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A model of multiprogramming for a particular computer 
system using a page on demand strategy is developed. Analy- 
sis of this model is used to predict performance (measured by 
the average usage of the CPU) when user programs are 
typical of those arising from an interactive time sharing 
environment. The effect of several hardware modifications is 
also analyzed. A parameter, readily calculated from the 
hardware characteristics and the program statistics, is proposed 
for gauging the effect of multiprogramming. 

1. I n t r o d u c t i o n  

A point of contention currently exists on the best 
strategy for handling the loading of programs and the 
sharing of the high speed memory in large time sharing 
computer systems. The problem is most critical and most 
difficult to resolve when the system is processing a heavy 
load of programs which execute for relatively short inter- 
vals. As this situation can be expected to arise frequently 
in systems interactively serving a large number of users, 
an analysis of the performance of a pa~'ticular computer 
subsystem has been made. 

The techniques of multiprogramming and paging have 
been proposed as means for efficiently adapting a com- 
puter system to an interactive type of load. The implemen- 
tation of these techniques requires a considerable hardware 
investment for the handling of dynamic relocation [1], 
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and the best control policy remains to be determined. One 
mode of paging [2] has been termed tile single page loading 
strategy, the aim being to obtain a conservation of the 
high speed memory by loading pages from secondary 
memories only on demand. Another mode of paging is to 
load only entire segments of programs. Both of these 
loading strategies are generally proposed in conjunc- 
tion with multiprogramming, so that execution may be 
switched to another user program when one program re- 
quires a page (or segment) to be transferred from a sec- 
ondary memory. The question wtfich has been raised is 
whether the characteristics of programs and the necessary 
system overhead will permit sufficient overlapping of 
fetching and execution for an improvement in the system 
performance to be obtained by these techniques. 

In a recent paper by Fine, Jackson, and McIsaac [3], 
some relevant statistics on the dynamic behavior of a par- 
ticular set of programs were reported. These programs were 
typical of those run in interactive mode on the Q-32 time 
sharing system at the System Development Corporation. 
On the basis of these statistics, the authors concluded that  
there was considerable doubt about the worth of the page 
on demand strategy. Certainly any suggestion that i t  
would be useful to multiprogram a few pages from many 
programs in the high speed memory was negated by these 
statistics. 

The work reported here partly consists of a description 
and analysis of a stochastic model of the important opera- 
tions in multiprogramming with a page on demand 
strategy. The model is used to investigate the multipro- 
gramming of a particular system under full load conditions. 
One aspect of the results concerns the application of the 
statistics of Fine et al., to the model in an effort to obtain 
further substantiation of their conclusions. The perform- 
ante of the system when loaded by programs having 
markedly different statistics is also analyzed. In each case 
the effect of several hardware modifications is demon- 
strated. 

2. T h e  M o d e l  

While there are many additional hardware components 
in a large time sharing computer system, a typical hard- 
ware configuration for the subsystem relevant to this s tudy 
is shown in Figure 1. A schematic description of the opera- 
tion of this computer subsystem is given in Figure 2. There 
are two service functions represented in the modeh (1) 
execution of programs; (2) transfer of pages between the 
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drum memory and the high speed memory. The queueing 
and service disciplines associated with these functions, and 
the simplifying assumptions and approximations used, are 
now described. 

It is assumed that programs are loaded into the high 
speed memory under a page on demand strategy, with a 
standard initial ttu'ee page allocation. Two classes of user 
programs ,(class 1 and class 2), which differ in the statistics 
of theh" executioIl intervals and page demands, ea'e identi- 
fied. The model allows for a maximum of three programs 
to be muttiprogrammed in the high speed memory. 

It is well to explain the significance of an execution 
interval. This pertains to the period of execution allocated 
to a particular program in effecting the time sharing of the 
CPU. Because of random interactions with the user, only a 
fraetion of all program execution intervals are terminated 
by a time interrupt (see Figure 3). As a result of the page 
on demand strategy, each execution interval is divided 
into a number of phases. An execution phase occurs be- 
tween successive calls for new pages from the drum, and 
between the last page call and the termination of the 
execution interval. 

Eligible programs queue for execution by the CPU. For 
each class of programs there are two parameters of the 
model, ~ and X(x), which describe the length of an execu- 
Lion phase. A subscript will be used to identify the param- 
eters belonging to each class of programs. The parameter 
defines a negative exponential distribution function de- 
scribing the execution interval for a program. I t  is assumed 
that each execution interval is an independent random 
variable. Hence, 

probability that an execution interval _<t = 1 - e -"t (1) 

where 1/u is the average execution interval. The function 
?~(z) defines a nonhomogeneous Poisson process, which 
describes the occurrence of demands for new pages by a 
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program during its execution interval. For a program 
which has already activated y pages, the average interval 
between successive page requests is 1/X(y). Hence 

probability that the interval between successive 

page requests _<t = 1 - e -×(*)*. (2) 

