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ABSTRACT
We investigated the feasibility of automating the modeling of col-
laborative problem-solving skills encompassing both social and
cognitive aspects. Leveraging a diverse array of cutting-edge tech-
niques, including machine learning, deep learning, and large lan-
guage models, we embarked on the classification of qualitatively
coded interactions within groups. These groups were composed of
four undergraduate students, each randomly assigned to tackle a
decision-making challenge. Our dataset comprises contributions
from 514 participants distributed across 129 groups. Employing
a suite of prominent machine learning methods such as Random
Forest, Support Vector Machines, Naive Bayes, Recurrent and Con-
volutional Neural Networks, BERT, and GPT-2 language models,
we undertook the intricate task of classifying peer interactions. No-
tably, we introduced a novel task-based train-test split methodology,
allowing us to assess classification performance independently of
task-related context. This research carries significant implications
for the learning analytics field by demonstrating the potential for
automated modeling of collaborative problem-solving skills, offer-
ing new avenues for understanding and enhancing group learning
dynamics.

CCS CONCEPTS
• Applied computing → Collaborative learning; • Human-
centered computing → Empirical studies in collaborative
and social computing.
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1 INTRODUCTION
Educational paradigms increasingly highlight the importance of
teamwork, recognizing the complexity inherent in modern collabo-
rative activities [3, 29]. Within the realms of academia and profes-
sional sectors, collaborations are often complicated by challenges
such as managing culturally diverse teams [54] and remote work-
forces [48]. To meet these multifaceted demands, there’s a pressing
need for educators to provide rigorous training that transfers into
the workplace [23].

Collaborative Problem-Solving (CPS) emerges as a cornerstone
training method in educational settings, directly addressing the
challenges of teamwork in the 21st century – be it in the workplace,
academic environments, or broader sectors such as the military
[7, 9, 18, 24, 29, 30, 47]. According to the Programme for Interna-
tional Student Assessment (PISA), collaborative problem-solving
(CPS) refers to an individual’s ability to participate in a process
where multiple agents work together to find a solution by sharing
their knowledge, skills, and efforts. The process involves effective
engagement and coordination among the agents to reach a common
goal [41]. Frameworks for CPS typically integrate problem-solving
processes and collaborative strategies, underscoring aspects like
shared understanding and team organization [50]. Given its com-
prehensive approach, CPS prepares future leaders to address global
challenges, necessitating both hands-on training and innovative
tools for evaluating collaborative communication [29].

With the shift towards a digitally connected and collaborative
world, there’s a heightened need for tools adept at capturing and
refining dialogues, specifically in educational settings [52]. Given
that communication is pivotal for collaboration, placing emphasis
on language becomes a pathway to evaluating the learning process.
Discourse analysis is commonly used in educational research to
unpack individual learner’s social, cognitive, and affective states
[8, 20, 21, 26–28, 46]. In collaborative learning, analyzing commu-
nication between team members has been effective in providing
deeper insights into collaborative skills exhibited by individuals
[1, 2], as well as group processes such as information sharing, coor-
dination, negotiation, monitoring progress, and so on [17, 29, 45].
Coding utterances and assigning utterances a label based on the
coding framework allow us to identify nuanced collaborative pro-
cesses. However, as the number of groups or the number of people
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in groups increases, the amount of effort, time, and resources re-
quired in manual coding can quickly become challenging. While
human coding still sets the gold standards, it is no longer viable for
processing the entirety of an exponentially larger corpus of student
data that is being collected.

Increasingly, computational methods are employed to process
educational data at scale [11, 15–17, 19, 35]. Previous studies have
attempted to classify CPS processes based on learner discourse, and
researchers continue to seek approaches that improve the perfor-
mance of automatic prediction. For instance, [31] leveraged Condi-
tional Random Fields (CRF), a sequential dependent classifier, to au-
tomatically classify utterances using four CPS skills: sharing ideas,
negotiating ideas, regulating, and maintaining communication. CRF
was found to outperform other non-sequential methods used in
their research. Another study [43] found that using a transfer learn-
ing approach for Natural Language Processing (NLP), Bidirectional
Encoder Representations from Transformers (BERT) achieved im-
proved performance compared to standard classifiers for modeling
CPS language. They further suggest the necessity of considering
the context of an utterance (what was said before and after) for
accurately identifying particular CPS skills. This is in line with
another study that also supported the importance of considering
task context [51].

