Check for
Updates

Multiprogramming under a
Page on Demand Strategy

JouN L. SMmItH
The Unaversity of Michigan,* Ann Arbor, Michigan

A model of multiprogramming for o particular computer
system using a page on demand strategy is developed. Analy-
sis of this model is used to predict performance (measured by
the average usage of the CPU) when user programs are
typical of those arising from an interactive fime sharing
environment. The effect of several hardware modifications is
also analyzed. A parameter, readily calculated from the
hardware characteristics and the program statistics, is proposed
for gauging the effect of multiprogramming.

1. Introduction

A point of contention currently exists on the best
strategy for handling the loading of programs and the
sharing of the high speed memory in large time sharing
computer systems. The problem is most critical and most
difficult to resolve when the system is processing a heavy
load of programs which execute for relatively short inter-
vals. As this situation can be expected to arise frequently
in systems interactively serving a large number of users,
an analysis of the performance of a particular computer
subsystem has been made.

The techniques of multiprogramming and paging have
been proposed as means for efficiently adapting a com-
puter system to an interactive type of load. The implemen-
tation of these techniques requires a considerable hardware
investment for the handling of dynamic relocation [1],

*Systems Engineering Laboratory, Department of Electrical En-
gineering, College of Engineering. This research was supported by
contract AF 30 (602)-3953 with the US Air Force, Rome Air
Development Center, Rome N, Y.

636 Communications of the ACM

1), > 7,

R. L. ASHENHURST, Editor

and the best control policy remains to be determined. One
mode of paging [2] has been termed the single page loading
strategy, the aim being to obtain a conservation of the
high speed memory by loading pages from secondary
memories only on demand. Another mode of paging is to
load only entire segments of programs. Both of these
Joading strategies are generally proposed in conjunc-
tion with multiprogramming, so that execution may be
switched to another user program when one program re-
quires a page (or segment) to be transferred from a sec-
ondary memory. The question which has been raised is
whether the characteristics of programs and the necessary
system overhead will permit sufficient overlapping of
fetching and execution for an improvement in the system
performance to be obtained by these techniques.

In a recent paper by Fine, Jackson, and Melsaac [3],
some relevant statistics on the dynamic behavior of a par-
ticular set of programs were reported. These programs were
typical of those run in interactive mode on the Q-32 time
sharing system at the System Development Corporation.
On the basis of these statistics, the authors concluded that
there was considerable doubt about the worth of the page
on demand strategy. Certainly any suggestion that it
would be useful to multiprogram a few pages from many
programs in the high speed memory was negated by these
statistics.

The work reported here partly consists of a description
and analysis of a stochastic model of the important opera-
tions in multiprogramming with a page on demand
strategy. The model is used to investigate the multipro-
gramming of a particular system under full load conditions.
One aspect of the results concerns the application of the
statistics of Fine et al., to the model in an effort to obtain
further substantiation of their conclusions. The perform-
ance of the system when loaded by programs having
markedly different statistics is also analyzed. In each case
the effect of several hardware modifications is demon-
strated.

2. The Model

While there are many additional hardware components
in a large time sharing computer system, a typical hard-
ware configuration for the subsystem relevant to this study
1s shown in Figure 1. A schematie description of the opera-
tion of this computer subsystem is given in Figure 2. There
are two service functions represented in the model: (1)
execution of programs; (2) transfer of pages between the

Volume 10 / Number 10 / October, 1967

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363717.363763&domain=pdf&date_stamp=1967-10-01

drum mewory and the high speed memory. The queueing
and service disciplines associated with these functions, and
the simplifying assumptions and approximations used, are
now described.

It is assuwmed that programs are loaded into the high
speed memory under a page on demand strategy, with a
standard initial three page allocation. Two classes of user
programs (class 1 and class 2), which differ in the statistics
of their execution intervals and page demands, are identi-
fied. The model allows for a maximum of three programs
to be multiprogrammed in the high speed memory.

It is well to explain the significance of an execution
interval. This pertains to the period of execution allocated
10 a particular program in effecting the time sharing of the
CPU. Because of random interactions with the user, only a
fraction of all program execution intervals are terminated
by a time interrupt (see Figure 3). As a result of the page
on demand strategy, each execution interval is divided
into a number of phases. An execution phase occurs be-
tween successive calls for new pages from the drum, and
between the last page call and the termination of the
execution interval.

Eligible programs queue for execution by the CPU. For
each class of programs there are two parameters of the
model, ¢ and Az), which describe the length of an execu-
tion phase. A subscript will be used to identify the param-
eters belonging to each class of programs. The parameter u
defines a negative exponential distribution function de-
scribing the execution interval for a program. It is assumed
that each execution interval is an independent random
variable. Hence,

probability that an execution interval <t = 1 ~ ™ (1)

where 1/u is the average execution interval, The function
AMz) defines a nonhomogeneous Poisson process, which
deseribes the oceurrence of demands for new pages by a

Processor

crPu

110

Controlfer

t
! CORE MODULE [}

A—

Executive

Control

Program

Fi1a. 1. A computer subsystem

Volume 10 / Number 10 / October, 1967

program during its execution interval. For a program
which has already activated y pages, the average interval
between successive page requests is 1/A(y). Hence

probability that the interval between successive)
page requests <t = 1 — ¢ @, @

Information on the drum memory is organized into
recording fields, consisting of a number of tracks, which
can be read or written in parallel by fixed heads. In general
each field is composed of m sectors, each sector having a
storage capacity of one page of information. Upon the
generation of a page transfer request, the request is as-
signed to a subqueue associated with the sector containing
the required page. Unit time for the model is the time taken
for the transfer of one page from the drum (1/m revolution
time), and time is synchronized to the passage of page
headers under the read heads. One can envisage a rotation
of the drum as effecting periodic service, in the order 1,
2, - -+, m, to each subqueue. Each service interval is of one
time unit and, if the corresponding subqueue is not empty,
a page transfer will occur; otherwise there will be no
transfer during that time unit.

