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Figure 1: Classifications for all student attempts for Problem 65 in FH2T

ABSTRACT
This study explores the effects of varying problem-solving strate-
gies on students’ future performance within the gamified algebraic
learning platform From Here To There! (FH2T). The study focuses
on the procedural pathways students adopted, transitioning from a
start state to a goal state in solving algebraic problems. By dissect-
ing the nature of these pathways—optimal, sub-optimal, incomplete,
and dead-end—we sought correlations with post-test outcomes. A
striking observation was that students who frequently engaged in
what we term ‘regular dead-ending behavior’, were significantly
correlated with higher post-test performance. This finding under-
scores the potential of exploratory learner behavior within a low-
stakes gamified framework in bolstering algebraic comprehension.
The implications of our findings are twofold: they accentuate the
significance of tailoring gamified platforms to student behaviors
and highlight the potential benefits of fostering an environment
that promotes exploration without retribution. Moreover, our in-
sights hint at the notion that fostering exploratory behavior could
be instrumental in cultivating mathematical flexibility.
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1 INTRODUCTION
Solving algebraic problems require students to utilize a broad spec-
trum of problem-solving techniques. These techniques enhance
students’ ability to synthesize solutions, shape their mathemat-
ical intuition, and reinforce their methodological approaches to
problem-solving. As students progress to more advanced mathe-
matical domains, mastering these foundational strategies becomes
paramount. Indeed, proficiency in algebraic concepts is intimately
linked with the acquisition of a wide array of problem-solving tech-
niques [24]. Especially in K-12 mathematics education, efficiency
and flexibility in problem-solving strategies are prioritized [15], and
efficient students often employ fewer steps or transformations [32].
This is supported by various studies that suggest that strategic
efficiency is a significant indicator of a student’s understanding
of the inherent mathematical structures [26, 30]. Yet, despite the
widespread acknowledgment of the correlation between strong al-
gebraic knowledge and enhanced performance in future advanced
topics, a disconcerting number of middle school and high school
students struggle with fundamental algebraic concepts. Difficulties
making such as valid transformations and decomposition [24], and
challenges in converting simple story problems into mathematically
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equivalent equations [17], are indicative of the potential struggles
these students might face as they encounter more advanced topics
typically expressed in algebraic form.

Over the years, both researchers and developers have created
a diverse set of tools and systems to bolster algebraic learning,
especially in facilitating the acquisition of problem-solving strate-
gies. Notably, rule-based approaches have stood out in the develop-
ment of Intelligent Tutoring Systems (ITS), with the primary goal
of strengthening the acquisition of procedural knowledge that’s
pivotal to algebraic comprehension. These approaches find their
foundation largely in the cognitive theories presented in ACT-R [2].
A variety of cognitive tutors have emerged over time, all aiming to
aid learners in achieving mastery across various subjects [3, 8, 25].
While these cognitive tutors are designed to provide learners with
adaptive feedback and personalized guidance [1], the procedural
pathways available to students are often constrained by what the
problem creator considers essential for mastering the core con-
cepts. In contrast, some ITS have adopted an alternative approach,
developing systems that merely require students to enter their
answers to the problems, without demonstrating the procedural
comprehension necessary to solve them [14]. Despite the ambiguity
surrounding the procedural pathways chosen by the learner, the
use of such systems has led to better learning outcomes [21], and
the availability of feedback has been observed to be beneficial in
enhancing learning [16, 20]. Though both approaches effectively
facilitate the acquisition of mathematical knowledge [21, 23, 28],
little is known regarding the various procedural pathways learners
might potentially employ in formulating a solution.