2 CURRENT STUDY
Our study has two overall goals. First, we aim to compare the perfor-
mance and feasibility of machine learning models in automatically
identifying CPS language. We evaluated several standard methods
and state-of-the-art deep learning approaches. Towards this effort,
we tested random forest, support vector machines (SVM), naive
Bayes, recurrent neural networks (RNN), long short-term memory
(LSTM), convolutional neural networks (CNN), LSTM-CNN, as well
as large language models such as BERT and GPT-2. Second, as an
expansion of the current literature, we explored the potential effect
of context-related bias on model performance. We applied a task-
based train-test split method to take into account the variation of
task-related language.

Our study aims to address the following research questions:
1. How accurately can predictive modeling automate the coding of
CPS interactions?
2. To what extent are predictive models sensitive to task-related
context?

3 METHODS
3.1 Participants
A total of 𝑁 = 514 undergraduate students from a large university
in the southwest U.S. participated in the study. The dataset com-
prised interactions of these students, evenly distributed across four
collaborative problem-solving (CPS) tasks—ranking apartments,
professors, party venues, and job candidates, to represent diverse
decision-making contexts. For consistency, we considered only four-
person groups, leading to 𝑁 = 129 teams in the study. Over half of
the participants were female (𝑁 = 347), predominantly freshmen
(𝑁 = 342) or juniors (𝑁 = 128). Racial and ethnic demographics
were as follows: White (12%), Black or African American (1.7%),
Asian or Asian American (40.6%), Hispanic or Latino (31.5%), and

multiracial (1.7%) among those who reported (497 out of 514). Ad-
ditionally, over half (𝑁 = 277) were first-generation students.

3.2 Procedure
After providing informed consent in line with institutional eth-
ical guidelines for human research, participants were randomly
assigned into teams to perform a decision-making task on the
Education Platform for Collaborative Assessment and Learning
(EPCAL). This platform facilitates collaboration, management, and
research in a computer-mediated environment. A background sur-
vey was conducted to collect demographic information. In the task,
students were given a problem (e.g., "choose the best apartment")
with various options, each having positive and negative features.
Each team member received different information relevant to the
problem. During the 20-minute discussion phase, they communi-
cated synchronously via text to share this information for optimal
ranking. The CPS skills distribution within the dataset was as fol-
lows: SSI: 37%, SESU: 20%, SMC: 19%, SN: 14%, CRF: 10%, CE: 7%, CM:
6%, CP: 1%. This distribution was maintained to reflect real-world
frequencies of these skills in group interactions.

3.3 Qualitative Coding
This study adopts a Collaborative Problem Solving (CPS) frame-
work, specifically adapted from Andrews (2020), to analyze utter-
ance data. The framework, influenced by PISA and other studies,
consists of eight key skills, divided into social and cognitive as-
pects. We excluded the ’exploring and understanding’ component
due to its limited applicability in our context. Table 1 outlines the
definitions and examples for each CPS skill.

Coding was performed at the utterance level. Each utterance was
categorized under one primary CPS skill and one of 29 subskills.
The study concentrated on the primary skills. Four undergraduate
assistants, trained in the CPS framework, coded 7,711 utterance
events. A 20% data samplewas initially coded independently by each
rater to ensure consistency, achieving a high inter-rater reliability
(Kappa = .81). The remaining data was then equally divided and
coded by the raters. Observed frequencies for each primary code
are: SSI (2298), SESU (1009), SMC (953), SN (722), CRF (488), CE
(369), CM (308), CP (28).

4 ANALYTICAL APPROACH
Using machine learning algorithms for text classification usually
involves two stages: a feature extraction stage and a classification
stage using a machine learning technique. More specifically, textual
data containing words and characters are transformed into quanti-
tative values that represent the text data, and then this numerical
representation is used as the input values to a classification algo-
rithm, i.e., decision tree, naive bayes, or neural network to predict
the label values [10]. In the context of our study, each message sent
to the group chat is treated as the unit of analysis, and the CPS
skill codes assigned to each are considered the label values that are
predicted through the classifier. In this study, we will be utilizing
machine learning, deep learning, and large language models (LLMs)
as classifiers. Each is explained in more detail in the subsequent
sections.
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Table 1: CPS skills description from

CPS skill code Definition Examples

Social Maintaining Commu-
nication (SMC)

Off-Topic Communication, Rapport Building
Communication, Inappropriate Communica-
tion

“nice job guys” “no problem”

Sharing Information
(SSI)

Share Own Information, Share Task or Re-
source Information, Share Understanding

“Candidate A was listed as having good lead-
ership skills”

Establish Shared Un-
derstanding (SESU)

Presentation Phase, Acceptance Phase “What skills do we need?”