For the purpose of modeling the operation, two im-
portant assumptions have been made. Firstly, each page
requested for transfer from the drum is assumed to be
located with equal probability (1/m) in any drum sector.
Secondly, it is assumed that the output of pages to the
drum from the high speed memory produces no delay in
the input of pages to the high speed memory from the
drum. The latter assumption is valid in cases in which a
vacant page position is maintained in the high speed
memory and the usage factor for the drum is slightly below
100%, so that there is usually a vacant page position in
each drum sector. Hence a useful model need only treat the
input of pages from the drum to the high speed memory.

In the Appendix, the following approximation to the
page transfer process, in which the average transfer
capacity of the drum I/0 channel combination is exactly
reproduced, is derived. Every page transfer request, pres-
ent at the beginning of a time unit, has some probability
of being serviced during that time unit. In particular the

DRUM 1/0
e G cey J

PAGE
_,_C:.__ TRANSFER EXECUTION
O e GHRIIED sy PRITY
. : (m+2k - m +2k-3) QUEUE
\ J

Y
3 Programs Maximum
14 Poges Maximum

m Queues

Fig. 2. The model of multiprogramming and paging

Communications of the ACM 637

kth request to occur (out of all those present) has prob-
ability

2(m — 1)
(m -+ 2k — {m + 2k — 3)

of transfer during the time unit.

It was the intention in developing this model to identify
class 2 programs with those jobs having longer execution
intervals and greater high speed storage demands. The
following priorities were also implemented in the model.
In choosing the next program to use the CPU, an eligible
(able to execute) class 2 program is given priority over any
eligible class 1 program. Likewise the program with the
larger high speed memory commitment is given priority
over another program of the same class, when both are
eligible to execute. The same priority structure was also
implemented in the operation of the drum I/O channel.

The admission of preemption in the drum I/O sub-
queues does not change the rate of completion of page
transfer requests from that resulting from a first-in first-
out (FIFO) queue disecipline. In the real system, however,
the expected additional waiting time of preempted re-
quests will be dependent upon their clapsed waiting time,
Thus there is a slight diserepancy in the representation
described above if we equate the variable & to the priority
of a request, when this differs from the request’s order of
arrival. This point may be clarified by referring to the
derivation in the Appendix. No compensation for this
feature was made in the model, but calculations of the
expected completion times of requests, under all possible
preemptions which can occur in the particular system,
show the model to give close approximations. As the most
important property to be represented for this analysis is
the drum channel transfer capacity, the approximation is
justifiable.

The main limitations to the scope of the model are: (1)
there is no representation of the CPU time or the 1/0
channel usage devoted to system overhead, (2) there is no
representation of the competition which might arise be-
tween the CPU and the I/O channel for access to the high
speed memory, (3) the number of programs and the num-
ber of pages that can be handled are limited by the analysis
method, (4) a condition of system overload is assumed;
that is, class 1 and class 2 programs are assumed to be
always awaiting processing when the high speed storage is
available.

3. Relating the Model to an Actual System

The mathematical descriptions which have been in-
corporated in the model ensure that it is tractable for
numerical analysis and optimization procedures. The re-
sults quoted in this paper were obtained using the analysis
program RQA-1, developed by Wallace and Rosenberg
[4]. Some representative values for the parameters of the
model are now derived by referring to the statistics taken
by Fine et al. [3]. These statistics are the result of detailed
measurements taken on 182 sample execution intervals of

638 Communications of the ACM

five programs.! Their adaptation to the model serves as &
test of the fitness of the probability distributions assumedd
for the program characteristics.

In Tigure 3 the cumulative frequency function of the
number of instructions executed by a program during one
scheduled execution interval is shown, The discontinuity
at 80,000 instructions is due to the system imposed guar-
tum of 400msec of execution time, which was equivalent
to the average execution time for 80,000 instructions. Also
plotted in Figure 3 is a negative exponential probability-
distribution having the same mean (20,400 instructions’
as the statisties. Tt is obvious that the negative exponentin}
is a very poor fit to the cumulative [requency function of
these statistics. Therefore in view of the characteristics of
the model, it is useful to divide these statistics into two
classes:

Class 1: Samples in which a program executes 1000
instructions or less
Sarmples in which a program executes more
than 1000 instructions.