Information on the drum memory is organized into 
recording fields, consisting of a number of tracks, which 
can be read or written in parallel by fixed heads. In general 
each field is composed of m sectors, each sector having a 
storage capacity of one page of information. Upon the 
generation of a page transfer request, the request is as- 
signed to a subqueue associated with the sector containing 
the required page. Unit time for the model is the time taken 
for the transfer of one page from the drum ( l /m  revolution 
time), and time is synchronized to the passage of page 
headers under tim read heads. One can envisage a rotation 
of the drum as effecting periodic service, in the order 1, 
2, • • • , m, to each subqueue. Each service interval is of one 
time refit and, if the corresponding subqueue is not empty, 
a page transfer will occur; otherwise there will be no 
transfer during that time unit. 

For the purpose of modeling the operation, two im- 
portant assumptions have been made. Firstly, each page 
requested fol" transfer from the drum is assumed to be 
located with equal probability ( l /m) in any drum sector. 
Secondly, it is assumed that  the output of pages to the 
drum from the high speed memory produces no delay in 
the input of pages to the high speed memory from the 
drum. The latter assumption is valid in cases in which a 
vacant page position is maintained in the high speed 
memory and the usage factor for the drum is slightly below 
100%, so that there is usually a vacant page position in 
each drum sector. Hence a useful model need only treat the 
input of pages from the drum to the high speed memory. 

In the Appendix, the following approximation to the 
page transfer process, in which the average transfer 
capacity of the drum I /O channel combination is exactly 
reproduced, is derived. Every page transfer request, pres- 
ent at the beginning of a time unit, has some probability 
of being serviced during that time unit. In pm'ticular the 
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kth request to occur (out of all those present) has prob- 
ability 

2 ( m -  1) 
(m + 2/~ - t ) ( m  + 2~ - 3) 

of transfer during the time unit. 
I t  was the intention in developing this model to identify 

class 2 programs with those jobs having longer execution 
intervals and greater high speed storage demands. The 
following priorities were also implemented in the model. 
In choosing the next program to use the CPU, an eligible 
(able to execute) class 2 program is given priority over any 
eligible class 1 program. Likewise the program with the 
larger high speed memory commitment is given priority 
over another program of the same class, when both arc 
eligible to execute. The same priority structure was also 
implemented in the operation of the drum I/O channel. 

The admission of preemption in the drum I/O sub- 
queues does not change the rate of completion of page 
transfer requests front that resulting from a first-in first- 
out (FIFO) queue discipline. In the real system, however, 
the expected additional waiting time of preempted re- 
quests will be dependent upon their elapsed waiting time. 
Thus there is a slight discrepancy in the representation 
described above if we equate the variable/c td the priority 
of a request, when this differs from the request's order of 
arrival. This point may be clarified by referring to the 
derivation in the Appendix. No compensation for this 
feature was made in the model, but calculations of the 
expected completion times of requests, under all possible 
preemptions which can occur in the particular system, 
show the model to give close approximations. As the most 
important property to be represented for this analysis is 
the drum charmel transfer capacity, tile approximation is 

justifiable. 
The main limitations to the scope of the model are: (1) 

there is no representation of tile CPU time or the I/O 
channel usage devoted to system overhead, (2) thel~ is no 
representation of the competition which might arise be- 
tween the CPU and the I/O channel for access to the high 
speed memory, (3) the number of programs and the num- 
ber of pages that can be handled are limited by the analysis 
method, (4) a condition of system overload is assumed; 
that  is, class 1 and class 2 programs are assumed to be 
always awaiting processing when the high speed storage is 

available. 

3. R e l a t i n g  t h e  M o d e l  t o  a n  A c t u a l  S y s t e m  

The mathematical descriptions which have been in- 
corporated in the model ensure that it is tractable for 
numerical analysis and optimization procedures. The re- 
sults quoted in this paper were obtained using the analysis 
program RQA-1, developed by Wallace and Rosenberg 
[4]. Some representative values for the parameters of the 
model are now derived by refen'ing to the statistics taken 
by Fine et al. [3]. These statistics are the result of detailed 
measurements taken on 182 sample execution intervals of 
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five programs/ Their adaptation to the mod~i serves as a 
test of the fitness of the probability distributions assum~ d 
for the program characteristics. 

In Figure 3 the cumulative frequency function{ of ti~e 
number of instructions executed by a program during o~c 
schedulud execution interval is shown. 'fhe discontinuity 
at 80,000 instructions is due to the system imposed quaxt 
tum of 400msee of execution time, which was equivalent 
to the average execution time for 80,000 instructions. Also 
plotted in Figure 3 is a negative exponential probability 
distribution having the same mean (20,400 instructions) 
as the statistics. If, is obvious tlmt the negative exponential 
is a very poor fit to the cumulative frequency function of 
these statistics. Therefore in view of the characteristics (U" 
the model, it is useful to divide these statistics into two 
classes: 

Class 1: Samples in which a progTam executes 1000 
instructions or less 

Class 2: Samples in which a program executes more 
than 1000 instructions. 