Negotiating (SN) Express agreement or disagreement, Resolve
conflicts

“My list shows that C is unwilling to further
their education.”

Cognitive Representing and For-
mulating (CRF)

Represent the problem using words, Pro-
poses specific conceptual thinking

“Yeah I feel that B is the best because every-
thing is nearby”

Planning (CP) Set Goals, Develop Strategies “we have to choose between A and B for best”
Executing (CE) Suggesting an action to a teammate, Report

of own action
“Please list all your features for candidate C”

Monitoring (CM) Monitor progress toward the goal, Monitor
whether teammates are present

“So we in agreement to make B the best?”

4.1 Machine Learning
As discussed in the previous section, the first step in text classifi-
cation is feature extraction. We used the term frequencies as the
criteria for this step. This was done through the sklearn python im-
plementation [40]. 1 and 2 grams are used in this process, meaning
that frequent two-word terms are also considered features along
with single words. Maximum features were set as 10,000, which
means the 10,000 most frequent terms were selected as the feature
map list. Next, each text message is transformed into this feature
map based on the existence of the selected terms in the input text.
The Bag of Words (BoW) approach represents data entries based on
a selected set of words, without considering their order or grammar.
Once the input data is quantified through the feature selection step,
the values are used as input values to a machine learning algorithm.
This study uses the most popular and commonly used machine
learning methods to classify the training data, namely: Gaussian
Naive Bayes (GNB), Linear SVM, and Random Forest.

4.2 Deep Learning
In our deep learning approach for feature mapping, we utilized
Fasttext’s pre-trained word vectors, trained on the Common Crawl
dataset comprising 600 billion tokens, to represent our training
data. These 300-dimensional vectors, from a pool of 2 million terms,
are adept at capturing word associations and semantic and syn-
tactic similarities. The extensive vocabulary of these vectors, se-
lected for their robustness in diverse contexts, aligns well with the
varied subjects handled by our undergraduate study participants,
providing reliable semantics for a wide range of contexts, as evi-
denced in prior research [5, 39]. For input consistency, the first 50
tokens of messages were used, based on the training data’s message
length distribution. Our study replaced each word in the training
corpus with the corresponding 300-dimensional vector, making a
sentence of length L represented by an L * 300-dimensional matrix.
We employed four deep learning architectures: Recurrent Neural

Networks (RNN) with three 50 sequence layers [22], Bidirectional
Long Short-Term Memory (LSTM) with three 50 sequence layers
[33], Convolutional Neural Networks (CNN) with four convolution
and max pooling layers [37], and a Hybrid CNN + LSTM model
comprising a convolution and max pooling layer followed by two
bidirectional LSTM layers [49]. Each model underwent training
for 30 epochs, with the best parameters on validation saved and
reloaded for predictions to prevent overfitting.

4.3 Large Language Models
The NLP landscape has undergone significant transformation with
the advent of transformer-based architectures [53], positioning
Large Language Models (LLMs) at the forefront of technological
advancements in the field. The practical application of these models
often entails a delicate balance between computational resources
and the advanced capabilities they offer. In our study, we utilized
BERT [13] and GPT-2 [44], leveraging the pre-trained models avail-
able on the Hugging Face platform [55], using BERT1 and GPT-22
implementations as a base. Subsequently, we fine-tuned a neural
network classifier on top of these LLMs, maintaining the integrity
of the base parameters.

Our decision to utilize GPT-2, a model representing the transfor-
mative impact of transformer technology, was influenced by both
computational considerations and model accessibility [36]. While
more recent models like GPT-3.5 and GPT-4 exhibit enhanced per-
formance capabilities [6], the feasibility of their application within
the context of our research resources was a critical factor. The use of
GPT-2 allowed us to conduct a focused and meaningful study, pro-
viding valuable insights into the application of LLMs in NLP tasks,
while acknowledging the growing potential and challenges of these
models in academic research [38]. Future research endeavors will
aim to build upon this foundation, exploring the capabilities of more

1https://huggingface.co/bert-base-uncased
2https://huggingface.co/gpt2
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advanced models as they become more accessible and manageable
within academic settings.

4.4 Evaluation Metrics
In order to evaluate the prediction quality of the classification
models, we used an unseen test set of data and made predictions
using the trained models on the training set. We used three main
metrics to evaluate the performance of the predictions.

(1) Accuracy: Measures the ratio of correct predictions over
the total predictions. Useful but potentially misleading in
imbalanced datasets as it might overemphasize dominant
labels’ performance.