With the rapid development in technology and ensuing innova-
tions in Intelligent Tutoring Systems (ITS), researchers and devel-
opers have been investigating the efficacy of implementing novel
methodologies to aid learners in acquiring algebraic knowledge. A
subset of these educational technology, such as Graspable Math [31]
and ‘From Here To There!’ (FH2T)[6], have embraced dynamic pro-
cedural pathways for teaching algebra. Specifically, FH2T adopts a
distinctive dynamic procedural approach: learners are presented
with an algebraic expression as the starting state and a transformed
version of that expression as the goal state. Students can traverse
any procedural pathway they prefer, with all mathematically valid
transformations being permissible. This architecture inherently
grants learners the autonomy to explore various procedural av-
enues in their exploration of the transformations necessary to at-
tain the goal state. Such a modality can shed light on the diversity
of procedural pathways chosen by learners.

FH2T utilizes a gamification model to enhance student partic-
ipation. Various prior studies have reported on their exploration
of the efficacy of FH2T in improving students’ algebraic knowl-
edge [6, 9] and the different aspects of the in-game behavior that
can predict better learning outcomes [7, 29]. However, to the best
of our knowledge, very little exploration regarding the variation
in the procedural pathways adopted by students in their attempt
to reach the goal state has been studied. As illustrated in Figure
1, the transformations executed by students can be harnessed to
construct a network representing their approach, from the starting
state to the goal state. This network can reveal procedural path-
ways that are optimal, sub-optimal, incomplete, and on occasion,
paths that culminate in dead-ends. An incomplete path arises when

students stop working while other students have pursued this path
to the goal state. Distinctly, a dead-end path represents a trajec-
tory chosen by one or more students who ceased progress before
reaching the goal state. These paths stand out from incomplete ap-
proaches because no student has ever traversed them successfully
from start to goal state. Hence, it’s unclear if these are genuine
dead-ends or trajectories that future attempts might lead to success-
ful completion. The underlying mechanisms that prompt students
to discontinue their current procedural approach, leading to dead-
end and sub-optimal pathways, remain unclear. However, various
factors, both positive and negative, can sway a learner’s decision
to discontinue. Positive triggers might include realizing that a path
will only yield a sub-optimal outcome or foreseeing a challenging
state ahead. Conversely, negative factors could include frustration
from an inability to solve a problem or reaching a genuine impasse
where the student is unable to identify the next state.

As such, this paper aims to explore the implications of encounter-
ing dead-ends within the network of strategic pathways generated
using procedural approaches adopted by the students while work-
ing on algebraic problems. Accordingly, we explore the following
research questions:

RQ 1 Does the choice of procedural pathways in algebraic problem-
solving lead to differentiated learning outcomes?

RQ 2 In what ways do dead-end attempts within a gamified envi-
ronment impact algebraic learning?

2 METHODOLOGY
2.1 Data
The data used in this study was collected as part of a large Ran-
domized Control Trial (RCT) conducted from September 2020 to
April 2021. The study (c.f. [9]), explored the impact of three differ-
ent educational technology tools on students’ algebraic learning.
A total of 4092 7th-grade students were recruited from 11 middle
schools within a large suburban district in the United States. The stu-
dents were randomly assigned to one of four conditions: 2 gamified
conditions (FH2T and DragonBox [27]), ASSISTments [14] instant
feedback problem sets, and an active control delayed feedback con-
dition. This data from this study is publicly available for researchers
through OSF1 (c.f. [22]). The dataset includes information regarding
assessments, demographics, logged student actions, and aggregated
data for each condition. Assessment data includes pre-test and post-
test scores that measure students’ algebraic knowledge using ten
items adapted from a previously validated measure (ranging from 0
to 10) [22]. This paper only utilized the data associatedwith students
assigned to the FH2T condition, as our objective is to explore the
dynamic procedural pathways students took to reach the goal state.
In cases where students attempt mathematically impossible trans-
formations, these invalid attempts are recorded as errors, but the
transformations are not executed. This approach aims to enhance
students’ algebraic understanding through practice by allowing
them to identify the infeasibility of certain transformations.

2.1.1 Sample. 1,649 students were assigned to the FH2T condi-
tion, of which 52.6% were male and 47.4% were female. 49.8% of

1https://osf.io/r3nf2/
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the students identified as White, 24.8% as Asian, and 16.4% as His-
panic/Latino. The remaining 9% identified with other racial cate-
gories or reported multiple racial affiliations. It’s important to note
that students who did not complete both the pre- and post-tests
were omitted from our analysis, resulting in a final sample of 774
students.

