Check for
Updates

where the symbol N denotes an AND operation and the symbol
+ denotes a multiplieation operation.

(9) The result of an OR operation with any number of Boolean
variables is the same as the (arithmetic) addition of the x, ¥, 2
integer variables after the following test is made:

(a) If the sum is equal to zero, the result is correct;

(b) If the sum is larger than zero, the answer is a 1;1.c.

z4+y+z=4UBUC fe+y+2=0
c+y+e=1 f@+y+zzl

where the symbol U denotes an OR ()pemt,um and the symbol
-+ denotes an addition operation.

(3) The result of a NOT operation with a Boolean variable is
the same as subtracting an integer variable « from 1; i.e.

(1 —) ()
= 0;and if 4 =z =0,

@)

i

because if A = x = 1, then 4 =
then 4 = 1 — 0 =

The Forrran program in Figure 1 illustrates the method pre-
sented. It simulates the logic of a full-adder as described by the
following two Boolean functions:

L = KK» + KiK; + K:K; @)
M = LK, + K + K3) + K,K:K, (5)

i

where K, K» and K; are the two input bits and previous carry
to he added, L is the output carry, and M is the output sum.
Integer variables were chosen for compatibility with the Forrran
language.

< EXAMPLE OF BOOLEAN SIMULATION
¢ SIMULATION OF A FULL-ADDER
DIMENSTUON K(3)
C INITIALIZE THE [INPUT TRUTH TABLE TO ZERQ
00 10 1=1,3
10 Kili=0
" DERIVE THE TRUTH TABLE FOR THE SUM M, AND THE CARRY (.

D110 1=1,48
Los KOLPoR{2IeRTL)#K(3) +K(2)1 »K(3)
TF{L) 20,30,20

20 L o= 1

30 LT=K(L)+K{2)+K(3)
TFLLT) 40,450,440

40 LT=}

50 M = (L-L)#LT + K{Ll)#K(2)wK(3}
[F{M) 60,70,60

60 M = |

TO PRINT T5,K(3),K(2),K(1)yMyL

G GENERATE THE NEXT [NPUT COMBINATION

KE3Y=KEL)RKI2)#{1~K(3)) + (L-R{L)eK(2))ax(})
TE(K(31) 80,%0,80

80 K(3})=1

90 K(2) =K{1)e(1=K(2)) + {1-K{L1})»K(2)
IF(K{2}) 100,110,100

LOQ K(21=1

110 K(L)={1-K(1)}}

75 FORMAT(LOXyI3,13,13,4X,13,13)
PAUSE
END

Fia. 1

The AND and NOT operations are transformed to multiplica-
tion and subtraction operations as described in (1) and (3). The
OR operation needs a control IF statement after the arithmetic
addition is performed in order to restore the value of the variable
to unity. This may be simplified by using & Function subprogram
to caleulate the result of the OR operation, thus eliminating the
need for repetition of the IF statements. It was not done in this
example because of the limitation of the ForrraN compiler in the
1620 Model 1 computer where this program was checked out, and
where the use of subprograms is not permitted.
M. Morris Maxo
California State College at Los Angeles
Los Angeles, California

Receivep Fesruary, 1064

40 Communications of the ACM

FURTHER REMARKS ON
TRUNCATION ERRORS ;

Recently Jack M. Wolfe (1] proposed the use of <Cascadeq:
accumulators to evaluate a sum of the form S = Ztﬁl 5
when N is large and all the y’s are of roughly the same order
magnitude. His intention was to alleviate the accumulation of
rounding or truncation errors which otherwise occurs wWhen § i
evaluated in the straightforward way illustrated by the f()HoWing
ForTRAN program.