Class 2:

There are 91 samples in each class. Figure 4 shows the
cumulative frequency functions of the number of instruc-
tions executed per execution interval for each class, to-

2
Q
=
ol
@
14
=
o
o .
e SDC statistics
"'ZJ —— i_e-n/20.4x|03
=
<
Ji I
p]
=
2
(&3
I 1 - 1 i) | | }
2x10 4x10% 6x10% 8xio®

NUMBER OF INSTRUCTIONS EXECUTED, n

Fig. 3. Cumulative distribution of the number of instructions
executed per execution interval

1 Tt should be remembered, however, that these statistics were
not taken from a paged system,

Volume 10 / Number 10 / October, 1967

gether with a negative exponential probability distribution
having the same mean. The mean for class 1 is 88 instrue-
tions and for class 2 the mean is 40,700 instructions.

It is proposed that by using the above classifications the
negative exponential distribution is a tolerable approxima-
tion for the particular statistics.? In appraising this ap-
proximation the following feature must be considered in
addition to the fit of the curves. It is implied by the model
that all program execution intervals are independent
random variables described by the negative exponential
distribution. It is apparent from additional statistics, not
quoted here, that conseeutive execution intervals for the
same program are not completely independent. On this
point 1t can be argued that if the system is processing
several different programs the combined sequence of exe-
cution intervals should be almost independent, despite
some correlation between execution intervals for a par-
ticular program,

A second statistic of the five programs is displayed in
Figure 5. Here the average number of instructions exe-
cuted between requests for a new page is plotted against
the number of pages already activated during the execu-
tion interval. From the available statistics little can be
said on whether the process of new page requests approxi-
mates a Poisson process or not. An important feature of
the model, however, is that the parameter 1/x(z) can be
adjusted so that the model conforms exactly to the func-
tional behavior depicted in Figure 5. This should be an

g 10

fong

B 8

@

[‘Z’ 6 // CLASS 1

° / ——O—~——— SDC statistics

g afly e L g™Es

=

3 2f

=

3 | { 1 i j
200 400 600 800 1000

CLASS 2

CUMULATIVE DISTRIBUTION
- :
T

ar ———0—— SDC statistics

2 e I_en/t&onuﬂ
4 ! ! | ! L
oxc® axigt exiot sxi0t 0xi0

NUMBER OF INSTRUCTIONS EXECUTED, n

Fiac. 4. Cumulative distributions for each class of execution
interval

*'This also suggests that a two-phase hyperexponential dis-
tribution could be used for all execution intervals.

Volume 10 / Number 10 / October, 1967

overriding factor in achieving correspondence between the
model and the physieal system.

At this stage we must take into account one restriction
which exists in any computer system—the capacity of the
high speed memory. Here we need only consider the
capacity available to user programs, which enforces an
upper bound on the total number of active pages which
can be held in the high speed memory. It is highly prob-
able that in a multiprogrammed environment, individual
programs will be forced to swap pages between the drum
and the high speed memory because the total number of
active pages of all the programs in the high speed memory
has exceeded this bound. (In the model the bound is 14
pages and Figure 5 shows that swapping is likely to occur
even when there is only one program using this size of
memory. We shall see, however, that the effect of larger
high speed memories can be analyzed with the model.) In
modeling a program’s demand rate for page transfers after
swapping first occurs it will be assumed that the rate re-
mains constant at the value in effect when the first swap
occurred—unless more pages of the high speed memory
become available and the program is allowed to expand
into these.

While it is not appropriate in this paper to present the
details of the analysis methods, a brief comment on the
limitations is necessary. The complexity of the model pro-
posed 1s considerable from an analysis viewpoint; never-

105

f_ —

103 b~

024

NUMBER OF INSTRUCTIONS BETWEEN PAGE REQUESTS

! 1 ! I { !
© 3 6] 12 18 18 21

NUMBER OF PAGES ACTIVATED

Fia, 5. Average page demand statistics

Communications of the ACM 639

theless, all the results to be presented were obtained by
precise numerical solution of the equations of the mathe-
matical model. The size of the high speed mermory avail-
able for user programs in the model wag limited to 14
pages in order to restrict the computation required in the
analysis. Larger high speed memories were represented by
redefining the physical page size and then appropriately
modifying the value of the abscissa used to determine
the page demand rate from Figure 5, and also modifying
the page transfer time. This representation implied that
any restrictions arising from the location of particular in-
struction sequences and data in different pages were ig-
nored. Another limitation is that the attainable solutions
deseribe the stationary behavior of the model; that is, the
analysis method is restricted to measuring performance
parameters such as the long run average CPU usage by
programs. The executive control policies which can be
congidered are therefore stationary, for example, those
that maintain a constant mix of class 1 and class 2 pro-
grams in the high speed memory. Because of the manner in
which class 1 and class 2 programs have been identified
with the particular statistics, stationary mixes of these
classes would not oceur in the real system. However, the
performance measures which we obtain by analyzing
various multiprogramming mixes should be a good indica-
tion of the performance obtained in practice.