2.2 Classifying student attempts
We used the students’ action level interaction log data to generate
the dynamic procedural pathways for each student’s attempt to
reach the goal state. Once created, these pathways formed a network
comprising optimal, sub-optimal, incomplete, and dead-end path-
ways. The subsequent section details the procedure we employed to
capture the various attempts made by students, which cumulatively
resulted in the formation of this network across multiple attempts
by various students.

2.2.1 Solution steps as a directed graph. The sequence of actions
taken by a student to reach the goal state can be visualized as a
series of nodes in a directed graph or network. In algebraic problem-
solving, each transformation acts as an edge between two nodes,
where each node signifies a mathematical expression either before
or after a transformation. For instance, in the sequence of transfor-
mations depicted in Figure2, expressions like "b+c+a" (start state,
Figure2a), "b+a+c" (first step, Figure2b), and "a+b+c" (goal state,
Figure2c) each constitute a node in the directed graph. The transfor-
mations ["b+c+a"→ "b+a+c"] and ["b+a+c"→ "a+b+c"] illustrate
the edges connecting the respective nodes.

(a) Start State (b) First Step

(c) Goal State

Figure 2: An example of an inefficient student attempt in
FH2T

In the context of Figure2, identifying the most efficient strategy
is straightforward since there exists a singular optimal path from
the start state to the goal state (i.e. ["b+c+a" → "a+b+c"]). When
students complete the task as presented in Figure2, any attempt
that encompasses a singular step can be designated as efficient; any
deviation from this is deemed sub-optimal. However, it’s worth
noting that certain problems may present a suite of equally effi-
cient strategies. To systematically uncover all efficient paths or

transformations for a given problem, we begin by populating a
graph with all pertinent transformations, sourced from the log data.
Subsequently, through the application of efficient graph traversal
methodologies, such as A* or Dijkstra’s shortest path algorithm, we
can pinpoint all viable efficient solutions within a specific student
sample or cohort. For this study, we favored Dijkstra’s algorithm
due to its inherent capability of attributing weights to particular
edges – in this case, transformations. This flexibility grants us the
latitude to either penalize or amplify the significance of specific
transformations. Nonetheless, in this preliminary study, we have
assigned a uniform weight to all transformations.

Figure 3 is an example of identified multiple equally efficient
strategies or solution steps. The blue node is the start state (i.e.
4*(2+3)*(-100+1+45+55)/(2+3)*3), and the green node is the goal
state (i.e. 6+6). The golden nodes represent nodes that are in the
best path (i.e. are steps of an efficient solution). In this case, there
are 3 distinct efficient strategies, that all require 7 steps or trans-
formations. Additionally, the thickness of each edge and arrow
represents the number of students who made that transformation.
We can also deduce that the path at the bottom of the figure is more
common in comparison to other paths.

2.2.2 Identified classifications. As described above, by utilizing
Dijkstra’s shortest path algorithm, we identified all the efficient
steps for any given problem in FH2T. Students’ completed attempts
were classified as optimal or sub-optimal paths by referencing the
observed best path between the start and the goal node in the net-
work. Additionally, we also noticed two distinct types of incomplete
procedural paths in the network: ‘incomplete path’ and ‘dead-end
path’. Incomplete paths are incomplete attempts that are part of
the observed optimal or sub-optimal paths indicating that the same
student or other students took the same path to reach the goal state
in a different attempt. Dead-ends, on the other hand, are paths that
have never led to a goal state across attempts, i.e., no student has
successfully taken the path to reach the goal state. As such, dead-
ends are a unique type of incomplete path within the generated
networks.

