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A petroleum blending problem was analyzed in order to 
compare the primal and primal-dual decomposition algo- 
rithms. In the course of the analysis, a substructure was dis- 
covered which has relevance to the relative performance of 
the two algorithms and to their absolute performance as 
compared with a standard primal-Simplex solution without 
decomposition. 

In the literature on mathematical programming, exam- 
ples abound of special algorithms designed to take advan- 
tage of particular matrix structures. In this paper, by 
macro structure we mean a pattern exhibited by a matrix 
when arranged into submatrices, while micro structure is 
reserved for the nature of the submatrices themselves. 
Thus, an identity matrix is a case of micro structure be- 
cause of the diagonal terms and also because there are only 
zeros and ones. Similarly, a null vector is an illustration of 
micro structure. The algorithms which employ the De- 
composition Principle illustrate the use of macro structure 
[1, 2], while the transportation algorithms illustrate the use 
of micro structure. 

The point of this paper is to show that  the efficiency of 
decomposition algorithms can be improved by considering 
the micro structure in more detail. To some extent this 
already exists if one allows that  the subprograms may be 
of the network or transportation type, or for tha t  mat ter  
even decomposition programs themselves. 

* D e p a r t m e n t  of F inance  and  Sta t i s t ics ,  School  of Bus iness  
Admin is t ra t ion .  

Ore' vehicle for this exposition :is a linear programming 
formulation of a petroleum blending problem 1 given below 
as problem (1). Three types of blends are considered whose 
technical properties are reflected by the lower six con- 
straints, while crude oil availabilities are in the upper four 
rOWS. 

PROBLEM (1). Maximize 
.360(xt @ x~ @ x~ @ x~)@ .889(x~ @ x~ -+- x7 @ ~ s ) @  1.494(x~ @ xta -~ xtt -~- a:t~) 

subiect to 
x~ + xs + x~ 753800 

x: -t- xs + x~ ~2652 
~, + x~ + xn £4081  

x~ -4.- xs  + x ~  :~1300 

--2x~ + x~ -- 3x~-.~ 13.5x~ .<0 
14x~ -~ 3xe -- 6m "~ 15x~ ~ 0  

--2x~ @ x~ --  3x~ -~ 13.5xs ~ 0  
16.5x~ @ 2x~ -- 4x~ @ 17xs ~ 0  

--2x~ ~ x l o  ~ 3xn  @ I3 .5x~e~0 

7.5x~ -- 7x~0 - 13xla ~ 8x~0  
fXl ~ ~g2, X3 ~ ~ ~ Z~ ,  x6 ~ ~ 7 ,  Zg,  X9, ~1o ~ Xtl ~ Z12 ~ 0 .  

Problem ( 1 ) is an example of the familiar decomposition, 
block-diagonal 

P R O B L E M  ( 2 ) .  Maximize 

c~xl ~ c2x2 ~ . . .  -k  CNXN 

A l x l  + A~x2 -t- " "  + A:vxzv =< bo 

Bixl ~ bl 
B~x~ ~ b2 

B~xN ~ b~ 

Xl , X~ , "'" , xlv ~ O. 

where  the  At -ma t r i ce s  have  m0 rows  and ny co lumns ,  the B~- 
ma t r i ces  have  m5 rows  and  n~ co lumns .  The  vec to r s  c] and  x] h a v e  
nj  e l emen t s  and the  bj ve c to r s  have  mj e lements .  T h u s ,  p r o b l e m  
(1) h a s m 0  = 4, mi = ms = m~ = 2, hi = n2 = n~ = 4, a a d h e r e  

N = 3 .  

By using the Decomposition Principle, instead of solving 
directly as a standard linear program, we can reduce a n y  
problem of the type (2) to an equivalent problem (3) 
which has (m0 + N ) r o w s ,  new variables, and columns of  
coefficients which are linear tranformations of nomnegative 
basic or homogeneous solutions of the subsystems Bjxj 
b~. This is accomplished by a change of variable xj 
~kx~%j k (j = 1, •. • , N) due to the fact that  any point 
in a closed, polyhedral, convex set can be written as a con- 
vex combination of its extreme points (basic solution) plus 
non-negative multiples of a finite number of extreme rays  
(homogeneous solutions). ~ 

1 Reference [3, pp .  62-82]; see also [4, pp. 551-553], and  [6]. 

2 Reference [5, pp .  448-454]. 
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Pt~()~LES~ (3). Maximize 

I? S T 

+ )2 e;x  + . . .  + 2 
r =I ;~ =i t ~ I 

r 

IJ212 
s 

E ~NtXN~ = 1 

is a 
, . 

