
R. L. ASHENHURST, Edi¢o~

Muhiprogramming under a
Page on Demand Strategy

JOHN ~L. SMITH
The University of Michigan,* Ann Arbor, Michigan

A model of multiprogramming for a particular computer
system using a page on demand strategy is developed. Analy-
sis of this model is used to predict performance (measured by
the average usage of the CPU) when user programs are
typical of those arising from an interactive time sharing
environment. The effect of several hardware modifications is
also analyzed. A parameter, readily calculated from the
hardware characteristics and the program statistics, is proposed
for gauging the effect of multiprogramming.

1. I n t r o d u c t i o n

A point of contention currently exists on the best
strategy for handling the loading of programs and the
sharing of the high speed memory in large time sharing
computer systems. The problem is most critical and most
difficult to resolve when the system is processing a heavy
load of programs which execute for relatively short inter-
vals. As this situation can be expected to arise frequently
in systems interactively serving a large number of users,
an analysis of the performance of a pa~'ticular computer
subsystem has been made.

The techniques of multiprogramming and paging have
been proposed as means for efficiently adapting a com-
puter system to an interactive type of load. The implemen-
tation of these techniques requires a considerable hardware
investment for the handling of dynamic relocation [1],

*Systems Engineering Laboratory, Department of Electrical En-
gineering, College of Engineering. This research was supported by
contract AF 30 (602)-3953 with the US Air Force, Rome Air
Development Center, Rome N. Y.

636 Communications of the ACM

and the best control policy remains to be determined. One
mode of paging [2] has been termed tile single page loading
strategy, the aim being to obtain a conservation of the
high speed memory by loading pages from secondary
memories only on demand. Another mode of paging is to
load only entire segments of programs. Both of these
loading strategies are generally proposed in conjunc-
tion with multiprogramming, so that execution may be
switched to another user program when one program re-
quires a page (or segment) to be transferred from a sec-
ondary memory. The question wtfich has been raised is
whether the characteristics of programs and the necessary
system overhead will permit sufficient overlapping of
fetching and execution for an improvement in the system
performance to be obtained by these techniques.

In a recent paper by Fine, Jackson, and McIsaac [3],
some relevant statistics on the dynamic behavior of a par-
ticular set of programs were reported. These programs were
typical of those run in interactive mode on the Q-32 time
sharing system at the System Development Corporation.
On the basis of these statistics, the authors concluded that
there was considerable doubt about the worth of the page
on demand strategy. Certainly any suggestion that i t
would be useful to multiprogram a few pages from many
programs in the high speed memory was negated by these
statistics.

The work reported here partly consists of a description
and analysis of a stochastic model of the important opera-
tions in multiprogramming with a page on demand
strategy. The model is used to investigate the multipro-
gramming of a particular system under full load conditions.
One aspect of the results concerns the application of the
statistics of Fine et al., to the model in an effort to obtain
further substantiation of their conclusions. The perform-
ante of the system when loaded by programs having
markedly different statistics is also analyzed. In each case
the effect of several hardware modifications is demon-
strated.

2. T h e M o d e l

While there are many additional hardware components
in a large time sharing computer system, a typical hard-
ware configuration for the subsystem relevant to this s tudy
is shown in Figure 1. A schematic description of the opera-
tion of this computer subsystem is given in Figure 2. There
are two service functions represented in the modeh (1)
execution of programs; (2) transfer of pages between the

Volume 10 / Number 10 / October, 1967

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363717.363763&domain=pdf&date_stamp=1967-10-01

drum memory and the high speed memory. The queueing
and service disciplines associated with these functions, and
the simplifying assumptions and approximations used, are
now described.

It is assumed that programs are loaded into the high
speed memory under a page on demand strategy, with a
standard initial ttu'ee page allocation. Two classes of user
programs ,(class 1 and class 2), which differ in the statistics
of theh" executioIl intervals and page demands, ea'e identi-
fied. The model allows for a maximum of three programs
to be muttiprogrammed in the high speed memory.

It is well to explain the significance of an execution
interval. This pertains to the period of execution allocated
to a particular program in effecting the time sharing of the
CPU. Because of random interactions with the user, only a
fraetion of all program execution intervals are terminated
by a time interrupt (see Figure 3). As a result of the page
on demand strategy, each execution interval is divided
into a number of phases. An execution phase occurs be-
tween successive calls for new pages from the drum, and
between the last page call and the termination of the
execution interval.