There are 91 samples in each class. Figure 4 shows the 
cumulative frequency functions of the number of instruc~ 
lions executed per execution interval for each class, to, 
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i It should be remembered, however, that these statistics were 
not taken from a paged system. 
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tether with a negative expone~tia] probability distribution 
having the same mean. q'he mean for class 1 is 88 instruc- 
tions and for class 2 the mean is 40,700 instructions. 

It is proposed that by using the above classifications the 
negative exponential distribution is a tolerable approxima- 
tion tbr the pa'~ieuhu' statistics? In appraising tiffs ap- 
proximation ~he following featta-e must be considered in 
addition to the/it  of the curves. It is implied by the model 
Shag all program execution intervals are independent 
ra~idom variables described by the negative exponential 
distribution. :It is appea'ent fl'om additional statistics, not 
quoted here, that consecutive execution intervds for tile 
same program are not completely independent. On this 
point it can be argued that if the system is processing 
several different programs the combined sequence of exe- 
cution intervals should be almost independent, despite 
some eon'elation between execution intervds for a par- 
tieular program. 

A second statistic of the five programs is displayed in 
Figure 5. Here the average number of instructions exe- 
cuted between requests for a new page is plotted against 
the number of pages ah'eady activated during the execu- 
tion interval. From the available statistics little can be 
said on whether the process of new page requests approxi- 
mates a Poisson process or not. An important feature of 
the model, however, is that the parameter 1/X(x) can be 
adjusted so that the model conforms exactly to the func- 
tional behavior depicted in Figure 5. This should be an 

overriding factor in achieving correspondence between the 
model and the pl~ysical system. 

At this stage we must take into account one restriction 
which exists in any computer system--the capacity of the 
high speed memory. Here we need only consider the 
capacity available to user programs, which enforces an 
upper bound on the term number of active pages which 
can be held in the high speed memory. It  is highly prob- 
able that in a multiprogrammed enviromnent, individual 
progTams will be forced to swap pages between the drum 
and the high speed memory because the total number of 
active pages of all the programs in the high speed memory 
has exceeded this bound. (In the model the bound is 14 
pages and Figure 5 shows that swapping is likely to occur 
even when there is only one progrmn using this size of 
memory. We shall see, however, that the effect of larger 
high speed memories can be analyzed with the model.) In 
modeling a program's demand rate for page transfers after 
swapping first occurs it will be assumed that the rate re- 
mains constant at tile value in effect when the first swap 
oeeun'ed--unless more pages of the high speed memoDr 
become available and the program is Mlowed to expand 
into these. 

While it is not appropriate in this paper to present the 
details of the analysis methods, a brief comment on the 
limitations is necessary. The complexity of the model pro- 
posed is considerable from an analysis viewpoint; never- 
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theless, all the results to be presented were obtained by 
precise numerical solution of the equations of the matl Je- 
matical model. The size of the high speed memow avail- 
able for user programs in the model was limited to 14 
pages in order to restrict the computation required in the 
analysis. Larger high speed memories were represented by 
redefining the physical page size and then appropriately 
modifying the value of the abscissa used to determine 
the page demand rate from Figure 5, and also modifying 
the page transfer time. This representation implied that 
any restrictions arising from the location of particular in- 
struction sequences and data in different pages were ig- 
nored. Another limitation is that the attainable solutions 
describe the stationary behavior of the model; that is, the 
analysis method is restricted to measuring performance 
parameters such as the long run ~verage CPU usage by 
programs. The executive control policies which can be 
considered are therefore stationary, for example, those 
that maintain a constant mix of class 1 and class 2 pro- 
grants in the high speed memory. Because of the manner in 
which class 1 and class 2 programs have been identified 
with the particular statistics, stationary mixes of these 
classes would not occur in the real system, ttowever, file 
performance measures which we obtain by analyzing 
various multiprogramming mixes should be a good indica- 
tion of the performance obtained in practice. 

