functions in programming. A
few cases use these scenario-specific patterns to understand more general skills, for instance, identifying if learners
follow linear or iterative processes for problem-solving. Similarly, for the knowledge-building tasks, the focus is to
find information processing strategies and the meta-cognitive processes executed by the learners [38, 39]. Using an
educational lens to determine the purpose of a study, such as complex problem-solving or self-regulation, facilitates the
generalisation of the methods and results, regardless of the task.

On the other hand, the purpose of many guided practice tasks is to improve the prediction of the learners’ performance,
often to evaluate a proposed method against the state-of-the-art, as is the case for most of the 16 articles using the
ASSISTments1 dataset. In these studies, the sequential patterns receive less attention, and educational theory is leveraged
in the prediction function, such as learning and forgetting, or while calculating the difficulty of a learning component.
While this field has seen important growth with the popularity of Neural Networks (see figure 2), the real-world
application and explainability of modern techniques are still key challenges [82].

6.2 Learning Actions and Methods

From our analysis, there seem to be increasing similarities in how researchers of different domains use sequences
for the analysis of learner behaviour. For example, we found that 25 out of the 37 articles using Problem Attempts as

1https://sites.google.com/site/assistmentsdata/datasets
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the units of sequence, also integrate contextual information about the learner and their actions before submitting a
problem, such as temporal features or their previous knowledge. Another common case is the use of statistical methods
in combination with sequential methods, such as using logistic regression with features extracted from a sequential
technique. Furthermore, researchers often implement more than one sequence analysis technique, using one to find
case-specific action units, and then another to explore how these actions are sequenced in a full task strategy [86]. This
may be a consequence of recent efforts towards the transparency and explainability of data-driven analysis, as well as
the increasing accessibility of technology and analysis techniques.

The use of machine learning and deep learning methods to power automated or semi-automated decisions has
recently started to see widespread implementation. This may be due to the recent efforts to mitigate risks associated
with AI, for instance by pursuing transparency, causality, privacy, fairness, trust, usability, and reliability; some of the
goals of Explainable AI (XAI) [48]. Explainability is especially important when applied to education, as the explanations
can also have an educational component for learners, and it can aid teachers in their assessment of learners and their
courses [48]. Regarding accessibility, different techniques are available via tools and libraries, we found several articles
that use the Waikato Environment for Knowledge Analysis (Weka2) for multiple machine learning classifiers and
predictors, [8, 31, 57, 65, 66, 73, 74], 2 more that apply Sequential Pattern Mining with TraMineR for R3 [45, 88], as
well as Markov Models via MeTA Toolkit4 [85], and the Microsoft Sequence Clustering Algorithm [73]. It is important
to note that these tools were explicitly mentioned in their respective articles, further facilitating reproducibility and
comparison. This allows researchers to work with known methods throughout their analysis process, without having
to develop, test, and evaluate them from scratch. Finally, we provide the dataset [89] of the reviewed works as an
interactive interface 5 where researchers can filter the methods depending on the scope of their study, as shown in
Table 1.

6.3 Interventions

Some of the reviewed works mention potential interventions that can be designed using the obtained patterns. For
example, adaptive scaffolding in problem-solving tasks, personalized feedback for a knowledge-building system, or
detection of the learners’ level in guided practice. However, only 2 implemented an intervention, with 1 of them
evaluating it, while 20 articles had no mention of a potential intervention at all. This is in line with recent publications
such as "LAK of Direction", where they found that 11% of their reviewed articles introduced an intervention into a
learning environment [55].

The use of learning principles, such as cognitive load [57] or learning and forgetting curves [21], is often present when
describing or framing the problem. Very few use learning principles in the interpretation of patterns or interventions.
This may be due to the focus on task- or system-specific tactics more than general learning behaviours. However,
actionable results in LA research require a strong theoretical foundation, present in the analysis and the interpretation
of the findings [96]. The theories mentioned in the framing of the problem should remain through the complete process,
such as the use of Neo-Piagetian theory to classify patterns as programming strategies related to expertise [36]. This
was the case for the 10 articles where the purpose is to identify meta-cognitive strategies, with 8 of them using a
Self-Regulated Learning model to map the data records into activities, interpret the patterns after analysis, and describe
a potential intervention [37].
2https://www.cs.waikato.ac.nz/ml/weka/
3http://traminer.unige.ch/
4https://github.com/meta-toolkit/meta
5https://sequence-dashboard.learn.ewi.tudelft.nl/
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7 CONCLUSION

In this document, we reviewed the different learning tasks, research purposes, action units, and methods of learning
sequence analysis in educational systems, as well as the interventions that researchers design and propose with
the obtained insights. We described the major trends that can help to establish an overview of the use of Learning
Sequence Analysis, aggregated in an open repository [89] and an interactive interface available in https://sequence-
dashboard.learn.ewi.tudelft.nl/. This is to assist researchers in finding, comparing, and using other’s efforts as a
foundation and move past the exploratory stage; as noted in one of the reviewed articles [72], "the community is missing
more generally applicable results."
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