4. A Gauge for Multiprogramming

By reference to the system model proposed in Section 2
and the type of program statistics quoted in Section 3 it is
possible to identify the critical mechanism of multipro-
gramming (under the particular operating conditions
defined). Programs using the high speed memory act as a
source of page transfer requests. These requests queue for
gervice from the drum I/O channel. Therefore in an
analogous manner to a single queue-single server system,
a utilization factor p (see [6, p. 17]) for the drum I/O
channel can be defined:

rate of oceurrence of page transfer requests
a rate of page transfer completions

With few exceptions, the minimum number of page
transfer requests which can oceur over each execution
interval is equal to the number of pages activated during
the interval. This number will be augmented, however, if
the high speed memory limitations necessitate swapping.
Therefore the rate of occurrence of page transfer requests
is a function of the following program and system vari-
ables:

(i) the number of instructions executed per execution
interval,
(ii) the eycle time of the high speed memory,
(iii) the page demand function (cf. Figure 5},
(iv) the maximum number of pages of the high speed
memory available to each program.
The rate of page transfer completions is dependent on the

640 Communications of the ACM

hardware characteristics:

(i) the drum revolution time,

(ii) the number of pages per drum field, m
Tt follows that p is directly related to the ratio of the speeci
of the high speed memory to the speed of the drum. Iry
expressing p as a funection of the parameters of the mode!
'thi@ ratio 15 nmorporated in the time norlmlimﬂon impiif

-

The dematmn 18 given bel()w.

Using eqs. (1) and (2) and defining y to be the maximurry
nurmber of pages of high speed memory which will be alle -
cated to each program, the average number of page trans -
fers per execution interval is given by:

S MO T M)
N=ttayrst T s
J’"Qxx)w { @ + 5
B vl 2)\(ﬂi)
“l+§gx(w>+u+§mu)~+~» u

The rate of oceurrence of page transfer requests is thers
given by Nu. In the Appendix it is demonstrated that thes
rate of page transfer completions is dependent on the
number of requests present. It follows from eq. (6) that
for k requests this rate is

2k
m -+ 28 — 1
and therefore

f

For efficient multiprogramming p should not be greatis
in excess of 1, or else frequent queueing delays in Lhe I/
channel will oceur. A small utilization factor would not
necessarily indicate poor performance in terms of CPLY
usage, it merely indicates low I/0 channel usage, which a1
worst is idle equipment.

In Section 5, p is evaluated for several situations to indi -
cate its correlation with multiprogramaming performance .
Because the parameter k varies during the operation of s
system, the convention of using its maximum value (the
number of programs being multiprogrammed) in th
evaluation of p is adopted. Also, some approximation wi
be involved in specifying the value of the parameter ¢ izz
each situation.

In order to illustrate the sensitivity of p to the value of
k, consider a typical case in which m = 4 and three pro-
grams are being multiprogrammed. The rate of page trans -
fer completions may vary between 2.5 for £ = 1 and 1.5
for k = 3. Aceounting for this dynamic variation would no
be significant in the results to be quoted here, but some
applications may call for a more accurate formula for 5.
Appendix G of [5] indicates some approaches to this
problem,

Volume 10 / Number 10 / October, 1967

»

5. Analysis of the Model Using the SDC Statistics
In order to complete the parameter specifications for
the model, the operating speeds of the drum and the high
speed memories must be defined. The following figures
were selected as being representative of current hardware
performance.
Mean instruetion execution time 2.Dusec
Drum speed 3,000 rpm
Page size 4 pages/rev.

&

It follows that the transfer time for one page (the time

unit) is Smsec, and m = 4. If it is assumed that the average

number of instructions executed during elass 1 and class 2

execution intervals is 100 and 40,000, respectively, then
1100 X 25 X 107

= = S EE = (.05 time units

1 40X 10°X25%x10° ,
o 50 109 = 20 time units.

Here the subscript denotes the class of programs which the
parameter describes, Also, with reference to Figure 5, the
average number of instructions executed between page
calls, when a program has already activated eight pages, is
2,160 instructions. Therefore

11
NOERYO)!

_ 2160
5000

= L.08§ time units.

Similarly all the values in the sequence \(3), M(4), -+,
Ae(3), -+ -, can be evaluated.

The control policies for which the model was analyzed
are defined in Table I. The first two policies do not involve
multiprogramming, the remainder do. All the policies im-
pose upper bounds on the number of physical pages of the
high speed memory which each program may use. It is
implicit that the class of each program is identifiable in
advance.

InTable II three different system configurations are de-
fined, and in Table III the results of the model analysis for
each configuration and for each control policy are given. In
all cases the performance parameter is the average CPU
usage for each class of programs. The model parameters
derived at the beginning of this section correspond to the
first case listed in Table II. Case IT involves a change in
the page transfer rate corresponding to ten times the origi-
nal drum speed. While the same capacity drum running at
30,000 rpm may not be feasible it is of interest to analyze
this case. Case III corresponds to doubling the size of the
high speed memory and this change is modeled by doubling
the physical page size in both the high speed memory and
the drum. The results given are for m = 4. This implies a
larger drum in terms of the number of bits per track. It
should be noted that the maximum page allocation limits
given in Table I also refer to double size pages in this case.

Since the same type of high speed memory has been
assumed in each case, the average CPU usage can be used
for direct comparison of the rate at which execution inter-

Volume 10 / Number 10 / October, 1967

TABLE I. Srarromany MULTIFROGEAMMING POLICIES

Program mix Maximum page allocation
FPolicy

Class 1 Class 2 Class 1 Class 2
1A 1 . 14 ‘e
1B . 1 R 14
24 2 o 7,7 s
2B 1 1 7 11
20 s 2 . 7, 7
2D . 2 .. 7, 11
3A 3 v 5, 5 6 .
3B 2 1 5,5 6
3C 2 1 5, 8 8

TABLE II. Hamrpwars CONFIGURATIONS

Average execution

High
time/instruction

speed memory Drum

1 14 pages 3,000 rpm, m = 4 2. 5usec
1X 14 pages 30,000 rpm, m = 4 2.bugec
TI1 28 pages 3,000 rpm, m = 4 2. fusec

AveracE CPU UsAGE FOR STATIONARY
MULTIPROGRAMMING

TABLE IIL.