4. A Gauge for Mul t ip rogramming  

By reference to the system model proposed in Section 2 
and the type of program statistics quoted in Section 3 it is 
possible to identify the critical mechanism of multipro- 
gramming (under the particular operating conditions 
defined). Programs using the high speed memory act as a 
source of page txansfer requests. These requests queue for 
service from the drum I / 0  channel. Therefore in an 
analogous manner to a single queue-single server system, 
a utilization factor p (see [6, p. 17]) for the drum I /0  
channel can be defined: 

rate of occurrence of page transfer requests 
P = rate of page transfer completions 

With few exceptions, the minimum number of page 
transfer requests which can occur over each execution 
intmwal is equal to the mlmber of pages activated during 
the interval. This number will be augmented, however, if 
the high speed memory limitations necessitate swapping. 
Therefore the rate of occurrence of page transfer requests 
is a function of the following program and system vari- 
ables: 

(i) tim number of instructions executed per execution 
interwd, 

(if) the cycle time of the high speed memory, 
(iii) the page demand function (cf. Figure 5), 
(iv) the maximum number of pages of the high speed 

memory available to each program. 
The rate of page transfer completions is dependent on the 

Lardware characteristics: 
(i) the (h'um revolution time, 

(if) the number of pages t)er drum fie!d, ~. 
lit follovs {hat p is directly related to ~,he ratio of the speeci 
of the hig}~, speed memory to the speed of the dru.m, I:~. 
expressi>g p :vs a function of tim parameters of the too&> : 
this ratio is incorporated it: the time normalization imp]ie~ : 
in the defi~:fition of ~, X(x), and the page transfer pr'oee~,< ,. 
The derivation is given below. 

Using eqs. (1) and (2), and defining y to be the max:inm~v'~ 
number of pages of high speed memory which. ,~ilI be able,- 
cared to each program, the average number of page trans ..... 
fers per execution interval is given by: 

>-: X(z) x(1) 
N = 1 + X(1) + g  ~ 

" X(x) . ( 1  X(y) ~ - :  +  o,II + ×(y) + 

"-: x(z) x(~) 
" - '  + I I  . . . . . .  ........... . =:l+~=,~,=~X(x)+,  = - , x ( z ) + ~  , 

The rate of oeeun'enee of page transfer requests is th~.:;,o 
given by N~. In the Appendix it is demonstrated that th<o, 
rate of page transfer completions is dependent on ~h~<~, 
numt)er of requests present. It follows from eq. (5) ~:tm.~ 
for k requests this rate is 

2k 
m + 2k - 1 

and therefore 

p ~ : : N g ( m + 2 t : - -  1) 
2k 

For efficient multiprogramming p should not be gq'eati/ 
in excess of I, or else frequent queue:lug delays iu the I/C> 
channel will occur. A small utilization factor would r~o~, 
necessarily indicate poor performance in ten'ms of CP~,7 
usage, it merely indicates low I/O channel usage, which a 
worst is idle equipment. 

In Section 5, p is evaluated for several situations to indi .  
care its correlation with multiprogramming performance. 
Because the parameter £ varies during the opm'ation of z~ 
system, the convention of using its maxhnum value (thee: 
number of programs being multiprogrammed) in th*:~ 
evaluation of p is adopted. Also, some approximatior: wi~ 
be involved in specifying the value of the parameter y i:::~ 
each situation. 

In order to illustrate the sensitivity of p to the value c,F 
h, consider a typical case in which m = 4 and three p>:> .... 
grams are bring multiprogrammed. The rate of page tran:÷ - 
fer completions may vary between 2.5 for/c = 1 and 1.S~ 
for k = 3. Accounting for this dynamic vaa-iation would n~> ~:, 
be significant in the results to be quoted here, but so rn~e~ 
applications may call for a more accurate formula for ?-  
Appendix G of [5] indicates some approaches to thi:÷ 
problem. 
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5. Analys is  of  the  Model  Using the  SDC Sta t i s t i cs  

In order to complete the parameter specifications for 
the :model, [he operating speeds of the drum and the high 
speed memories m~lst be defined. The followii~g figures 
were selected as being representative of eurrei tg hardware 
performance. 

5~ean instruction executiolz time 2•5~sec 
Drum speed 3,000 rpm 
/:)age size 4 pages/rev. 

I t  follows that  the transfer time for one page (the time 
u~fit) is 5msee, al~d m = 4. If it is assumed that the average 
number of instructions executed during class 1 and class 2 
exeeutio~ intervals is 100 and 40,000, respectively, then 

1 100 X 2.5 M 10 -4 
- = 0.05 time units ~1 5 X 10-4 

1 40 X 10 '~ X 2.5 X 10-4 
- = 20 time units. 

~2 5 X 10 -~ 

Here the subscript denotes the class of programs which the 
parameter describes. Also, with reference to Figure 5, the 
average number of instructions executed between page 
calls, when a program has already aefivated eight pages, is 
2,160 instructions. Therefore 

TA13LE I. SWA'r~ONARY MULTIPI~OGI¢AMXtINO POLICIES 

Program mix Maxhmim page allocatlotl 
Poiicy 

Class 2 

1A 
113 
2A 
213 
2C 
2D 
3A 
3B 
3C 

/ 
Class 1 ] Class 2 

I ] ~,° 

2 l " '" 
1 1 

• "" 2 
3 - . .  
2 1 
2 1 

Class 1 

14 
. . .  

7, 7 
7 

, . .  

. o .  