) bamc \homogeneou@ solution of Bjxj ~ b~. xj ->_ O. The summations are 

taken over all exl~reme points and extreme rays of the several poly- 
hedra. The X~ k are the system variables and are required to be 
non-negative; the other symbols are eoettieients, though they are 
generated, not input;. 

Decomposition algorithms generate coefficient eoiumns 
for problem (3) as needed by solving subprograms whose 
objective functions are linear (in the ease of the primal 
algorithm) or quotients of linear functions (in the case of 
the primal-dual algorithm). Clearly, the efffieieney of the 
algorithms depends largely upon the efficiency in general- 
the subprogram solutions. We have further comment upon 
this later in the paper when we contrast the performanee 
of the two algorithms on this problem. 

Irt terms of the system in problem (2) we notice several 
features which distinguish our blending problem: (a) the 
b~ vectors are null vectors, with the exception of bo, (b) all 
of the As matrices are identity matrices, and (e) the cj vec- 
tors are sum vectors multiplied by  constants. 

The decomposition algorithms exploit the macro struc- 
ture;  the question now is: nan the algorithms be improved 
by  taking explicit account of the micro strueture repre- 
sented by the three features? 

(a) When each of the bs vectors (j = 1, . . .  , N)  is a 
null vector, the only basic solution of Byx  i N by is 
the triviM solution xs = 0. This means that  all of the N 
rows ~]~s~Xi ~ = 1 ( j  = 1 , . - . ,  N)  in (3) may be 
dropped, thus further reducing the number of rows and, 
hence, the basis size in problem (3). ~ When N is quite 
large, as if we were considering a large number of blends, 
this reduction could be helpful. I t  will still be necessary to 
solve the subprograms, however. This reduction will work 
for either the primal or primal-dual decomposition algo- 

rithms. 
(b) When the As matrices are identity matrices the 

transformations A ixs ~ = A:s ~ are obviously unnecessary 
and the coefficient columns can be added to the master 
program just as they are obtained from the subprograms. 

In such cases all ~ = 0 except that ~ = 1 for the trivial basin 
solution which implies that its associated X~ ~ = 1. Hence the 
constraint may be dropped. 
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More importantly,  in order to extract the optimal solution 
in terms of the original x¢ vectors, it is generally necessary 
to maintain the solution x} ~ from the subprogram that  
generated the coefficient colm~m that has just been added 
to the master program. The reason for this is contained in 
the relationship of the x s vectors to the xs k and X~ k, xj = 

xs~Xs k where the only Xj k and x 9 of interest m'e those 
in the terminal basic solution of problem (3). Clearly the 
x j  k are available if they are stored after being generated, as 
in the revised Simplex method, before they are transformed 
by pivoting. This feature also holds for both the primal and 
primal-dual deeompsition algorithms. 

(e) Ordinarily, by itself, this feature cannot be exploited, 
but  in conjunction with (a) and (b) it nan lead to a sub- 
stantial i inprovement in the primal-dual algorithm. As in 
the general primal-dual algorithm, the decomposition 
version needs a feasible solution for problem (4),  the dual 
of problem (3). 

PROBLEM (4). Minimize 

S=i 

cfAjxj ~ + ~ k cjxi k J =  1, . . . , N .  

q > = O .  

P R O B L E M  ( 5 ) .  M a x i m i z e  

N 

E CjXy j=l 

N 
Ajx j  ~ bo, x~ >= 0 j = 1 , . . .  , N .  

The recommended approach for general decomposition 
problems is to obtain optimal-dual variables associated 
with an optimal solution of problem (5) and from them 
obtain an (m0 + N)  vector satisfying the dual constraints 
in problem (4). 4 

By virtue of (a) ,  the sum rows of (3) are eliminated. 
Thus, we need only an m0-vector cr satisfying: 

~ A jx j k ~ c s~x i k (6) 

and when the A 5 are identity matrices 5 this reduces to 

,rx s ~ __> c j x  / .  (7) 

Clearly, to satisfy (7), it is sufficient to find a vector 
~ cs for a l l j  = 1, . . .  , N. ~ Thus, when (e) prevails, (r 

may  be determined at the time of input by simply deter- 
mining which cs vector has the largest constant and setting 
all the elements of a at that  value initially. Thus, for our 
blending problem 

~l  = ~ = ~ = ~ = 1 . 4 9 4 .  

This feature has two redeeming characteristics beyond 
avoiding a lot of computation: 

(d) I t  establishes an upper bound on the maximum of 

4 See [1] for a detailed outline of this procedure. 
5 When the As are identity matrices, it must be the case that 
m0 = n~ for all j. 
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~ i ~  c~x~ at the value of ~r.b0 = [.494.11,833 = 17,078 
(the optimal value is at  15,425). 

(e) I t  furnishes an immediate indication coneerni~*g 
which subprogram to solve in order to obtain candidates 
for the initial restricted master program (in the blending 
problem start with the third subprogram). 