Eligible programs queue for execution by the CPU. For
each class of programs there are two parameters of the
model, ~ and X(x), which describe the length of an execu-
Lion phase. A subscript will be used to identify the param-
eters belonging to each class of programs. The parameter
defines a negative exponential distribution function de-
scribing the execution interval for a program. I t is assumed
that each execution interval is an independent random
variable. Hence,

probability that an execution interval _<t = 1 - e -"t (1)

where 1/u is the average execution interval. The function
?~(z) defines a nonhomogeneous Poisson process, which
describes the occurrence of demands for new pages by a

I
Page I

3

CORE MODULE

Executive
Control
Program

L ~ u

~Page

(') Drum i~ ')

program during its execution interval. For a program
which has already activated y pages, the average interval
between successive page requests is 1/X(y). Hence

probability that the interval between successive

page requests _<t = 1 - e -×(*)*. (2)

Information on the drum memory is organized into
recording fields, consisting of a number of tracks, which
can be read or written in parallel by fixed heads. In general
each field is composed of m sectors, each sector having a
storage capacity of one page of information. Upon the
generation of a page transfer request, the request is as-
signed to a subqueue associated with the sector containing
the required page. Unit time for the model is the time taken
for the transfer of one page from the drum (l /m revolution
time), and time is synchronized to the passage of page
headers under tim read heads. One can envisage a rotation
of the drum as effecting periodic service, in the order 1,
2, • • • , m, to each subqueue. Each service interval is of one
time refit and, if the corresponding subqueue is not empty,
a page transfer will occur; otherwise there will be no
transfer during that time unit.

For the purpose of modeling the operation, two im-
portant assumptions have been made. Firstly, each page
requested fol" transfer from the drum is assumed to be
located with equal probability (l /m) in any drum sector.
Secondly, it is assumed that the output of pages to the
drum from the high speed memory produces no delay in
the input of pages to the high speed memory from the
drum. The latter assumption is valid in cases in which a
vacant page position is maintained in the high speed
memory and the usage factor for the drum is slightly below
100%, so that there is usually a vacant page position in
each drum sector. Hence a useful model need only treat the
input of pages from the drum to the high speed memory.

In the Appendix, the following approximation to the
page transfer process, in which the average transfer
capacity of the drum I /O channel combination is exactly
reproduced, is derived. Every page transfer request, pres-
ent at the beginning of a time unit, has some probability
of being serviced during that time unit. In pm'ticular the

DRUM I/O

3/m-I/] "

3 Programs Mo×Imurlq m Queues 14 Poges Maximum

Fro. 1. A computer subsystem FIo. 2. The model of multiprogramming and paging

Volume 10 / Number 10 / October, 1967 Communicat ions of the ACM 637

kth request to occur (out of all those present) has prob-
ability

2 (m - 1)
(m + 2/~ - t) (m + 2~ - 3)

of transfer during the time unit.
I t was the intention in developing this model to identify

class 2 programs with those jobs having longer execution
intervals and greater high speed storage demands. The
following priorities were also implemented in the model.
In choosing the next program to use the CPU, an eligible
(able to execute) class 2 program is given priority over any
eligible class 1 program. Likewise the program with the
larger high speed memory commitment is given priority
over another program of the same class, when both arc
eligible to execute. The same priority structure was also
implemented in the operation of the drum I/O channel.

The admission of preemption in the drum I/O sub-
queues does not change the rate of completion of page
transfer requests front that resulting from a first-in first-
out (FIFO) queue discipline. In the real system, however,
the expected additional waiting time of preempted re-
quests will be dependent upon their elapsed waiting time.
Thus there is a slight discrepancy in the representation
described above if we equate the variable/c td the priority
of a request, when this differs from the request's order of
arrival. This point may be clarified by referring to the
derivation in the Appendix. No compensation for this
feature was made in the model, but calculations of the
expected completion times of requests, under all possible
preemptions which can occur in the particular system,
show the model to give close approximations. As the most
important property to be represented for this analysis is
the drum charmel transfer capacity, tile approximation is

justifiable.
The main limitations to the scope of the model are: (1)

there is no representation of tile CPU time or the I/O
channel usage devoted to system overhead, (2) thel~ is no
representation of the competition which might arise be-
tween the CPU and the I/O channel for access to the high
speed memory, (3) the number of programs and the num-
ber of pages that can be handled are limited by the analysis
method, (4) a condition of system overload is assumed;
that is, class 1 and class 2 programs are assumed to be
always awaiting processing when the high speed storage is

available.