REDUCING

1 8=00

2 DO4I =
3 YI = -
4 8 =54+ YI
5

The rounding or truncation in statement 4 could conbribute to 5
loss of almost logw N significant decimals in S. This would be |
important in those cases where the values of YI computed iy,
statement 3 were correct to nearly full machine precision; other. |
wise the uncertainty in the YI's would swamp any Mldxtmmxi

error introduced in statement 4. :

Of course, the simplest and fastest way to prevent such figure. -
loss is to accumulate 8 to double-precision. For example, in a
ForTraN IV program it would suffice to precede statement 1
above by the TYPE statement DOUBLE PRECISION §.
The convenient aceessibility of double-precision in many Fortrax
and some ALGoL compilers indicates that double-precision will
soon be universally acceptable as a substitute for ingenuity in
the solution of numerical problems.

In the meantime, programmers without easy access to double-
precision arithmetic may be able to simulate it in the program
above by a method far simpler than Wolfe’s, provided they are
using one of the electronic computers which normalize floating
point sums before rounding or truncating them. Among such
machines are, for example, the 1.B.M. 704, 709, 7090, 7094, 7040,
7044 and 360 (short word arithmetic).

The trick to be described below does not work on machines
such as the L.B.M. 650, 1620, Univac 1107 and the Control Data
3600 which round or truncate floating-point sums to single pre-
cision before normalizing them.

In the following program $2 is an estimate of the error caused
when S = T was last rounded or truncated, and is usech in state-
ment 13 to compcusate for that error. The parentheses in state-
ment 23 must not be omitted; they cause the difference (S—T)
to be evaluated first and hence, in most cases, without error be-
cause the difference is normalized before it is rounded or truncated.

1 8=0.0

23 82 = (8-T) + 82
S

T
o
i

Jntil double-precision arithmetic was made a standard feature
of the Forrran language, the author and his students used this
trick on a 7090 in Forrran II programs to perform quadrature.
solve differential equations and sum infinite series.

REFERENCE:

1. Worrg, J. M. Reducing truncation errors by programming
Coman. ACM 7 (June 1964), 355-355.
W. Kanan
Unaversity of Toronto

Recervep JuLy, 1964 Toronto, Ontario, ('anada

(Pracniques are continued apn page 48)

Volume 8 Number 1 / January, 1965

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363707.363723&domain=pdf&date_stamp=1965-01-01

the domain last entered is known and it is this domain in
which the terminal point lies.

VII. Comments on Implementation of Algorithm

It is to be noted that actual use of this algorithm will
frequently involve considerations of accuracy and sig-
nificance. These must be viewed from the viewpoint of
numerical analysis in terms of permissible errors as re-
quired by the nature of the given problem. Consequently,
assoclated with each test, such as those for inclusion within
or on a rectangle, coincident points, ete., there will nor-
mally be some small quantity & (perhaps unique to the
given test) which results in the test being more “conserva-
tive,” Le. retaining certain borderline cases for considera-
tion under subsequent tests in the procedure.

A second point is that although the description of the
algorithm is in terms of a static set of partitioning bound-
aries, it is quitec adaptable to a situation in which the
boundaries of the region are dynamically changing during
the course of the problem solution. The structure of the
list of significant points is such that insertions and dele-
tions may be ecasily made to reflect changing boundaries.
The nature of the algorithm will be unchanged. Of course,
as already noted, processing time is conditioned by the
number of boundaries involved, their orientation, etc.

An example of an applications area where a procedure of
the type here described is extensively employed is that of
computer-generated paths over configurations of surfaces
for purposes of numerically controlled machining.! Tool
paths are constructed by a scries of connected straight-line
segments. The generation of these tool paths is dependent
on knowledge of the surface (domain) on which the current
and previous tool points lie. Thus the intersection curves
(boundaries) between contiguous constituent surfaces in
the complex must be observed. In addition, the tool path
currently being generated must conform to certain restric-
tions imposed by the previously generated tool paths,
which thus constitute a dynamic set of boundaries. Since
this algorithm is developed in terms of partitioning
boundaries in a bounded, plane region, the given configura-
tion of surfaces in such a machine tooling problem must
be such that the projections into some fixed plane of the
boundaries corresponding to their delimiting curves of
intersection as well as the boundaries corresponding to the
tool paths generated on the surfaces must satisfy the cri-
teria for valid boundaries established in Section II of this
paper.