5, 5, 6 
5, 5 
5, 5 

14 

II 
7, 7 
7, 11 

6 
8 

T A B L E  I I .  HARDWARE CONFIGIIItATIONS 

Highi Average execution 
speed memo~ • Drum time/instruction 

I 14 pages  3,000 rpm,  m = 4 2.5~see 
I I  14 pages  30,000 rpm,  m = 4 2.5~sec 

I I I  28 pages  3,000 rpm,  m = 4 2.Lgsec 

T A B L E  I I I .  AVEmtGE C P U  US&GE FOil STATION&RY 
MULTIPROGRAMMING 

I I i l  

1 1 2160 
. . . . . .  1.08 thne units. 

X~(8) X~(S) 2OOO 

Similarly all the values in the sequence X1(3), M(4), . . .  , 
X~(3), . - .  , can be evaluated. 

The control policies for which the model was analyzed 
are defined in Table I. The first two policies do not involve 
multiprogranmfing, the remainder do. All the policies im- 
pose upper bounds on the number of physical pages of the 
high speed memory which each program may use. I t  is 
implicit that  the class of each program is identifiable in 
advance. 

In Table I I  three d:ifferent system configurations are de- 
fined, and in Table I I I  the results of the model analysis for 
each configuration and for each control policy are given. In 
all eases the performance parameter is the average CPU 
usage for each class of programs. The model parameters 
derived at the beginning of this section correspond to the 
first ease listed in Table II.  Case I I  involves a change in 
the page transfer rate corresponding to ten times the origi- 
nal drum speed. While the same capacity drum running at 
30,000 rpm may not be feasible it is of interest to analyze 
this ease. Case I I I  corresponds to doubling the size of the 
high speed memory and this change is modeled by doubling 
the physical page size in both the high speed memory and 
the drum. The results given are for m = 4. This implies a 
larger drum in terms of the tmmber of bits per track. I t  
should be noted that  the maximumpage allocation lirnits 
given in Table I also refer to double size pages in this case. 

Since the same type of high speed memory has been 
assumed in each ease, the average CPU usage can be used 
for direct eompaa'ison of the rate at which execution inter- 
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Pol- 
icy 

1A 
113 

2A 
2B 
2C 
2D 

3A 
3B 
3C 

ClaSSl C~asa a 

• o05 ... 1210 
. . . .  314 / 1,88 

E 

.008!  "." j148 

.003 .261 ] 3 .44 

. . . .  158 ] 5.51 

. . . .  2'20 ] 3.50 
. . . . . . . . . . . . . . .  / 

.OO9 ... t124 

.005 ,070 11.7 

.004 .181 / 3 .79  

II 

.049 . - .  21.0 ,008 

.077 . . .  I ' t .8 i .011 

.011 .778 .3~4 .004 
• . • .7511 . 5 5 1  

. .  • .819 .350 

.osT l . - -  t2.4 1.012 

.049 1 .449 1.17 .008 

0% .37  i 

Class p 

• . .  159 
.467 1.08 

111 
• 4 3 3  1 . 5 1  

• 609 O. 89 
.007[ 0.94 

• . • 95.7 
.353 2.69 
,405 2.13 

pals are conipleted. In all cases, the multiprogramming of 
progn'ams having class 1 exeeution intervals (policies 2A 
and 3A) products a significant improvement in the CPU 
usage, with most of the improvement possible by main- 
tMning just two programs in the high speed memoIT. If 
the system is only processing programs path class 1 execu- 
tion intel-cals, the elapsed time for each execution is 
solely determined by the drum speed. In case II  where the 
drum speed is 10 times that of ease I, the CPU usage is also 
increased by a factor of 10. 
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Mult iprogramming programs having class 2 execution 
intervals seriously degrades performance in case I bug 
produces a significant improvement  in performance for 
ease I I I  (compare policies 2C and 2D with policy 1B). In  
case I I  there is a slight degradatior~ in performance. A 
detailed examinat ion of the performance figures suggests 
that ,  overall, in ease I mul t iprogramming would lead to 
poorer performance,  and there is little advantage  to be 
gained by using mul t iprogramming in ease I I .  In  ease I I I ,  
however, there seems to be considerable gain possible. This 
last  conclusion is based on the following estimates.  