3. R e l a t i n g t h e M o d e l t o a n A c t u a l S y s t e m

The mathematical descriptions which have been in-
corporated in the model ensure that it is tractable for
numerical analysis and optimization procedures. The re-
sults quoted in this paper were obtained using the analysis
program RQA-1, developed by Wallace and Rosenberg
[4]. Some representative values for the parameters of the
model are now derived by refen'ing to the statistics taken
by Fine et al. [3]. These statistics are the result of detailed
measurements taken on 182 sample execution intervals of

638 Communicat ions of the ACM

five programs/ Their adaptation to the mod~i serves as a
test of the fitness of the probability distributions assum~ d
for the program characteristics.

In Figure 3 the cumulative frequency function{ of ti~e
number of instructions executed by a program during o~c
schedulud execution interval is shown. 'fhe discontinuity
at 80,000 instructions is due to the system imposed quaxt
tum of 400msee of execution time, which was equivalent
to the average execution time for 80,000 instructions. Also
plotted in Figure 3 is a negative exponential probability
distribution having the same mean (20,400 instructions)
as the statistics. If, is obvious tlmt the negative exponential
is a very poor fit to the cumulative frequency function of
these statistics. Therefore in view of the characteristics (U"
the model, it is useful to divide these statistics into two
classes:

Class 1: Samples in which a progTam executes 1000
instructions or less

Class 2: Samples in which a program executes more
than 1000 instructions.

There are 91 samples in each class. Figure 4 shows the
cumulative frequency functions of the number of instruc~
lions executed per execution interval for each class, to,

I.O--

.8]
i

6! flo

/
.2 /

I
I

- I
I

/

Fie. 3.

J
f

/
/

/

/o I I

ii/
/

] /
/

I
I

I
I

o ~

SDC stotisfics

I - e "n/ZO'4 x103

[i - - _ i _ _ J _ _ , i i r
8xlO 4 2x 10 4 4 x I0 4 6 x I0 4

NUMBER OF I N S T R U C T I O N S EXECUTED, n

Cumulative distribution of the number of instruction.~
executed per execution interval

i It should be remembered, however, that these statistics were
not taken from a paged system.

Volume 10 / Number 10 / October, 1967

tether with a negative expone~tia] probability distribution
having the same mean. q'he mean for class 1 is 88 instruc-
tions and for class 2 the mean is 40,700 instructions.

It is proposed that by using the above classifications the
negative exponential distribution is a tolerable approxima-
tion tbr the pa'~ieuhu' statistics? In appraising tiffs ap-
proximation ~he following featta-e must be considered in
addition to the/it of the curves. It is implied by the model
Shag all program execution intervals are independent
ra~idom variables described by the negative exponential
distribution. :It is appea'ent fl'om additional statistics, not
quoted here, that consecutive execution intervds for tile
same program are not completely independent. On this
point it can be argued that if the system is processing
several different programs the combined sequence of exe-
cution intervals should be almost independent, despite
some eon'elation between execution intervds for a par-
tieular program.

A second statistic of the five programs is displayed in
Figure 5. Here the average number of instructions exe-
cuted between requests for a new page is plotted against
the number of pages ah'eady activated during the execu-
tion interval. From the available statistics little can be
said on whether the process of new page requests approxi-
mates a Poisson process or not. An important feature of
the model, however, is that the parameter 1/X(x) can be
adjusted so that the model conforms exactly to the func-
tional behavior depicted in Figure 5. This should be an

overriding factor in achieving correspondence between the
model and the pl~ysical system.

At this stage we must take into account one restriction
which exists in any computer system--the capacity of the
high speed memory. Here we need only consider the
capacity available to user programs, which enforces an
upper bound on the term number of active pages which
can be held in the high speed memory. It is highly prob-
able that in a multiprogrammed enviromnent, individual
progTams will be forced to swap pages between the drum
and the high speed memory because the total number of
active pages of all the programs in the high speed memory
has exceeded this bound. (In the model the bound is 14
pages and Figure 5 shows that swapping is likely to occur
even when there is only one progrmn using this size of
memory. We shall see, however, that the effect of larger
high speed memories can be analyzed with the model.) In
modeling a program's demand rate for page transfers after
swapping first occurs it will be assumed that the rate re-
mains constant at tile value in effect when the first swap
oeeun'ed--unless more pages of the high speed memoDr
become available and the program is Mlowed to expand
into these.