Acknowledgments. 'The conception of the essence of the
procedure described in this paper was primarily achieved
by Mr. Arnold Siegel, then with IBM, now with Compu-
tronics, Inc., and Mr. Samuel M. Matsa, IBM Mathe-
matics and Applications Department.

REcEIVED JUNE, 1964; REVISED SEPTEMBER, 1964

REFERENCE

1. AUTOPROMT, A System for Numerical Programming. M &
A-12, IBM Math. & Appl., New York, May 1961.

48 Communications of the ACM

PRACNIQUES—Cont. from page 40
LONGER STRINGS FROM SORTING*

Presented here is a desceription of a SORT/MIERGE technigy,
which can be incorporated into existing sorting methods to syp.
stantially inerease the lengths of the sort outpul sirings. Thisj
accomplished by relaxing the sort string order criteria to the e
tent that string order is recoverable by the first merge pass. Th
standard sorting programs generate sequenced file records j
tape record blocks. The records within a tape block are sequenced
and the last record of one block precedes the first record of the nex
bloek according to sequence. This new technique still vequires thy
the tape blocks contain sequenced file records, but relaxes th
second criteria. This revised requirement is that for a sct of tap
blocks with last record sort keys, the next tape block must contay
records with sort keys at least as large as the lowest of the tabled
last record sort keys. In addition, the last record sort key of thi
new block will replace the sort key which was previously lowest,
The number of entries in this sct of last sort keys is the number ¢
tape records which must be merged from this tape on the firg
merge pass with the multiple records {rom the other sort pass out.
put tapes. The number of buffers required for reading this taps
exceeds the size of the set by one bufler. If the set consists of ong
entry, then the sort pass will generate the standard type output,

To use the above technique, it is necessary to have special sor
pass routines. Separate techniques are proposed below for fixed
and variable-length file records. They appear to have the mos
promisc. The fixed-length method will be superior to the variable.
length method when most records approach the longest record in
length.

For fixed-length records, two read buffers and a scatter write
procedure should be used. A binary selection technique (se
tournament or replacement selection of the literature) should be
used to select file records for output. Qutput is considered a paired
procedurc. As onc tapc record is being written, the file records
from the other tape record are being replaced in a burst from the
input buffers. After the replacement the next tape record is se-
lected. This will causc the binary selection tree to pulsate. The
file records on each tape bloek will be in sequence. During the re
placement each new record is checked to determine if it is in the
current string. When core is filled with the next string, that string
is started.

The above method is belicved to be superior to all others sine
it uses the fastest sclection technique, requires only one data
move, and uses g minimum of buffers. Conservative estimates ar
that overlapping tape blocks will be equivalent to having on
extra magnetic tape drive on the first merge pass.

For variable-length records, it is proposed that a read to ful
core, and then write all of core, be used for great length varis
tions. For this procedure, the sets of tape block last record keys
will be maintained for all output tapes. After the first few core
loads, output will be to all output tapes on each core load. Selec
tion of output tape is according to the Jowest sort key permitted
for a tape. The procedure begins with the tape with the highest
tabled sort key. When there are records remaining after all tapes
are used for output, a new string is begun on the tape with the
largest tabled sort keys.

Excluding the first and last records on each tape the strings wil
be approximately 2.5 core lengths long if the strings are evenly
distributed on two or more tapes. Additional gains will be made
for files where the record length variances cannot be efficiently
handled by other techniques.

R. J. Dinsmors

The Bunker-Ramo Corp.

Eastern Technical Cenler

Silver Spring, M aryland
RECEIVED SEPTEMBER, 1964

* These techniques were developed by the author during his employ ment &
Control Data Corporation.

