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Decomposition Programming:
An Analysis of Matrix

Substructure

Eart J. BELL
Unaversity of Washington,* Seattle, Washington

A petroleum blending problem was analyzed in order fo
compare the primal and primal-dual decomposition algo-
rithms. In the course of the analysis, a substructure was dis-
covered which has relevance to the relative performance of
the two algorithms and to their absolute performance as
compared with a standard primal-Simplex solution without
decomposition.

In the literature on mathematical programming, exam-
ples abound of special algorithms designed to take advan-
tage of particular matrix structures. In this paper, by
macro structure we mean a pattern exhibited by a matrix
when arranged into submatrices, while micro structure is
reserved for the nature of the submatrices themselves,
Thus, an identity matrix is a case of micro structure be-
cause of the diagonal terms and also because there are only
zeros and ones. Similarly, a null vector is an illustration of
micro structure. The algorithms which employ the De-
composition Principle illustrate the use of macro structure
[1, 2], while the transportation algorithms illustrate the use
of micro structure.

The point of this paper is to show that the efficiency of
decomposition algorithms can be improved by considering
the miero structure in more detail. To some extent this
already exists if one allows that the subprograms may be
of the network or transportation type, or for that matter
even decomposition programs themselves.
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Our vehicle for this exposition is a linear programming
formulation of a petroleum blending problem' given below
as problem (1). Three types of blends are considered whose
technical properties are reflected by the lower six con-
straints, while crude oil availabilities are in the upper four
rOWS.

Prosrem (1). Maximize

360(z1 + @2 + 23+ 24) + 889 (xs + we + 27 + ws) -+ 1494 (wo - 210 - 2u -F 212)
subject to

k31 + x5 + s %3800
@2 + s + @0 =2652

£ + -+ an =4081

EN -+ s + 72 1300

—2a1 4 23 — 3ws -+ 13.524 =0
141 + 322 — 623 -+ 1524 Z

—2xs + v6 — a7 -+ 13.5m8
16.5%5 -+ 208 — dar + 1728 =0
—29 + w10 + 3zu + 1352250
7.529 — Tar — 13zn + 8x1220

zy, B1o, X1, vz =0,

%1, ¥z, X3, T4, T5, X6, T1, 43,

Problem (1) is an example of the familiar decomposition,
block-diagonal

ProBLEM (2). Maximize

1Ty 'Jr Col2 '+‘ R CNIN
Ay 4 Aspe + o0+ Ay S be
By, = by
Boxs < by
" Byaxy = by
Ty, %2, , TN = 0.

where the 4;-matrices have mg rows and n; columns, the Bj-
matrices have m; rows and n; columns. The vectors ¢; and z; have
n; elements and the b; vectors have m; elements. Thus, problem
(1) has mo = 4, my = My = mg = 2, ny = Nz = nz = 4, and here
N = 3.

By using the Decomposition Principle, instead of solving
directly as a standard linear program, we can reduce any
problem of the type (2) to an equivalent problem (3)
which has (me -+ N). rows, new variables, and columns of
coefficients which are linear tranformations of non-negative
basic or homogeneous solutions of the subsystems Bz; <
b;. This is accomplished by a change of variable z; =
DNy (j =1, -+, N) due to the fact that any point
in a closed, polyhedral, convex set can be written as a con-
vex combination of its extreme points {basic solution) plus
non-negative multiples of a finite number of extreme rays
(homogeneous solutions ).’

1 Reference [3, pp. 62-82}; see also [4, pp. 551-553], and [6].
¢ Reference [5, pp. 448-454].
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ProereM (3). Maximize

R 8

; AN+ 2_'31 N+
Z 1{17-)\{ -+ Z /I;Ms + e+ Z r"_NtXNL = by
T s ¢

Z N =1
Z BN = 1

11

. .
‘0} if z# is a

where ¢f = e, AF = Apgi, of

\
[basic
{h;mogeneousf solution of Bjx; £ by, z; 2 0. The summations are

taken over all extreme points and extreme rays of the several poly-

hedra. The N* are the system variables and are required to be
non-negative; the other symbols are coefficients, though they are
generated, not input.