L 1 1

Pol-
Y | Class | Class Class | Class Clags | Class
1 2 i 2 1 2

1A | 005 | -+ |210 049 4 -0 1200 | 008 -0 (159
1B .. 314 1.88) .- 822 1 188 .- 467 | 1.08

2A 1 .008 | --- 148 007 e 148 101 - 1L
2B | .003 | .261 | 3.44) 011 } 778 ¢ .344 .004 | .433 | 1.51

20 | .- 158 | 5.51) .- 751 B5L - L6091 0.89
2D | s L2201 3.500 .- 819 ¢ .850) --- 607 1 0.94
SA | 009 | --- (124 087 | - (12,04 1012 - GB7

3B | .005 | .070 | 11.7 | .049 | 449 | 1.17 | .008 | .353 | 2.69
3C | 004 .181 | 3.79] .025 | .698 | .379 .007 | .405 | 2.13

vals are completed. In all cases, the multiprogramming of
programs having class 1 execution intervals (policies 2A
and 3A) produces a significant improvement in the CPU
usage, with most of the improvement possible by main-
taining just two programs in the high speed memory. If
the system is only processing programs with class 1 execu-
tion intervals, the elapsed time for each execution is
solely determined by the drum speed. In case II where the
drum speed is 10 times that of case I, the CPU usage is also
increased by a factor of 10.

Communications of the ACM 641

Multiprogramming programs having class 2 execution
intervals seriously degrades performance in case I bub
produces a significant improvement in performance for
case IIT (compare policies 2C and 2D with policy 1B). In
cage IT there is a slight degradation in performance. A
detailed examination of the performance figures suggests
that, overall, in case I multiprogramming would lead to
poorer performance, and there is little advantage to be
gained by using multiprogramming in case II. In case III,
however. there seems to be considerable gain possible. This
last conclusion is based on the following estimates.

The statistics show that although class 1 and 2 execution
intervals will oceur randomly, they occur with equal fre-
quency in the SDC system. Therefore the execution times
devoted to the two classes of execution intervals ave in the
proportion 0.25msec to 100msec (these times being the
average execution intervals for the two classes). Now if
no multiprogramming were employed we have:

average elapsed time for 100msec execu-

tion, class 2 = 100/0.467
= 2l4msec

average elapsed time for 0.25msec execu-

tion, class 1 = 0.25/0.008
= 31.3msec

average elapsed time for one class 1 and

one class 2 execution interval is then = 214 4+ 31.3
=~ 245msec

Now considering the continual multiprogramming of two
programs, it has been indicated at the conclusion of Sec-
tion 3 that in the real situation the composite of programs
in the high speed memory will fluctuate between two class
1 execution intervals, one class 1 and one class 2 execution
interval, and two class 2 execution intervals. Using the per-
formance figures for stationary mixes we can make the
following observations:

If two class 1 execution intervals occur together,

average elapsed time for 0.25msec execu-

tion, eclass 1 = 0.25/0.011
= 22.7msec
§
| 175, (0)
|
Vpp=50 190 !
}
1/ xz2{x)
s or rd —
(el w
5 i
e i
I -
| L r.L____J—_——
| ! } !
3 6 9 12 15

NUMBER OF PAGES, X
F1a. 6. Parameter set A

642 Communications of the ACM

If two class 2 execution intervals occur together,

average elapsed time for 100msec execu-
tion, class 2 = 100/0.600

= 164msec

If one class 1 and one class 2 execution intervals oceur
together,

average elapsed time for 0.25msec execu-
tion, class 1 0.25/0.004

= §2.5msec
average class 2 execution time during an

elapsed time of 62.5msec

It

i

62.56 % 0.433
= 27.1msec

Combining these elapsed times in any desired manner we
find that the average elapsed time for one class 1 and one
class 2 execution interval is in the range 182msec to
187msec. This is approximately a 25% reduction on the
time caleculated for the same amount of processing with
no multiprogramming,

Because of the inherent approximations in using the
closed form expression for p, the scale of values obtained
for each case in Table ITI do not correspond exactly.
Nevertheless the results indicate that this parameter,
which is easily estimated from program statistics and
hardware parameters, is a useful gauge for multipro-
gramming.

|
B
10
CLASS 1 :I
1
« 4
=l B B P/ (%)
= 10F el
b F '
H
|]
i _J
| r
| Ol r.-_l.._.l
| i ! | i |
3 6 9 12 15

NUMBER OF PAGES, «x

1/ =10
CLASS 2
-] 8"‘
jen)
= 10+ B
=
|/)\2(X)
ol l_‘£
i { ! |
3 6 9 12 15

NUMBER OF PAGES, x

F1a. 7. Parameter set B

Volume 10 / Number 10 / October, 1967

6. Further Analysis

The program statistics obtained by Fine et al., are
representative of a class of programs run on a particular
time sharing system. The statistics of the complete popu-
lation of prograrms run on any system may differ markedly
from these. In this section, in order to demoustrate the
potential of multiprogramming and the effect of some
hardware variations, some conditions more favorable to
multiprogramming will be assumed, without firm justifi-
cation for the accompanying program statistics. However,
if program codes and data were organized for optimum
performance in a paging environment, program behavior
might be more closely represented by these statistics.