(2) F1-Score: The harmonic mean of precision and recall, calcu-
lated as

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) (1)

It is a more balanced measure than accuracy, especially in
imbalanced datasets [4].
• F1-Macro Average: The arithmetic mean of per-class
F1-scores, treating all classes equally. It reflects the perfor-
mance across all classes, regardless of their size [42].

• F1-Weighted Average: The average of F1-scores for each
class, weighted by the number of true instances for each
class. This metric accounts for class imbalance [42].

(3) Baseline: This metric represents a naïve model predicting
every instance as the most frequent class. For our study,
with SSI as the most frequent code, the baseline accuracy is
approximately 37%.

4.5 Generalizability
In order to evaluate the generalizability of the classification, we
implemented a task-based train-test split. We hypothesized that
the classifiers might develop biases based on the training data to-
wards the vocabulary and terms frequently present within the tasks
(apartment, candidate, party venue, and professor). To minimize
this bias, we implemented task-based train-test splits where we left
out data from one of the tasks as the test set and used the other
three tasks as the training set. We believe this could be a better
criterion for the model’s performance on new data since it mini-
mizes the bias that can come from the task-specific terms and can
generalize to never-before-seen data. The results are then averaged
across the four classifications for each classifier. The visualization
of this process is available in Figure 1.

5 RESULTS
The BERT classifier demonstrated exceptional efficacy, leading the
pack with an accuracy of 73% and equally commendable f1-macro
and f1-weighted scores of 61 and 73, respectively. These results
are substantially superior to the baseline accuracy of 37%, which is
founded upon predictions based on the most frequent class. Both
the GPT-2 and LSTM models showed a commendable accuracy of
70%. However, there was a notable difference in their f1-macro
scores, with LSTM registering a higher score of 58 as opposed to
GPT-2’s 46. Models such as LSTM-CNN, CNN, Linear SVM, RNN
base model, and Random Forest presented moderate performances

with accuracies ranging between 65% and 68%. Among them, CNN
and Linear SVM paralleled in f1-macro scores at 54. Gaussian Naive
Bayes (GNB) surpassed the baseline, albeit with modest metrics,
attaining an accuracy of 48%. Although all classifiers exceeded
the performance of the most frequent class baseline, the optimal
classifier selection would be predicated on the specific goals of
the application and any computational constraints. Classification
performance evaluation results are available in Table 2.

Drawing on the findings presented, deep learning and LLM mod-
els generally outperform classical machine learning models. Yet,
machine learning models can have the advantage of higher training
speed and greater explainability. It’s also worth noting that while
the performance of both machine learning and deep learning mod-
els will improve with larger training data, deep learning models
stand to benefit substantially more due to their higher complexity
[34]. This suggests the performance gap might widen with a larger
training dataset. Across the board, all models have smaller f1-macro
values compared to the f1-weighted averages, indicating inconsis-
tent performance across classes and better performance in more
frequent classes. This expected trend might see a shift with more
data on the less frequent labels, potentially enhancing performance
uniformly across all classes.

To address RQ2, we evaluated the models on a task-based train-
test split settings. Our assessment of multiple classifiers on the
dataset revealed significant variations in their performance. The
BERT classifier emerged as the most proficient, registering the high-
est accuracy of 70%, as well as superior f1-macro and f1-weighted
scores of 57 and 70, respectively. These figures notably exceed the
baseline accuracy of 37%, which represents predicting the most
frequent class. GPT-2 and LSTM closely followed, both securing an
accuracy of 68%, albeit with slight differences in F1 scores. Other
models like the LSTM-CNN hybrid, CNN, Linear SVM, and Random
Forest showed moderate performances, with accuracies oscillating
between 60% and 67%. On the lower end, the Gaussian Naive Bayes
(GNB) classifier, while outpacing the most frequent class baseline,
registered the least favorable metrics among the evaluated mod-
els with an accuracy of 44%. While every classifier demonstrated
improved utility over merely predicting the dominant class, the
choice of classifier would inevitably be guided by specific appli-
cation needs and computational considerations. The results are
shown in Table 2.

6 DISCUSSION
The central objective of this study was to investigate the feasibility
of automating the coding of collaborative problem-solving (CPS)
skills, encompassing both social and cognitive aspects, through the
use of machine learning, deep learning, and large language models
(LLMs). Our findings revealed that LLMs, with a notable emphasis
on BERT, exhibited superior performance in terms of accuracy and
f1-score when compared to other methodologies, signifying their
proficiency in capturing the semantic and syntactic features of text
data and their ability to generalize effectively to unseen data. How-
ever, it is crucial to note that LLMs demand greater computational
resources and training time, potentially limiting their applicability
in certain contexts. Deep learning models, particularly LSTM, also
showcased commendable performance relative to machine learning
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Figure 1: Visualization of the task-based train/test split methodology. Darker sections represent the training set, and lighter
sections represent the test set for each task. This method ensures that each task is held out as a test set in a separate batch to
evaluate the model’s ability to generalize to unseen data.