While it is not appropriate in this paper to present the
details of the analysis methods, a brief comment on the
limitations is necessary. The complexity of the model pro-
posed is considerable from an analysis viewpoint; never-

z iO
2

I-
.6

~E

i / ' - - ' 0 , SDC statistics
I

. I - e "/Bs !

1

__ I I _ _ l I I
200 4 0 0 6 0 0 8 0 0 I000

S
y / / 0 SDC statistics

~.S// I - e n/40"7 x103

i 1 ~ I I
z~,o ~ 4~,o 4 6~,o ~ 8 , , o 4 ,o~,o 4

NUMBER OF INSTRUCTIONS EXECUTED, n

Z
_o t.0

fD

t -
_co
D .6

_J

.2
~9

FIG. 4. Cumulat ive distributions for each class of execution
i n t e r v a l

2 This also suggests that a two-phase hyperexponential d i s -
t r i b u t i o n c o u l d b e u s e d fo r a l l execution intervals.

l0 5 --

10 4
g
uJ
D

~ iO 3

9
o"

y.

~5

rJ
S ff

F"
F

_ _ A I

3 6 9 12 15
NUMBER OF PAGES ACTIVATED

FIG. 5. Average page demand stat ist ics

,,F

V o l u m e 10 / N u m b e r I0 / Oc tober , 1967 C o m m u n i c a t i o n s o f t h e ACM 639

theless, all the results to be presented were obtained by
precise numerical solution of the equations of the matl Je-
matical model. The size of the high speed memow avail-
able for user programs in the model was limited to 14
pages in order to restrict the computation required in the
analysis. Larger high speed memories were represented by
redefining the physical page size and then appropriately
modifying the value of the abscissa used to determine
the page demand rate from Figure 5, and also modifying
the page transfer time. This representation implied that
any restrictions arising from the location of particular in-
struction sequences and data in different pages were ig-
nored. Another limitation is that the attainable solutions
describe the stationary behavior of the model; that is, the
analysis method is restricted to measuring performance
parameters such as the long run ~verage CPU usage by
programs. The executive control policies which can be
considered are therefore stationary, for example, those
that maintain a constant mix of class 1 and class 2 pro-
grants in the high speed memory. Because of the manner in
which class 1 and class 2 programs have been identified
with the particular statistics, stationary mixes of these
classes would not occur in the real system, ttowever, file
performance measures which we obtain by analyzing
various multiprogramming mixes should be a good indica-
tion of the performance obtained in practice.

4. A Gauge for Mul t ip rogramming

By reference to the system model proposed in Section 2
and the type of program statistics quoted in Section 3 it is
possible to identify the critical mechanism of multipro-
gramming (under the particular operating conditions
defined). Programs using the high speed memory act as a
source of page txansfer requests. These requests queue for
service from the drum I / 0 channel. Therefore in an
analogous manner to a single queue-single server system,
a utilization factor p (see [6, p. 17]) for the drum I /0
channel can be defined:

rate of occurrence of page transfer requests
P = rate of page transfer completions

With few exceptions, the minimum number of page
transfer requests which can occur over each execution
intmwal is equal to the mlmber of pages activated during
the interval. This number will be augmented, however, if
the high speed memory limitations necessitate swapping.
Therefore the rate of occurrence of page transfer requests
is a function of the following program and system vari-
ables:

(i) tim number of instructions executed per execution
interwd,

(if) the cycle time of the high speed memory,
(iii) the page demand function (cf. Figure 5),
(iv) the maximum number of pages of the high speed

memory available to each program.
The rate of page transfer completions is dependent on the

Lardware characteristics:
(i) the (h'um revolution time,

(if) the number of pages t)er drum fie!d, ~.
lit follovs {hat p is directly related to ~,he ratio of the speeci
of the hig}~, speed memory to the speed of the dru.m, I:~.
expressi>g p :vs a function of tim parameters of the too&> :
this ratio is incorporated it: the time normalization imp]ie~ :
in the defi~:fition of ~, X(x), and the page transfer pr'oee~,< ,.
The derivation is given below.