The results to be diseussed can be reproduced, in a sense,
for a multitude of model parameter values. It is sufficient
for presentation of the significant points to use just two
basic sets of parameter values. These sets of parameters
labeled A and B are deseribed in Figures 6 and 7, respec-
tively. It is not necessary to interpret the parameter
values in terms of absolute core and drum speeds. There is
a continuum of absolute values corresponding to each
parameter set, and this adaption of the model has already
been demonstrated.

Both parameter sets have the characteristics postulated
in Section 2 concerning the two classes of programs (or
execution intervals) which employ the CPU. The average
execution intervals are in the ratio 10:1 for the two classes,
and the class 1 programs exhibit a much more rapid
degradation in page demand rates. The page demand
rates are higher and the average execution intervals

CLASS 1

1A 2A 3A
e 2 % Drum Speed

/2 xRead Heads
=12 x Drum Speed
e 2 x Read Heads

1/2 xRead Heads
———————-{2 xRead Heads
i

/2 xDrum Speed

J— 172 xDrum Speed

AVERAGE CPU USAGE

!
[2
NUMBER OF PROGRAMS

N f—

Fic. 8. Performance for the multiprogramming of class 1 pro-
grams from parameter set A

Volume 10 / Number 10 / October, 1967

shorter for parameter set B than for parameter set A.
The drum organization assumed is four pages per field.
We shall see that, in the system deseribed by the model,
it is generally suitable to multiprogram two or three
programs defined by these parameter sets. Presumably,
if page demand rates were considerably higher, or execu-
tion intervals much shorter, than in these parameter sets,
the conditions would not be suitable for multiprogram-
ming.

In Figure 7 an alternate set of page demand functions
has been plotted and labeled B*. These functions corre-
spond to a linear interpolation between the discontinuities
in M{z) and A(x) for the parameter set B. This illustrates
the flexibility of the model concerning the page demand
functions which can be represented.

The performance of the system under parameter set A
is described in Figures 8 and 9. Also plotted in these figures
is the performance measure for the following six modifica-
tions to the basie drum configuration implied by parameter
set A: (1) twice the drum speed; (2) half the drum
speed; (3) twice the number of read heads per drum field
(m=8); (4) half the number of read heads per drum field
(m=2); (5) modifications (1) and (4); (6) modifications
(2) and (3).

The multiprogramming of up to three class 1 programs
has been analyzed and it seems obvious that this situa-
tion is very favorable for CPU usage (see Figure 8). In

CLASS 2
B 2D
2 x Drum Speed
I /2 x Read Heads
____________]’————— 2 x Drum Speed

& l———-——— 2 x Read Heads
% 6 I — Parameter Set A
)
& e p——— |/2 x Read Heads
LL'oJ 2 x Reod Heads
< """ 1/2 xDrum Speed
r 4+
e I —
B /2 x Drum Speed
&
2
|
[2

NUMBER OF PROGRAMS

¥16. 9. Performance for the multiprogramming of class 2 pro-
grams from parameter set A

Communications of the ACM

643

the ranges considered there is an almost Linear increase
in performance with drum speed and with the number of
read heads per drum field. Performance is most sensitive
to the drum speed, which determines the delay experienced
by each program, on its making a page transfer request,
until it becomes eligible to execute again. The effect of
increasing the number of read heads is to allow more
subqueues for page transfer requests, thereby increasing
the expected number of page transfers per drum revolu-
tion for a given number of requests present (that is,
assuming uniform page distribution). When there is only
one program using the high speed memory the only effect
of varying the number of pages per drum revolution is to
modify the latency delays, and this is a less significant
factor.

Tt is worthwhile to point out at this stage that modifica-
tion of drum speed can be interpreted as a modification
(in the opposite sense) of the average execution time per
instruction, which in turn can be interpreted, with some
approximation, as a modification to the eycle time of the
high speed memory. Thus halving the drum speed may be
considered equivalent to halving the eyele time of the
high speed memory, in its effect on the average CPU
usage. The point which must then be borne in mind is that,
if the cycle time is halved, programs will require only half
the execution time. Therefore, while our performance
parameter is a gauge for measuring the effectiveness of
multiprogramming, it cannot be used as a comparison of
the rate of completion of program execution intervals in
this case.

{Ox Drum Speed

45
CLASS |
-
14 24 3A

20 1/10x Page Demund Rate
& 15
§ .
- Parameter Set BY
a Parameter Set B
- e s
L
g o~
w
o]
>
a

05 -

10 xPage Demand Rate
I__ﬁﬁﬁw_'__r_____.——-z/sommm Speed
|

| 2 3
HUMBER OF PROGRAMS

Fig. 10. Performance for the multiprogramming of clags 1
programs from parameter set B

644 Communications of the ACM

Trom Figure 9 we see that the conditions are not as
favorable for multiprogramming elass 2 programs from
parameter seb A as for multiprogramming elass 1 pro-
grams. if the drum speed is halved, performance actually
decreases with two programs in core memory. In the light
of the comments in the previous paragraph, it follows that
if the cycle time were halved 1t would also be disad-
vantageous to multiprogram two class 2 programs.