The  statistics show tha t  although class 1 and 2 execution 
intervals  will occur randomly,  they occur with equal fre- 
quency in the S D C  system. Therefore the execution times 
devoted to the two classes of execution intervals are in the 
proport ion 0.25msee to 100msee (these t imes being the 
average execution intervals for the two classes). Now if 
no mul t iprogramming were employed we have:  

average elapsed time for 100msee execu- 
tion, class 2 = 100/0.467 

= 214msee 
a v e r a g e  elapsed time for 0.25msee execu- 
tion, class 1 = 0.25/0.008 

= 31.3msee 
a v e r a g e  elapsed time for one class 1 and 
one class 2 execution interval is then = 214 + 31.3 

~. 245msee 

Now considering the continual mul t iprogramming of two 
programs,  it has been indicated at the  conclusion of Sec- 
t ion 3 that  in the  real situation the composite of programs 
in the high speed memory  will f luctuate between two class 
1 execution intervals,  one class 1 and one class 2 execution 
interval,  and two class 2 execution intervals. Using the  per- 
forInance figures for s ta t ionary mixes we can make  the 
following observations:  
I f  two class 1 execution intervals occur together, 

a v e r a g e  elapsed time for 0.25reset execu- 
tion, class 1 = 0.25/0.011 

= 22.7msec 
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If  ~Swo cl~ss 2 execution intervals occur togethor, 

average elapsed time for 100msec execu- 
tion, class 2 = 100/0,509 

= 164msec 

I f  one cl~ss 1 and one class 2 execut, iorl i~terv~ls occc~r 
together,  

average elapsed time for 0.25msec execu- 
tion, class 1 = 0.25/0.00~ 

= 62.5msee 
average class 2 execution time during an 
elapsed time of 62.5msee = 62.5 X 0.433 

= 27.1msec 

Combining these elapsed t imes in any desired manner  we 
find tha t  the  average elapsed t ime for one class 1 and one 
class 2 execution interval is in the range 1S2msec to 
187msec. This  is approximately  a 25 % reduction on the 
t ime calculated for the same amount  of processing with 
no multiprograrnming. 

Because of the inherent approximations in using the 
closed form expression for p, the scale of values obtained 
for each case in Table  I I I  do not correspond exactly. 
Nevertheless the results indicate tha t  this parameter ,  
which is easily est imated from program statistics and 
hardware parameters,  is a useflfi gauge for nmltipro- 
gramming. 
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6. F u r t h e r  Analysis  

The program statistics obtained by Fine et al., are 
representative of a class of programs rtm o~t a particular 
time sharh~g system. The statistics of the comptet;e popu- 
lation of progTamS run on any system m~y differ markedly 
from these. In this section, in order to demonstrate the 
potet~tial of multiprogramming and the effect of some 
hardware variations, some conditions rnore favorttble to 
multiprogramming will be assulned, without firm justifi~ 
cation for the accompanying program statisties. However, 
if program codes and data were organized for optimum 
performance in tJ. paging envh'onment, program behavior 
might be more closely represented by these statistics. 

The result:s to be discussed can be reproduced, in a sense, 
for a multitude of model parameter values. I t  is sufficient 
for presentation of the significant points to use just two 
basic sets of parameter vMues. These sets of parameters 
labeled A and B are described in Figures 6 and 7, respec- 
tively. I t  is not necessary to interpret the parameter 
values in terms of absolute core and drum speeds. There is 
a continuum of absolute values corresponding to each 
parameter set, a;nd this adapt.ion of the model has Mready 
been demonstrated. 

Both parameter sets have the characteristics postulated 
in Section 2 concerning the two elasses of programs (or 
execution intervals) which employ the CPU. The average 
execution intervals are in the ratio 10:1 for the two classes, 
and the el~tss 1 programs exhibit a nmch more rapid 
degradation in page demand rates. The page demand 
rates are higher and the average execution intervMs 

short.er for parameter set B than for parameter set A. 
The drum organization assumed is four pages per field. 
We shrill see that, in tile system deseribed by the model, 
it is generally suitable to multiprogram two or three 
programs defined by these parameter sets. Presumably, 
if page demand rates wm'e considerably higher, or exeeu- 
ti(m intervMs much shorter, than in t,hese parameter sets, 
the conditions would not be suitable for mulfiprogram- 
ruing. 

In Figure 7 an alternate set of page demand functions 
has been plotted and labeled B*. These functions corre- 
spond to a linear interpolation between the discontinuities 
in M(x) and X2(x) for the parameter set B. This illustrates 
the flexibility of the model eoneerning the page demand 
functions which can be represented. 

The performance of the system under parfmteter set A 
is described in Figures 8 and 9. Also plotted in these figures 
is the performance measure for the following sLx modifica- 
tions to the basic drum configuration implied by parameter 
set A: (1) twice the drum speed; (2) half the drum 
speed; (3) twice the number of read heads per drum field 
(m = 8); (4) half the number of read heads per drum field 
(m=2) ;  (5) modifications (1) and (4); (6) modifications 
(2) and (3). 
The multiprogramming of up to three class 1 programs 
has been analyzed and it seems obvious that this situa- 
tion is very favorable for CPU usage (see Figure 8). In 
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the ranges considered there is an almost t in~r  increase 
in performance with drum speed and with the number of 
read heads per drum field. Performance is most sensitive 
to the drum speed, which determines the delay experienced 
by each program, on its making a page transfer request, 
until it becomes eligible to execute again. The effect of 
increasing the number of read heads is to allow more 
subqueues for page transfer requests, thereby increasing 
the expected number of page transfers per drum revolu- 
tion for a given number of requests present (that is, 
assuming uniform page distribution). When there is only 
one program using the high speed memory the only effect 
of varying the number of pages per dram revolution is to 
modify the latency delays, and this is a less significant 
factor. 