An example classification for problem attempts can be seen in
Figure 4. This figure is similar to Figure 3, however, it contains all
the student attempts from the log data for that particular problem
rather than just the best paths. Examples of specific classifications
have been given in Figure5, which are isolated attempts from Fig-
ure 4. The grey nodes represent sub-optimal steps (see Figure 5b),
any attempt that contains these nodes is inefficient. The red nodes
represent dead-end nodes (see Figure 5c), there are no paths or
edges that lead to the goal state. Any attempt containing one of
the red nodes is classified as a dead-end attempt. The incomplete
attempts are difficult to distinguish visually, as by definition, those
paths have been taken by other students to reach the goal state. To
visually represent a sample incomplete attempt we highlighted the
associated nodes and edges in purple (see Figure 5d). In the high-
lighted attempt, the student initially used a sub-optimal strategy
but did not reach the goal state, i.e., decided to reset.

2.2.3 Classifying attempts for all problems. In order to compare
what paths led to better learning outcomes, we classified all at-
tempts across all problems into their respective categories. The
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Figure 3: The identified best paths in a graph for problem 252 in FH2T

Figure 4: All attempt classifications for Problem 252 in FH2T

classification was performed using pandas [19], and NetworkX in
Python 3.11.

3 RESULTS
3.1 RQ 1: Exploring what types of attempts lead

to better learning outcomes
To address RQ1 and identify problem-solving strategies that led to
better learning outcomes, we estimate two linear models. Model
1 predicts the post-test scores of students based on the identified
pathways or classifications, while the second model accounts for
prior algebraic knowledge (mean-centered) in addition to the classi-
fications. Table 1 contains the results of running the linear models.
The results of model one suggest that at the student level, neither
classification of best (𝛽 = -0.38, p = 0.407) nor sub-optimal (𝛽 = 1.46, p
= 0.118) was a significant predictor of post-test scores. Surprisingly,
the classification of incomplete (𝛽 = -1.69, p <0.001) and classifica-
tion of dead-end (𝛽 = 5.17, p <0.001) were significant predictors of

post-test scores. These results were surprisingly counter-intuitive,
as we originally hypothesized that dead-ends indicate poor proce-
dural knowledge and would consequently lead to lower post-test
scores.

In model two, we observed that higher prior knowledge was
correlated with higher post-test performance (𝛽 = 0.72, p <0.001).
The best path (𝛽 = -0.76, p = 0.028) was also a significant predictor
of post-test scores. Additionally, while the effect decreased, dead-
end (𝛽 = 2.28, p = 0.004) was still a significant predictor of higher
post-test performance.

Overall, the results of these models suggest that after account-
ing for prior algebraic knowledge, the average student exhibiting
dead-ending behavior is more likely to succeed. On the other hand,
students who exhibit efficient problem-solving behavior, tend to
perform worse on the post-test. The positive correlation between
dead-ending behavior and student post-test performance indicates
the likelihood that the underlying mechanism that results in dead-
ending behavior is likely positive in nature. Such learners are able to
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Table 1: Student level linear regression results predicting post-test score.

Model 1 Model 2
post test math score post test math score

Predictors Estimates CI (𝛼=0.05) p Estimates CI (𝛼=0.05) p

(Intercept) 4.79 [4.02, 5.56] <0.001 4.70 [4.12, 5.29] <0.001
Class Best -0.38 [-1.27, 0.52] 0.407 -0.76 [-1.44, -0.08] 0.028
Class Incomplete -1.69 [-2.27, -1.11] <0.001 -0.35 [-0.80, 0.10] 0.129
Class Sub-optimal 1.46 [-0.37, 3.29] 0.118 1.08 [-0.31, 2.46] 0.129
Class Dead-end 5.17 [3.17, 7.16] <0.001 2.28 [0.75, 3.81] 0.004
Pre Total Math Score 0.72 [0.66, 0.77] <0.001

Observations 774 774
𝑅2/𝑅2 𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑 0.057/0.052 0.459/0.456

(a) Best Path

(b) Sub-optimal Path

(c) Dead-end Path

(d) Incomplete Path

Figure 5: Examples of the 4 different attempt types in Prob-
lem 252

identify that the path will only yield a sub-optimal path or foresee
a challenging state ahead. As such, we posit that a dead-end at-
tempt may, in fact, be an indicator of ‘exploratory play’, an in-game
behavior that potentially leads to a more nuanced understanding
of the transformations to avoid or the ability to identify problem-
atic states when solving algebraic problems to reach the total state.
Consequently, resulting in a better post-test performance.