Using eqs. (1) and (2), and defining y to be the max:inm~v'~
number of pages of high speed memory which. ,~ilI be able,-
cared to each program, the average number of page trans
fers per execution interval is given by:

>-: X(z) x(1)
N = 1 + X(1) + g ~

" X(x) . (1 X(y) ~ - : + o,II + ×(y) +

"-: x(z) x(~)
" - ' + I I =:l+~=,~,=~X(x)+, = - , x (z) + ~ ,

The rate of oeeun'enee of page transfer requests is th~.:;,o
given by N~. In the Appendix it is demonstrated that th<o,
rate of page transfer completions is dependent on ~h~<~,
numt)er of requests present. It follows from eq. (5) ~:tm.~
for k requests this rate is

2k
m + 2k - 1

and therefore

p ~ : : N g (m + 2 t : - - 1)
2k

For efficient multiprogramming p should not be gq'eati/
in excess of I, or else frequent queue:lug delays iu the I/C>
channel will occur. A small utilization factor would r~o~,
necessarily indicate poor performance in ten'ms of CP~,7
usage, it merely indicates low I/O channel usage, which a
worst is idle equipment.

In Section 5, p is evaluated for several situations to indi .
care its correlation with multiprogramming performance.
Because the parameter £ varies during the opm'ation of z~
system, the convention of using its maxhnum value (thee:
number of programs being multiprogrammed) in th*:~
evaluation of p is adopted. Also, some approximatior: wi~
be involved in specifying the value of the parameter y i:::~
each situation.

In order to illustrate the sensitivity of p to the value c,F
h, consider a typical case in which m = 4 and three p>:>
grams are bring multiprogrammed. The rate of page tran:÷ -
fer completions may vary between 2.5 for/c = 1 and 1.S~
for k = 3. Accounting for this dynamic vaa-iation would n~> ~:,
be significant in the results to be quoted here, but so rn~e~
applications may call for a more accurate formula for ?-
Appendix G of [5] indicates some approaches to thi:÷
problem.

640 Communicat ions of the ACM Volume 10 / Number 10 / October, 196~

5. Analys is of the Model Using the SDC Sta t i s t i cs

In order to complete the parameter specifications for
the :model, [he operating speeds of the drum and the high
speed memories m~lst be defined. The followii~g figures
were selected as being representative of eurrei tg hardware
performance.

5~ean instruction executiolz time 2•5~sec
Drum speed 3,000 rpm
/:)age size 4 pages/rev.

I t follows that the transfer time for one page (the time
u~fit) is 5msee, al~d m = 4. If it is assumed that the average
number of instructions executed during class 1 and class 2
exeeutio~ intervals is 100 and 40,000, respectively, then

1 100 X 2.5 M 10 -4
- = 0.05 time units ~1 5 X 10-4

1 40 X 10 '~ X 2.5 X 10-4
- = 20 time units.

~2 5 X 10 -~

Here the subscript denotes the class of programs which the
parameter describes. Also, with reference to Figure 5, the
average number of instructions executed between page
calls, when a program has already aefivated eight pages, is
2,160 instructions. Therefore

TA13LE I. SWA'r~ONARY MULTIPI~OGI¢AMXtINO POLICIES

Program mix Maxhmim page allocatlotl
Poiicy

Class 2

1A
113
2A
213
2C
2D
3A
3B
3C

/
Class 1] Class 2

I] ~,°

2 l " '"
1 1

• "" 2
3 - . .
2 1
2 1

Class 1

14
. . .

7, 7
7

, . .

. o .

5, 5, 6
5, 5
5, 5

14

II
7, 7
7, 11

6
8

T A B L E I I . HARDWARE CONFIGIIItATIONS

Highi Average execution
speed memo~ • Drum time/instruction

I 14 pages 3,000 rpm, m = 4 2.5~see
I I 14 pages 30,000 rpm, m = 4 2.5~sec

I I I 28 pages 3,000 rpm, m = 4 2.Lgsec

T A B L E I I I . AVEmtGE C P U US&GE FOil STATION&RY
MULTIPROGRAMMING

I I i l

1 1 2160
. 1.08 thne units.

X~(8) X~(S) 2OOO

Similarly all the values in the sequence X1(3), M(4), . . . ,
X~(3), . - . , can be evaluated.

The control policies for which the model was analyzed
are defined in Table I. The first two policies do not involve
multiprogranmfing, the remainder do. All the policies im-
pose upper bounds on the number of physical pages of the
high speed memory which each program may use. I t is
implicit that the class of each program is identifiable in
advance.