Table 2: Merged Classification and Task-based training results

Classification Results Task-based Training Results
Classifier accuracy f1-macro f1-weighted accuracy f1-macro f1-weighted Baseline
BERT 0.73 0.61 0.73 0.70 0.57 0.70 0.37
GPT-2 0.70 0.46 0.69 0.68 0.55 0.68 0.37
LSTM 0.70 0.58 0.69 0.68 0.53 0.68 0.37
LSTM-CNN 0.66 0.52 0.65 0.60 0.45 0.60 0.37
CNN 0.68 0.54 0.66 0.66 0.51 0.66 0.37
RNN base 0.65 0.51 0.64 0.63 0.46 0.63 0.37
GNB 0.48 0.39 0.50 0.44 0.36 0.44 0.37
Linear SVM 0.65 0.54 0.66 0.63 0.54 0.63 0.37
Random Forest 0.67 0.51 0.65 0.67 0.51 0.67 0.37

models, underscoring the advantage of exploiting the sequential
nature of text data and word embeddings to enhance classifica-
tion accuracy. Nevertheless, deep learning models are hampered by
their lack of interpretability and transparency, posing challenges in
comprehending and elucidating classification outcomes. Machine
learning models, including random forest and SVM, demonstrated
moderate performance when compared to deep learning and LLMs
[14]. Their primary limitation lies in their reliance on the bag of
words approach, which may overlook crucial word order and con-
textual details [32], while also rendering them more vulnerable to
data imbalances and noise [25].

The task-based train-test split technique was implemented to
evaluate the generalizability of the models across different tasks.
The results showed that there was a slight drop in performance
for most models when using this technique, which implies that the
task-specific vocabulary and terms may influence the classification
results. This emphasizes the need to account for task-related con-
text when applying automated coding of CPS skills across varying
domains.

The study has several limitations that need to be addressed in
future work. First, the data set used in this study was relatively
small and unbalanced, which may affect the reliability and validity
of the classification results. Future work should collect more data
from diverse sources and tasks to increase the robustness and repre-
sentativeness of the data set. Moreover, generative AI models could
be further explored as possible methods for data augmentation
to generate more data entries for the less represented categories
[12]. Second, the study only focused on eight main CPS skills and
did not consider the subskills or other factors that may influence

CPS performance. In follow-up studies, we plan to explore more
granular and comprehensive measures of CPS skills and examine
how they relate to other variables such as team composition, task
complexity, and learning outcomes.

7 CONCLUSION
Our study delved into the potential of harnessing machine learning,
deep learning, and advanced language models for the automatic
modeling of social and cognitive collaborative problem-solving
(CPS) skills. The findings from our research, which involved the
analysis of qualitatively coded utteranceswithin teams, have several
implications for the future of education and collaborative learning.

One direct application of our approach is the development of sys-
tems that can automatically generate reports for educators. Such
systems could provide insights into the CPS skills exhibited by
various student groups. This would be invaluable for educators
overseeing multiple student groups, enabling them to gauge the
proficiency of each group in CPS. By doing so, educators can pin-
point groups that might be struggling and allocate their resources
more effectively to assist them. Beyond group-level insights, our
approach can also be tailored to provide individualized feedback.
By analyzing a student’s participation and interaction patterns, the
system can identify areas of strength and areas needing improve-
ment. For instance, a student who is proactive in sharing but less
involved in collaborative discussions could be nudged to be more
receptive to their peers’ ideas and to contribute constructively.

The future holds promise for integrating our approach with intel-
ligent systems designed to monitor CPS in real-time. Such systems
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could actively intervene during group discussions to optimize out-
comes. Imagine a scenario where a group veers off-topic; the system
could gently remind them to refocus. Similarly, if students remain
passive, the system could encourage them to voice their thoughts.
The design and implementation of these interventions, including
their timing, presentation, and target (be it the entire group or an
individual), require further exploration and fine-tuning.

Lastly, our research utilized prominent machine learning tech-
niques and language models like BERT and GPT-2. Future research
could delve deeper into refining these models or exploring newer
models to enhance the accuracy and applicability of automatic CPS
skill modeling. As we move forward, it will be crucial to design and
test these systems in diverse settings to ensure their efficacy and
adaptability.
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