3.2 RQ 2: Exploring the effect of regular
dead-ending on algebraic learning outcomes

Building on the surprising results of RQ1, we further explored the
relationship between dead-ending (or exploratory behavior) and
higher post-test scores. We examined potential variance in the dead-
end states across students by constructing individual networks per
student per problem. Such student-level networkswere generated to

identify dead-end paths of students that were potentially masked by
their peers’ attempts. For example, if a student had an exploratory
attempt (‘start state’ → ‘a’), and another student used the same
path to reach the goal state sub-optimally (‘start state’ → ‘a’ →
‘b’ → ‘goal state’), the student’s exploratory attempt would be
masked and classified as incomplete. By identifying dead-end paths
on student-level networks, we localize the definition of dead-end
paths to individual students’ attempts. It is important to note that
this modification does not change the classification for optimal
or sub-optimal attempts, as the best paths found from the entire
sample are used for this classification.

Next, we examined the frequency of dead-ending behavior per
student by examining the total number of problems in which the stu-
dent had at least one dead-end attempt. Similarly, we calculate the
percentage of problems with at least one dead-end attempt. These
results can be found in Table 2. Since the dead-end count and per-
centages were not normally distributed, and certain students were
regularly utilizing the dead-end pathways in comparison to their
peers, we classified the students into ‘regular dead-enders’ and ‘oc-
casional dead-enders’ by utilizing a cutoff point at the 5th percentile
of the dead-ending behavior distribution. We ran a mixed-effects
model at the attempt level, predicting post-test scores while account-
ing for prior knowledge (mean-centered), using the student-level
network classification and an indicator for the students’ regular
usage of dead-end paths. As the data is at the attempt level, we
introduce random intercepts for the problem ID, attempt number,
and pre-test scores.

Table 3 suggests that for a student with an average score on the
pretest, the use of optimal or best paths correlates significantly with
higher scores on the post-test (𝛽 = 0.33, p < 0.001), especially when
compared to the reference category of incomplete paths. This trend
is also seen with sub-optimal paths (𝛽 = 0.07, p < 0.001) and dead-
end paths (𝛽 = 0.05, p = 0.006), both showing a positive correlation
with the students’ post-test scores. Similar to the results of RQ1, the
pre-test score remains a significant predictor of the post-test scores
(𝛽 = 0.65, p < 0.001). Interestingly, students who regularly adopt
dead-ending strategies in their problem-solving tend to perform
better than those who use such strategies less frequently (𝛽 = 0.24,
p < 0.001).
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Table 2: Summary Statistics of Dead-end Count and Percentage

Statistic Mean St. Dev. 5% Median 95%

Dead-end Count 27.1 16.1 4 24.5 56
Dead-end Percentage 23.4 7.5 12.05 23.2 35.5

Table 3: Exploring the correlation between different types of procedural pathways taken by individual students and their
post-test performance.

post test math score

Predictors Estimates CI (𝛼=0.05) p

(Intercept) 4.90 [4.50, 5.29] <0.001
Attempt Best 0.34 [0.31, 0.38] <0.001
Attempt Deadend 0.05 [0.01, 0.08] 0.006
Attempt Sub-optimal 0.07 [0.04, 0.11] <0.001
Pre Total Math Score 0.65 [0.53, 0.76] <0.001
Regular Deadending 0.24 [0.18, 0.31] <0.001

Random Effects
𝜎2 4.07
𝜏00𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑑 0.54
𝜏00𝑎𝑡𝑡𝑒𝑚𝑝𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 0.08
𝜏00𝑝𝑟𝑒 𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑡ℎ 𝑠𝑐𝑜𝑟𝑒 0.38
ICC 0.20
𝑁𝑎𝑡𝑡𝑒𝑚𝑝𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 94
𝑁𝑝𝑟𝑒 𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑡ℎ 𝑠𝑐𝑜𝑟𝑒 11
𝑁𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑑 252