In Table I I three d:ifferent system configurations are de-
fined, and in Table I I I the results of the model analysis for
each configuration and for each control policy are given. In
all eases the performance parameter is the average CPU
usage for each class of programs. The model parameters
derived at the beginning of this section correspond to the
first ease listed in Table II. Case I I involves a change in
the page transfer rate corresponding to ten times the origi-
nal drum speed. While the same capacity drum running at
30,000 rpm may not be feasible it is of interest to analyze
this ease. Case I I I corresponds to doubling the size of the
high speed memory and this change is modeled by doubling
the physical page size in both the high speed memory and
the drum. The results given are for m = 4. This implies a
larger drum in terms of the tmmber of bits per track. I t
should be noted that the maximumpage allocation lirnits
given in Table I also refer to double size pages in this case.

Since the same type of high speed memory has been
assumed in each ease, the average CPU usage can be used
for direct eompaa'ison of the rate at which execution inter-

V o l u m e 10 / N u m b e r 10 / O c t o b e r , 1967

Pol-
icy

1A
113

2A
2B
2C
2D

3A
3B
3C

ClaSSl C~asa a

• o05 ... 1210
. . . . 314 / 1,88

E

.008! "." j148

.003 .261] 3 .44

. . . . 158] 5.51

. . . . 2'20] 3.50
. /

.OO9 ... t124

.005 ,070 11.7

.004 .181 / 3 .79

II

.049 . - . 21.0 ,008

.077 . . . I ' t .8 i .011

.011 .778 .3~4 .004
• . • .7511 . 5 5 1

. . • .819 .350

.osT l . - - t2.4 1.012

.049 1 .449 1.17 .008

0% .37 i

Class p

• . . 159
.467 1.08

111
• 4 3 3 1 . 5 1

• 609 O. 89
.007[0.94

• . • 95.7
.353 2.69
,405 2.13

pals are conipleted. In all cases, the multiprogramming of
progn'ams having class 1 exeeution intervals (policies 2A
and 3A) products a significant improvement in the CPU
usage, with most of the improvement possible by main-
tMning just two programs in the high speed memoIT. If
the system is only processing programs path class 1 execu-
tion intel-cals, the elapsed time for each execution is
solely determined by the drum speed. In case II where the
drum speed is 10 times that of ease I, the CPU usage is also
increased by a factor of 10.

C o m m u n i c a t i o n s o f t h e A C M 641

Mult iprogramming programs having class 2 execution
intervals seriously degrades performance in case I bug
produces a significant improvement in performance for
ease I I I (compare policies 2C and 2D with policy 1B). In
case I I there is a slight degradatior~ in performance. A
detailed examinat ion of the performance figures suggests
that , overall, in ease I mul t iprogramming would lead to
poorer performance, and there is little advantage to be
gained by using mul t iprogramming in ease I I . In ease I I I ,
however, there seems to be considerable gain possible. This
last conclusion is based on the following estimates.

The statistics show tha t although class 1 and 2 execution
intervals will occur randomly, they occur with equal fre-
quency in the S D C system. Therefore the execution times
devoted to the two classes of execution intervals are in the
proport ion 0.25msee to 100msee (these t imes being the
average execution intervals for the two classes). Now if
no mul t iprogramming were employed we have:

average elapsed time for 100msee execu-
tion, class 2 = 100/0.467

= 214msee
a v e r a g e elapsed time for 0.25msee execu-
tion, class 1 = 0.25/0.008

= 31.3msee
a v e r a g e elapsed time for one class 1 and
one class 2 execution interval is then = 214 + 31.3

~. 245msee

Now considering the continual mul t iprogramming of two
programs, it has been indicated at the conclusion of Sec-
t ion 3 that in the real situation the composite of programs
in the high speed memory will f luctuate between two class
1 execution intervals, one class 1 and one class 2 execution
interval, and two class 2 execution intervals. Using the per-
forInance figures for s ta t ionary mixes we can make the
following observations:
I f two class 1 execution intervals occur together,

a v e r a g e elapsed time for 0.25reset execu-
tion, class 1 = 0.25/0.011

= 22.7msec

1 /~a :5o

1/#~=5

1

I00

I /Xl(X)

r J

' I r J
__J I

_ _ I i ~ I
5 6 9 12

NUMBER OF PAGES, x

Fro. 6. Parameter set A

l / x z (x t I

15

If ~Swo cl~ss 2 execution intervals occur togethor,

average elapsed time for 100msec execu-
tion, class 2 = 100/0,509

= 164msec

I f one cl~ss 1 and one class 2 execut, iorl i~terv~ls occc~r
together,

average elapsed time for 0.25msec execu-
tion, class 1 = 0.25/0.00~

= 62.5msee
average class 2 execution time during an
elapsed time of 62.5msee = 62.5 X 0.433