Point (e) relates to the relative effficieney of the primal- 
dual ~md primal algorithms, at least as far as their per- 
formance on this problem is concerned. The primal-dual 
algorithm for general linear programs, and also for special 
network structures such as the eapacitated transportation 
problem, are known to have a tighter selection criterion 
than the primal algorithms. This is because the primal- 
duM algorithm must move the solution towards primal 
feasibility while simultaneously causing the dual feasible 
solutions "to move towards optimality and maintaining 
complementary slackness between primal and dual. This 
parallelism holds true in the decomposition algorithms as 
well. To illustrate the lower stringermy of the primal de- 
composition algorithm, note tha t  any candidate vector x~ 
from any of the subprograms which satisfies (~A~- - c~) 
.x~ ~ < 0 (where ~ is the current vector of multipliers) can 
be introduced into the master program and cause an in- 
crease (under conditions of nondegeneraey) in the function 
to be maximized. In the blending problem when starting 
front a full slack basis ~r = (0, 0, 0, 0) and because all of 
the c~ vectors have no negative elements, ~ any xi ~ > 0 
satisfying Bi x¢ =< 0 also satisfies (o-A~ --  c~)x/° < 0. Be- 
cause of the homogeneous nature of the solutions 
(~A]  - -  c i ) x ~  can be made even more negative by multi- 
plying by a positive scalar. Therefore, there is no way of 
distinguishing in this case, as in the usual primal decompo- 
sition algorithm, which candidate is "best" in tire sense of 
the usual Simplex criterion of minimal (~rA~ --  c~)x~. 

In the blending problem this means that  each of the 
three subprograms could furnish a possible candidate for 
the first master pivot operation. In anticipation of this 
"indeterminate" situation we might suspect that candi- 
dates drawn from the subprograms with the higher ci 
values--that is, subprograms 2 and 3 with values .889 and 
1.494--would tend to supply an optimal solution. Post- 
optimal analysis of this problem in fact confirms this suspi- 
cion. I t  turns out that  x~, x~, x~, x~ can never appear in 
any optimal solution. This means that  any candidate from 
subprogram 1 which is introduced into the master program 
must later be rejected. 

Thus, there are three major solution paths, depending 
upon which subprogram furnishes the first candidate. The 
number of candidates which had to be generated in each 
case was 11, 7, and 4, respectively. We remark again that  
the primal decomposition algorithm, by itself, has no 
means of determining which of these paths is "best." Only 

Notationally xi >_ 0, instead of x] ~ 0, excludes xi = O. 

after the fact c,s,~ ~e  confim} our earlier suspiciol~. ]i~ i:s ~, 
interesting to compare these nurnl)ers -with the four c~ ~i 
dates generated by  the primal-dual algorithm, sb~r~i~ :: 
wRh ¢ = ].494 (1, 1, 1, 1), or altern.atively the total ,,: 
five caadidat.es wRh the initial ~ = (0, 0, 0, 0)° 

Hence the primal-dual algorithm was at least as ef[ici(~: 
as the prirn~l, two-phase algorithm in spite <)f tlhe f:~('t [t~;: : 
no Phase I was required because a full slack basis v~a. 
initially available. This illustrates the point that the a ! .  
parent disadvantage of using a full artificial basis ma N t~(. 
deceptive and that  methods employing artificial variaI)b.- 
such as primal-dual methods, may be very efficient whe~ 
few of the available slacks will appear in optimal solutio~. 

One final point of computational interest: even for tt:~[.: 
small problem the total computing time of each deeomp~. 
sition algorithrn compared favorably with the time ~ 
solve as a standard linear program. This was the case i~ 
spite of the fact tha t  both decomposition algorithms were 
"simulated," not automaticMly programmed. The l)a.rt.. 
mouth College Computation Center is to be commeude~[ 
for its excellent time sharing system which provided t h ,  
flexibility to carry out the many offline calculations wiih- 
out " t u r n a r o u n d "  problems, and thus avoid the necessity 
of large and complex automated computer codes. 

I t  is interesting to note that  in making several simplify° 
ing assumptions in order to reduce the basis size of ihi.  
problem, Garvin could make the statement that, "the 

matrix of our problem has structure . . . characteristic ~f 
blending problems . . . .  I t  is natural to inquire whether i~ 
is possible to take advantage of the matrix structure . . . .  ~' 
Ironically, within six months the Decomposition Princil)h 
had been published (in 1960). 

We hope, indeed, tha t  we have sho~t  that this prol)te~ 
has "strueture," both macro and micro. Attention to t)()~h 
kinds of structure can pay dividends, particularly whe~ 
dealing with calculations of routine frequency. 

RECEIVED JULY, 1966; :ar:v~snD JvNr:, 1967 
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