Observations 179575
𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑅2/𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑅2 0.391/0.512

4 DISCUSSION
In this study, we find that students who exhibit regular dead-ending
behavior have a higher post-test score (i.e. higher learning outcome),
than students who are irregular dead-enders. In other words, stu-
dents exhibiting regular dead-ending behavior (i.e. exploratory),
gain more from the gamified system. This suggests that students
who display regular exploratory (i.e. dead-ending) behavior may be
learning the various algebraic rules and notations in a low-stakes
gamified environment, eventually leading to better algebraic un-
derstanding.

The findings of this study have two major implications. Firstly,
the positive effect of gamified systems on algebraic learning out-
comes depends on the behaviors exhibited by the student. Past
studies such as [7, 18, 29], have shown that different in-game be-
haviors are predictive of algebraic learning outcomes. In particular,
studies [7, 18], showed that students who paused before answer-
ing tend to perform better in the post-test. Similarly, [29] showed
that students with a higher propensity for persistence benefit more
from the gamified system. In the current study, using log data, we
identified an exploratory behavior that results in better learning
outcomes. We provided additional evidence suggesting that the
effect of gamified platforms on learning outcomes depends on the
behaviors and intentions of the user.

The second major implication is that in-game behaviors exhib-
ited by students may be the main driving force behind improved
algebraic knowledge in gamified systems. Desirable behaviors, such
as the exploratory behavior identified in this study, should not be
penalized. If the results presented in this study are consistent for
similar gamified systems, there are profound impacts on the design
of gamified platforms to foster exploration. Additionally, our results
suggest that in order to develop math flexibility, students may need
to explore various procedural pathways. In the long run, this may
allow students to develop the important skill of choosing efficient
problem-solving strategies.

5 LIMITATIONS AND FUTUREWORK
In considering the outcomes of this study, several important caveats
should be acknowledged. To begin with, our analysis was narrowly
focused on data derived from the FH2T platform. This specificity
introduces potential limitations on the generalizability of the re-
sults. There remains an open question about the replicability of the
observed student behaviors and interactions across a wider range
of platforms that employ similar dynamic procedural pathways.
To strengthen the findings of this study, it would be instructive
for subsequent investigations to explore the generalizability of
our findings further. Additionally, the insights extrapolated here
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might be more germane to gamified environments rather than to
traditional tutoring platforms such as the Cognitive Tutor [3] and
ASSISTments [14] mentioned earlier. These platforms, with varying
affordances regarding procedural requirements, might influence
student behavior differently, possibly reducing the propensity for
the kind of exploratory action observed in our analysis.

While this study aimed to identify and understand the implica-
tions of various procedural pathways in solving algebraic problems
within a gamified setting, the broader implications of these classifi-
cations must be acknowledged. Future research should investigate
the effects of hints on the paths and explore variations in their
effective utilization. Prior research has underscored the value of
using the response times as a metric to infer productive hint us-
age [13] and the formulation of optimal solutions [7]. Additionally,
several studies have highlighted the benefits of providing error-
specific feedback to frequently occurring incorrect answers [10, 11].
The models established in this research can greatly enhance our
understanding of the mechanisms underlying the procedural path-
ways that lead to these common errors. Similarly, insights into
these pathways can improve the quality of automated grading and
feedback generation for student responses in open-ended algebraic
problems [4, 5] by helping mitigate potential biases [12] by facil-
itating an objective understanding of the potential mechanisms
influencing the students’ responses.

It would also be of academic interest for subsequent studies to
investigate the interplay between these classifications and various
demographic or evaluative indicators, such as levels of math anx-
iety. Such a focus can illuminate nuanced patterns of interaction
across heterogeneous student groups. By doing so, we can better
inform and adapt educational strategies, aiming to enhance both
the inclusivity and efficacy of gamified instructional methodologies.
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