Referring to the corresponding results for parameter set
B (Figures 10 and 11), similar comments can be made for
variations in the drum speed. The importance of page
demand rates is also illustrated. The effect of the modifica-
tion to page demands, described by the parameter set
B*, is readily anticipated. These parameters have a some-
what lower average demand rate than parameter set B.
The difference is most noticeable in the multiprogramming
of two class 2 programs. For example, under policy 2D,
one program is allowed a maximum of 11 pages and the
demand rates Ao(7), - -+ , A2(11) differ significantly for the
two parameter sets.

Similar effects could be observed if the model were
analyzed for stationary mixes of class 1 and class 2 pro-
grams; however, all the major results for the multi-
programming of a fixed number of programs have been
illustrated. In [5] the case where the number of programs

-using the high speed memory changes according to certain

loading strategies is examined. This can give an advantage
over multiprogramming a fixed number of programs, but
under stationary conditions the advantage over multi-
programming the optimal fixed number of programs is not
great. The need for nonstationary control policies can also
be demonstrated; this need and also some models subject
to closed form solution are treated in [5].

10
i CLASS 2
10 x Drum Speed
1
k1
w
©
> 1B)
o 6
Fd /10 x Page Demand Rate
G
&
&
w4
< *
—_——_J—-——- Parameter Set B
e Pgrameter Set B
2k
10 x Page Demand Rate
[1 /10 x Drum Speed
{ 2
NUMBER OF PROGRAMS
Fie. 11. Performance for the multiprogramming of class 2

programs from parameter set B

Volume 10 / Number 10 / October, 1967

7. Conclusion

The most significant feature, not dealt with in this
investigation, is the system overhead involved in both the
executive control program and the implementation of
paging and multiprogramming. Present indications are
that this overhead is considerable and its effect would be
to moderate any improvement attributed here to multi-
programming. Nevertheless, analysis of the model has
provided useful insight into the potential of multiprogram-
ming and paging, and the results could be modified to take
account of system overhead.

Categoric conclusions cannot be made from the limited
set of statistics described in Section 3, but as they have
been recorded from a time sharing interactive environ-
ment they are appropriate. Analysis of the model for the
range of parameters corresponding to these statistics
indicates that a conservative outlook for multiprogram-
ming using a page on demand strategy must be maintained.
If a large high speed memory is available for user pro-
grams, however, it does seem that there is some advantage
(dependent on system overhead) to be gained from multi-
programming,.

Specifically, the SDC statistics have described paging
for a fixed page size of 1024 words of 48 bits. The model
has demonstrated that it is fortuitous to attempt multi-
programming with only 14 pages available for the user
programs. With 28 pages available to user programs, a
25 % margin of improvement has been calculated for the
multiprogramming of two programs. It is likely that the
method we have used to obtain the results for a 28 page
memory is a little favorable to the page on demand strategy,
because doubling the page size will not halve the number
of page calls. Therefore a slightly larger memory may be
necessary to obtain the improvement cited.

The necessary operating conditions for the success of
multiprogramming have been identified. The reason for
the failure of multiprogramming, in those cases analyzed,
was that programs were delayed too frequently and for too
long a period, either because of their own short execution
intervals or because they were constrained to execute in a
small high speed memory area. The most important
characteristic of the hardware is the relative speed of the
high speed memory and the drum accessing process. All
these factors are reflected in the channel utilization factor,
p, which has been proposed as a gauge for multiprogram-
ming under a page on demand strategy.

Acknowledgments. The author is indebted to Professor
B. Arden of the University of Michigan for helpful
diseussions on this work, and to G. Fine, C. Jackson, and
P. McIsaac for making available their measurements
taken at the System Development Corporation. Apprecia-
tion is also due to the referee for his very helpful eriticism.

RecEIvED APRIL 1967; REVisED JUNE 1967

Volume 10 / Number 10 / October, 1967

REFERENCES

1. Gissoxn, C. T. Time sharing on the TBM System/360: Model
67. Proc. AFIPS 1966 Spring Joint Comput. Conf., Vol. 28,
pp. 61-78.

2. ArpEN, B. W., GaLreg, B. A, O'Brien, T. C., anp WES_TER-
vewr, F. H. Program and addressing structure in a time-
sharing environment. J. ACM 13, 1 (Jan. 1966), 1-16. .

3. Fing, G. H., Jacgson, C. W., anp Mclsaac, P. V. Dyn.a.xmc
program behavior under paging. Proc. 21st ACM National
Conf., Washington, D. C., 1966, ACM Publ. P-66, pp. 223-228.

4. Warrace, V. L., anp RosensErG, R. 8. R.QA. -1, the
Recursive Queue Analyzer. Technical Report No. 2, Sys.
Eng. Lab., U. of Michigan, Ann Arbor, Mich., Feb. 1968,

5. Smrre, J. L. Markov decisions on a partitioned state space,
and the control of multiprogramming. Technical Report
No. 9, Sys. Eng. Lab., U. of Michigan, Ann Arbor, Mich.,
April 1967.