Decomposition algorithms generate coefficient columns
for problem (3) as needed by solving subprograms whose
objective functions are linear (in the case of the primal
algorithm) or quotients of linear functions (in the case of
the primal-dual algorithm). Clearly, the efficiency of the
algorithms depends largely upon the efficiency in generat-
the subprogram solutions. We have further comment upon
this later in the paper when we contrast the performance
of the two algorithms on this problem.

In terms of the system in problem (2) we notice several
features which distinguish our blending problem: (a) the
b; vectors are null vectors, with the exception of by, (b) all
of the A ; matrices are identity matrices, and (c) the ¢; vec-
tors are sum vectors multiplied by constants.

The decomposition algorithms exploit the macro strue-
ture; the question now is: can the algorithms be improved
by taking explicit account of the micro structure repre-
sented by the three features?

(a) When each of the b; vectors (j = 1, ,N)Yisa
null vector, the only basic solution of Ba; = b; is
the trivial solution z; = 0. This means that all of the N
rows 2 poN =1 (=1, , N) in (3) may be
dropped, thus further reducing the number of rows and,
hence, the basis size in problem (3).> When N is quite
large, as if we were considering a large number of blends,
this reduetion could be helpful. It will still be necessary to
solve the subprograms, however. This reduction will work
for either the primal or primal-dual decomposition algo-
rithms.

(b) When the 4; matnces are identity matrices the
transformations A ,x, = A/ are obviously unnecessary
and the coefficient columns can be added to the master
program just as they are obtained from the subprograms.

s In such cases all 8% = 0 except that 8% = 1 for the trivial basie
solution which implies that its associated N\ = 1. Hence the
constraint may be dropped.
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More importantly, in order to extract the optimal solution
in terms of the original z; vectors, it is generally necessary
to maintain the solution z,* from the subprogram that
generated the coefficient column that has just been added
to the master program. The reason for this is contained in
the relationship of the z; vectors to the ;* and \, z; =
>\ where the only A, and 2 of interest are those
in the terminal basie solution of problem (3). Clearly the
;" are available if they are stored after being generated, as
in the revised Simplex method, before they are transformed
by pivoting. This feature also holds for both the primal and
primal-dual decompsition algorithms,

(¢) Ordinarily, by itself, thisfeature cannot be exploited,
but in conjunction with (a) and (b) it can lead to a sub-
stantial improvement in the primal-dual algorithm. As in
the general primal-dual algorithm, the decomposition
version needs a feasible solution for problem (4), the dual
of problem (3).

ProBrLEM (4). Minimize

n
abo + 2
=1

oAzt 4 B; > cxs® j=1,...,N.
o2z 0.
ProerLEM (5). Maximize
N
pT
=
N
Zlijjébo, z; 20 j=1,---,N.
=

The recommended approach for general decomposition
problems is to obtain optimal-dual variables associated
with an optimal solution of problem (5) and from them
obtain an (my + N) vector satisfying the dual constraints
in problem (4).°

By virtue of (a), the sum rows of (3) are eliminated.
Thus, we need only an me-vector ¢ satisfying:

O'ijjk = c,-k:v,-k ' (6)
and when the A ; are identity matrices® this reduces to
ijk = Cj.’l)jk. (7)

Clearly, to satisfy (7), it 1s sufficient to find a vector
o= ciforally =1, , N.? Thus, when (¢) prevails, ¢
may be determined at the time of input by simply deter-
mining which ¢; vector has the largest constant and setting
all the elements of ¢ at that value initially. Thus, for our
blending problem

gy = 09 = 03 = 04 — 1494.
This feature has two redeeming characteristics beyond

avoiding a lot of computation:
(d) It establishes an upper bound on the maximum of

4 Qee [1] for a detailed outline of this procedure.
5 When the A; are identity matrices, it must be the case that
Mo = Nj for all j.
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S Y ¢y at the value of o-by = 1.494-11,833 = 17,678
(the optimal value is at 15,425).