= 27.1msec

Combining these elapsed t imes in any desired manner we
find tha t the average elapsed t ime for one class 1 and one
class 2 execution interval is in the range 1S2msec to
187msec. This is approximately a 25 % reduction on the
t ime calculated for the same amount of processing with
no multiprograrnming.

Because of the inherent approximations in using the
closed form expression for p, the scale of values obtained
for each case in Table I I I do not correspond exactly.
Nevertheless the results indicate tha t this parameter ,
which is easily est imated from program statistics and
hardware parameters, is a useflfi gauge for nmltipro-
gramming.

10

1//u.i .~1 w
1.0

f
I
I
I
I 0 J -
I

J / ~ a : l O
I 0 t -

I.OF-

0.1t-

t
CLASS 1

U

B ..~-. . . r . J y B I / X l (x)

ii

i I 1 J I
5 6 9 12 15

NUMBER OF PAGES, x

z5

i / X 2 (x)

I __1 I
5 6 9 12 15

NUMBER OF PAGES, x

FIe. 7. Parameter set B

642 Communicat ions of the ACM Volume 10 / Number 10 / October, 1967

6. F u r t h e r Analysis

The program statistics obtained by Fine et al., are
representative of a class of programs rtm o~t a particular
time sharh~g system. The statistics of the comptet;e popu-
lation of progTamS run on any system m~y differ markedly
from these. In this section, in order to demonstrate the
potet~tial of multiprogramming and the effect of some
hardware variations, some conditions rnore favorttble to
multiprogramming will be assulned, without firm justifi~
cation for the accompanying program statisties. However,
if program codes and data were organized for optimum
performance in tJ. paging envh'onment, program behavior
might be more closely represented by these statistics.

The result:s to be discussed can be reproduced, in a sense,
for a multitude of model parameter values. I t is sufficient
for presentation of the significant points to use just two
basic sets of parameter vMues. These sets of parameters
labeled A and B are described in Figures 6 and 7, respec-
tively. I t is not necessary to interpret the parameter
values in terms of absolute core and drum speeds. There is
a continuum of absolute values corresponding to each
parameter set, a;nd this adapt.ion of the model has Mready
been demonstrated.

Both parameter sets have the characteristics postulated
in Section 2 concerning the two elasses of programs (or
execution intervals) which employ the CPU. The average
execution intervals are in the ratio 10:1 for the two classes,
and the el~tss 1 programs exhibit a nmch more rapid
degradation in page demand rates. The page demand
rates are higher and the average execution intervMs

short.er for parameter set B than for parameter set A.
The drum organization assumed is four pages per field.
We shrill see that, in tile system deseribed by the model,
it is generally suitable to multiprogram two or three
programs defined by these parameter sets. Presumably,
if page demand rates wm'e considerably higher, or exeeu-
ti(m intervMs much shorter, than in t,hese parameter sets,
the conditions would not be suitable for mulfiprogram-
ruing.

In Figure 7 an alternate set of page demand functions
has been plotted and labeled B*. These functions corre-
spond to a linear interpolation between the discontinuities
in M(x) and X2(x) for the parameter set B. This illustrates
the flexibility of the model eoneerning the page demand
functions which can be represented.

The performance of the system under parfmteter set A
is described in Figures 8 and 9. Also plotted in these figures
is the performance measure for the following sLx modifica-
tions to the basic drum configuration implied by parameter
set A: (1) twice the drum speed; (2) half the drum
speed; (3) twice the number of read heads per drum field
(m = 8); (4) half the number of read heads per drum field
(m=2) ; (5) modifications (1) and (4); (6) modifications
(2) and (3).
The multiprogramming of up to three class 1 programs
has been analyzed and it seems obvious that this situa-
tion is very favorable for CPU usage (see Figure 8). In

tlA

O-
L)

W

fE
W
>
<

. 8 -

.2

CLASS I

1A 2A

l/
I 2
NUMBER OF PROGRAMS

3A
f 2 x Drum Speed

fl/2 xReod Heads
""L2x Drum Speed

~ 2x Read Heads

.... Parameter Set A

...... 1/2 xReod Heads
~ { i 2 xRead Heads

/ 2 xDrum Speed

,,, I /2 xDrum Speed

i

FIa. 8. Performance for the multiprogramming of class 1 pro-
grams from parameter set A

Volume 10 / Number 10 / October, 1967

1.0 -'-"

CLASS 2

I B

. 8 o -

.