I t  is worthwhile to point out at this stage that modifica- 
tion of drum speed can be interpreted as a modification 
(in the opposite sense) of the average execution time per 
instruction, which in turn can be interpreted, with some 
approximation, as a modification to the cycle time of the 
high speed memory. Thus halving the drum speed may be 
considered equivalent to halving the cycle time of the 
high speed memory, in its effect on the average CPU 
usage. The point which must then be borne in mind is that, 
if the cycle time is halved, programs will require only half 
the execution time. Therefore, while our performance 
parameter is a gauge for measuring the effectiveness of 
multiprogramming, it cannot be used as a comparison of 
the rate of completion of program execution intervals in 
this case. 
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From Figure 9 we see that the conditions are not, a,s 
favorable for multiprogramming class 2 programs from 
paramet:;er set A as for multiprogramming class 1 pro- 
grams. [f die drum speed is halved, performance actually 
decreases with two programs in core memory. In the light 
of tire comments in the previous paa'agraph, it follows that 
if the cycle time were halved it would also be disad- 
vantageous to multiprogram two class 2 progra:ms. 

Referring to the corresponding results for parameter set 
B (Figures 10 and 11), similar comments can be made for 
variations in the drum speed. The importaame of page 
dema:nd rates is also illustrated. The efffcet of the modifica- 
tion to page demands, described by t.he parameter set 
B*, is readily anticipated. These parameters have a some- 
what lower average demand rate than parameter set B. 
The difference is most noticeable in the multiprogramnfing 
of two class 2 programs. For example, under policy 2D, 
one program is allowed a maximum of 11 pages and the 
demand rates M(7), . . .  , X2(11) differ significantly for the 
two parameter sets. 

Similar effects could be observed if the model were 
analyzed for stationary mixes of class 1 and class 2 pro- 
grams; however, all the major results for the nmlti- 
programming of a fixed number of programs have been 
illustrated. In [5] the ease where the number of programs 
using the high speed memory changes according to certain 
loading strategies is examined. This can give an advantage 
over multiprogramming a fixed number of programs, but 
under stationary conditions the advantage over multi- 
programming the optimal fixed number of programs is not 
great. The need for nonstationary control policies can also 
be demonstrated; this need and also some models subject 
to closed form solution are treated in [5]. 
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7. Co~clus ion  

The most significant feature, not dealt, with in this 
investigation, is the system overhead involved in both the 
executive control program and the implementation of 
paging and muitiprogramming. Present indications are 
that this overhead is considerable and its effect would be 
to moderate any improvement attributed here to multi- 
programming. Nevertheless, analysis of the model has 
provided use%l insight into the potential of multiprogram- 
nfing and paging, and the results could be modified to take 
account of system overhead. 

Categoric conclusions cannot be made from the limited 
set of statistics described in Section 3, but as they have 
bee~ recorded fl'om a time sharing interactive envh'on- 
meat they are appropriate. Analysis of the model for the 
range of parameters corresponding to these statistics 
indicates that  a conservative outlook for multiprogram- 
ruing using a page on demand strategy must be maintained. 
If a large lfigh speed memory is available for user pro- 
grams, however, it does seem that there is some advantage 
(dependent on system overhead) to be gained from multi- 
programming. 

Specifically, the SDC statistics have described paging 
for a fixed page size of 1024 words of 48 bits. The model 
has demonstrated that  it is fortuitous to at tempt multi- 
programming with only 14 pages available for the user 
programs. With 28 pages available to user programs, a 
25 % margin of improvement has been eMculated for the 
multiprogramming of two programs. I t  is likely that  the 
method we have used to obtain the results for a 28 page 
memory is a little favorable to the page on demand strategy, 
because doubling the page size will not halve the number 
of page ealls. Therefore a slightly larger memory may be 
necessary to obtain the improvement cited. 

The necessary operating conditions for the success of 
multiprogramming have been identified. The reason for 
the failure of multiprogramming, in those eases analyzed, 
was that  programs were delayed too frequently and for too 
long a period, either because of their own short execution 
intervals or because they were constrained to execute in a 
small high speed memory area. The most important 
characteristic of the hardware is the relative speed of the 
high speed memory and the drum accessing process. All 
these factors are reflected in the channel utilization factor, 
p, which has been proposed as a gauge for multiprogram- 
ruing under a page on demand strategy. 
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A P P E N D I X  

The details of the nmdel of the drum and I /O  channel 
operation are given below. 