(e) It furnishes an immediate indication concerning
which subprogram to solve in order to obtain candidates
for the initial restricted master program (in the blending
problem start with the third subprogram).

Point (e) relates to the relative efficiency of the primal-
dual and primal algorithms, at least as far as their per-
formance on this problem is concerned. The primal-dual
algorithm for general linear programs, and also for special
network structures such as the capacitated transportation
problem, are known to have a tighter selection criterion
than the primal algorithms. This is because the primal-
dual algorithm must move the solution towards primal
feasibility while simultaneously causing the dual feasible
solutions to move towards optimality and maintaining
complementary slackness between primal and dual. This
parallelism holds true in the decomposition algorithms as
well. To illustrate the lower stringency of the primal de-
composition algorithm, note that any candidate vector © F
from any of the subprograms which satisfies (s4; — ¢;)
.z < 0 (where o is the current vector of multipliers) can
be introduced into the master program and cause an in-
crease (under conditions of nondegeneracy) in the function
to be maximized. In the blending problem when starting
from a full slack basis ¢ = (0, 0, 0, 0) and because all of
the ¢; vectors have no negative elements’ any z* > 0
satisfying B; z; = 0 also satisfies (¢4; — ¢z < 0. Be-
cause of the homogeneous nature of the solutions
(¢d; — ¢;)x # can be made even more negative by multi-
plying by a positive scalar. Therefore, there is no way of
distinguishing in this case, as in the usual primal decompo-
sition algorithm, which candidate is “best’”” in the sense of
the usual Simplex criterion of minimal (¢4; — ¢;)z; .

In the blending problem this means that each of the
three subprograms could furnish a possible candidate for
the first master pivot operation. In anticipation of this
“indeterminate” situation we might suspect that candi-
dates drawn from the subprograms with the higher c;
values—that is, subprograms 2 and 3 with values .889 and
1.494—would tend to supply an optimal solution. Post-
optimal analysis of this problem in fact confirms this suspi-
cion. It turns out that 3, ¥», 23, 2+ can never appear in
any optimal solution. This means that any candidate from
subprogram 1 which is introduced into the master program
must later be rejected.

Thus, there are three major solution paths, depending
upon which subprogram furnishes the first candidate. The
number of candidates which had to be generated in each
case was 11, 7, and 4, respectively. We remark again that
the primal decomposition algorithm, by itself, has no
means of determining which of these paths is “best.” Only

s Notationally z; > 0, instead of z; 2 0, excludes z; = 0.
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after the fact can we confirm our earlier suspicion. It is
interesting to compare these numbers with the four cq
dates generated by the primal-dual algorithm, startin.
with o = 1.484 (1, 1, 1, 1), or alternatively the total ..
five candidates with the initial ¢ = (0, 0, 0, 0).

Hence the primal-dual algorithm was at least as efficiens
as the primal, two-phase algorithm in spite of the fact thas
no Phase I was required because a full slack basis wus
initially available, This illustrates the point that the np.
parent disadvantage of using a full artificial basis may b
deceptive and that methods employing artificial variables
such as primal-dual methods, may be very efficient when
few of the available slacks will appear in optimal solutions,

One final point of computational interest: even for thix
small problem the total computing time of each decompe-
sition algorithm compared favorably with the time to
solve as a standard lnear program. This was the case in
spite of the fact that both decomposition algorithms were
“simulated,” not automatically programmed. The Dart-
mouth College Computation Center is to be commended
for its excellent time sharing system which provided the
flexibility to carry out the many offline calculations with-
out “turnaround” problems, and thus avoid the necessity
of large and complex automated computer codes.

It is interesting to note that in making several simplify-
ing assumptions in order to reduce the basis size of this
problem, Garvin could make the statement that “ihe
matrix of our problem has structure . . . characteristic !
blending problems. . . . It is natural to inquire whether it
is possible to take advantage of the matrix structure. . .
Ironically, within six months the Decomposition Principle
had been published (in 1960).

We hope, indeed, that we have shown that this probiem
has “structure,” both macro and mzcro. Attention to both
kinds of structure can pay dividends, particularly when
dealing with calculations of routine frequency.
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