6. Morse, P. M. Queues, Invenlories and Maintenance. John
Wiley & Sons, Ine., New York, 1958,

APPENDIX

The details of the model of the drum and I/0 channel
operation are given below.

Let us consider a request which arrives to find n prior
requests, labeled 1, 2, --- n, waiting for service. In
order to include those cases in which some additional
information is known about the locations of the pages
associated with these n requests, let p# denote the prob-
ability that the kth request concerns a page displaced j
sectors from the current origin of the read heads.

Hence

m-—~1

Z P:‘k = 13

i=0

k=1,2 .-+ ,n (3)

Then measuring time from the beginning of the first time
unit after the (n 4 1) request arrives, and assuming each
subqueue is serviced according to a first-in first-out disci-
pline, the expected time until the completion of this most
recent request can be expressed as

m~% . [
E(tan) = 2 L{(Z p/‘m> + 7+ 1}
=0 M k=l

(4)
= (m 4+ 2n + 1)/2.

It is of interest to observe that this time is independent of
all pj" .

The Markov chain approximation to the behavior of
the drum I/O channel now proposed has a state descrip-
tion which is based on the number of page transfer requests
queued at the beginning of a time unit. The requests are
assigned priority according to their order of arrival, and
the probability that the jth priority request will have its
page transferred in the ensuing time unit is denoted by
pj . Therefore the completion time for the highest priority
request is described by a geometric distribution, with
mean 1/p1, since during each time interval it has prob-
ability p: of having its page transferred. If the jth priority
request completes, all lower priority requests k (k >)
assume priority & — 1 in the ensuing time unit. In order

Communications of the ACM 645

to satisfy (4) we have
v = 2/(m + 1),

The distributions for the completion time of the lower
priority requests are not as simple. Flowever it is an easy
matter to show (see [5, Appendix K}) that

n

E(tur) = =
2 i

7=1

(5)

and so in order to satisfy (5) we have

& _ 2n ,
;”_m+m—r (6)

Solving (6) in order for py, ps, - -+ , yields

_ 2(m — 1)
Pe= Tm + 2k = 3)(m + 2k — 1) (7)
thus defining the model parameters for any number of
requests. From (6) it follows that

lim 2, p; = 1
n-r00 y=l1

which is in accordance with the maximum capacity of the
I/0 channel—one page transfer per unit time interval.

3 (2)
2 mean=3,5
1 l
1 2 3 4 5 [ki 8
L
i P ®)
E
£ .2
T mean=3,5
=
S l
8
B |
3 1 2 3 4 5 6 7 8
o
2
=)
3
&
sl (c)
.2
mean=3, §
4] l
L L l d N
1 2 3 4 5 6 7 8 9 10

Time t

F1e. 12. Probability density functions for page transfer
completion time.

646 Communications of the ACM

It can also be seen from (5) that
E(tﬁ-i—l) = N,

The representation described above is a very tractable
Markov model, because of its simple state deseription. It
should be noted that this model only describes the comple-
tion time (waiting time < transfer time) of a request from
the beginning of the first time unit after the request ig
generated. The additional latency delay, experienced by
each request, is accounted for exactly in the discrete time
model of Section 2.

When there is only one program using the high speed
memory, only one page transfer request can oceur, and so
in the Markov model the completion time of a page trans-
fer request is deseribed by a geometric distribution with,
mean (m + 1)/2. Of course, in the actual system this time
is a random variable, uniformly distributed over the range
1, 2, -+, m. However, the average CPU usage derived
from the model of Section 2 is only dependent on the first,
moment of the distribution, and hence it is the same for
either distribution.

When more than one page transfer request ean occur
the higher order moments of the distribution affect the
average CPU usage. If the use of the drum I/0 channel is
heavy, however, so that each new page transfer request
arrives to find other requests already waiting, then the
distribution resulting from the Markov chain approxima-
tion is close to reality. This is illustrated by the probability
density functions plotted in Figure 12, which eorrespond
to the case of a request which arrives when one other
request is waiting, and m = 4. Figure 12(a) is the density
function for the completion time of the second request if
no additional information is known about the location of
the page associated with the first request. However, the
location of the page associated with the first request is
dependent on the history of previous page transfers and
the elapsed waiting time of the request. Figure 12(b) is
the density function for the completion time of the second
request, a priori that there is twice the probability of the
page associated with the first request being located in the
next two sectors to rotate under the read heads. Figure
12(c) is the density function yielded by the Markov chain
approximation derived in this Appendix.

From Figure 12(c) it can be seen that one approxima-
tion, implicit in the Markov model, is the assignment of a
small probability to completion times longer than those
which can possibly oceur in the real system. In general,
the variance of the resulting distribution is larger but the
mean is always the same as for the real system. The effect
of this decrease in the ‘“‘orderliness” (see Morse [6]) of the
drum I/O operation is to increase the likelihood of queue-
ing delays, which in turn would reduce the mean CPU
usage derived from the model of Section 2. But we have
indicated that the model becomes close to reality as the
use of the drum I/O channel increases, and therefore, it
should provide reliable results.

for n large.

Volume 10 / Number 10 / October, 1967