Let us consider a request which arrives to find n prior 
requests, labeled 1, 2 , . . . ,  n, waiting for service. In  
order to include those eases in which some additional 
information is known about the locations of the pages 
associated with these n requests, let pjk denote the  prob- 
ability that the kth request concerns a page displaced j 
sectors fl'om the current origin of the read heads. 

Hence 

m--1 

pck = 1, k = 1, 2, . . .  , n. (3) 

Then measuring time from the beginning of the first t ime 
unit after the (n + 1) request arrives, and assuming each 
subqueue is serviced according to a first-in first-out disci- 
pline, the expected time until the completion of this most 
recent request can be expressed as 

m-1 ( /  n k \ ) 
= (m -4- 2n + 1) /2 .  

I t  is of interest to observe that  this time is independent of 
all p~k. 

The Marker  chain approximation to the behavior of 
the drum I /O channel now proposed has a state deserip- 
tion which is based on the number of page transfer requests 
queued at the beginning of a t ime unit. The requests are 
assigned priority according to their  order of arrival, and 
the probability that  the j th  priority request will have its 
page transferred in the ensuing t ime unit is denoted by 
p j .  Therefore the completion t ime for the highest priority 
request is described by a geometric distribution, with 
mean 1 / p l ,  since during each t ime interval it has prob- 
ability p i of having its page transferred. If the j t h  priority 
request completes, all lower priority requests k (]~ > j )  
assume priority/c - 1 in the ensuing time unit. In  order 
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to satisfy (4) we have 

pl : 2/(m @ l), 

The distributions for the completion time of the lower 
priority requests are not as simple. However it is art easy 
matter to show (see [5, Appendix E] ) that 

n 
E(t.+~) - ~ ps (~) 

1=1 

and so in order to satisfy (5) we have 

p~ - ( 6 )  
~'=1 m + 2 n - -  1" 

Solving (6) in order for p l ,  p2, " '"  , yields 

2 ( m -  1) (7) 
Pk = ( m +  2 k - -  3) (m -4- 2k -- 1) 

thus defining the model parameters for any number of 
requests. From (6) it follows that  

lira ~ p~ = 1 
~-.oo $=1 

which is in accordance with the maximum capacity of the 
I /O channel--one page transfer per unit time interval. 
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Fro. 12. Probability density functions for page transfer 
completion time. 

I t  can also be seen from (5) that 

E(t,~+l) - n, for n large. 

The representation described abow~ is a very tractable 
Marker  model, because of its simple state description. ~It 
should be noted that  this model only describes the eomp] e- 
tion time (waiting time + transfer time) of a request fr<m;x 
the beginning of the first time unit after the request is 
generated. The additional latency delay, experienced b y  
each request, is accounted for exactly in the discrete t ime  
model of Section 2. 

When there is only one program using the high speed 
memory, only one page transfer request can occur, and so  
in the Marker  model the completion time of a page tra,ls- 
fer request is described by a geometric distribution w i t h  
mean (m + 1)/2. Of course, in the actual system this t i m e  
is a random variable, uniformly distributed over the range  
1, 2, . . .  , m. However, the average CPU usage derived 
from the model of Section 2 is only dependent on the first  
moment of the distribution, and hence it is the same fo r  
either distribution. 

When more than one page transfer request can occur  
the higher order moments of the distribution affect t h e  
average CPU usage. If the use of the drum I/O channel is 
heavy, however, so that  each new page transfer request  
arrives to find other requests already waiting, then t h e  
distribution resulting from the Markov chain approxima- 
tion is close to reality. This is illustrated by the probabili ty 
density functions plotted in Figure 12, which correspond 
to the ease of a request which arrives when one o t h e r  
request is waiting, and m = 4. Figure 12(a) is the dens i ty  
function for the completion time of the second request :if 
no additional information is known about the location o f  
the page associated with the first request. However, t h e  
location of the page associated with the first request is  
dependent on the history of previous page transfers a n d  
the elapsed waiting time of the request. Figure 12(b) is  
the density function for the completion time of the second 
request, a priori that  there is twice the probability of t h e  
page associated with the first request being located in t h e  
next two sectors to rotate under the read heads. F igure  
12(e) is the density function yielded by the Markov cha in  
approximation derived in this AppendLx. 

From Figure 12(c) it earl be seen that  one approxima- 
tion, implicit in the Marker  model, is the assignment of a 
small probability to completion times longer than those  
which can possibly occur in the real system. In generM, 
the variance of the resulting distribution is larger bug t h e  
mean is always the same as for the real system. The effect  
of this decrease in the "orderliness" (see Morse [6] ) of t h e  
drum I /O operation is to increase the likelihood of queue-  
ing delays, which in turn would reduce the mean C P U  
usage derived from the model of Section 2. But we h a v e  
indicated that  the model becomes close to reality as t h e  
use of the drum I /O ehmmel increases, and therefore, i t  
should provide reliable results. 
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