¢n 6

2_

<>

2[)

. 2 x Drum Speed

12/2 x Read Heeds
x Drum Speed

2 x Read Heads

Poremeter Set A

1/2 x Read Heads

2x Read Heads
/2 xDrum Speed

I/2 x Drum Speed

I 2
NUMBER OF PROGRAMS

FIG. 9. Performance for the multiprogramming of class 2 pro-
grams from parameter set A

Communicat ions o f the ACE[643

the ranges considered there is an almost t in~r increase
in performance with drum speed and with the number of
read heads per drum field. Performance is most sensitive
to the drum speed, which determines the delay experienced
by each program, on its making a page transfer request,
until it becomes eligible to execute again. The effect of
increasing the number of read heads is to allow more
subqueues for page transfer requests, thereby increasing
the expected number of page transfers per drum revolu-
tion for a given number of requests present (that is,
assuming uniform page distribution). When there is only
one program using the high speed memory the only effect
of varying the number of pages per dram revolution is to
modify the latency delays, and this is a less significant
factor.

I t is worthwhile to point out at this stage that modifica-
tion of drum speed can be interpreted as a modification
(in the opposite sense) of the average execution time per
instruction, which in turn can be interpreted, with some
approximation, as a modification to the cycle time of the
high speed memory. Thus halving the drum speed may be
considered equivalent to halving the cycle time of the
high speed memory, in its effect on the average CPU
usage. The point which must then be borne in mind is that,
if the cycle time is halved, programs will require only half
the execution time. Therefore, while our performance
parameter is a gauge for measuring the effectiveness of
multiprogramming, it cannot be used as a comparison of
the rate of completion of program execution intervals in
this case.

.]
CLASS 1

1A 2A 3A

IOx Drum Speed

i WlOx Page Demand Rate

hA
.15

hA
.10

bJ
>

.05

Fm. 10,

Parameter Set B ~
l i - - P a r a m e t e r SetB

- - 1 0 ×Page Demand Rate

j - -

2 5
NUMBER OF PROGRAMS

WlOx Drum Speed

Performance for the multiprogramming of class 1
programs from parameter set, B

From Figure 9 we see that the conditions are not, a,s
favorable for multiprogramming class 2 programs from
paramet:;er set A as for multiprogramming class 1 pro-
grams. [f die drum speed is halved, performance actually
decreases with two programs in core memory. In the light
of tire comments in the previous paa'agraph, it follows that
if the cycle time were halved it would also be disad-
vantageous to multiprogram two class 2 progra:ms.

Referring to the corresponding results for parameter set
B (Figures 10 and 11), similar comments can be made for
variations in the drum speed. The importaame of page
dema:nd rates is also illustrated. The efffcet of the modifica-
tion to page demands, described by t.he parameter set
B*, is readily anticipated. These parameters have a some-
what lower average demand rate than parameter set B.
The difference is most noticeable in the multiprogramnfing
of two class 2 programs. For example, under policy 2D,
one program is allowed a maximum of 11 pages and the
demand rates M(7), . . . , X2(11) differ significantly for the
two parameter sets.

Similar effects could be observed if the model were
analyzed for stationary mixes of class 1 and class 2 pro-
grams; however, all the major results for the nmlti-
programming of a fixed number of programs have been
illustrated. In [5] the ease where the number of programs
using the high speed memory changes according to certain
loading strategies is examined. This can give an advantage
over multiprogramming a fixed number of programs, but
under stationary conditions the advantage over multi-
programming the optimal fixed number of programs is not
great. The need for nonstationary control policies can also
be demonstrated; this need and also some models subject
to closed form solution are treated in [5].

t . 0 -

, 8 -

CLASS 2

, ,, I0 x Drum Speed

1
, 6 -

.4 -

. 2 -

1B 2D

]/IO x Page Demand Rate

j ~ Parameter Set B*

, ~ Parameter Set B

I0 x Page Demand Rate
l.__.___~'__,~...._.L 1/10 x Drum Speed

2
NUMBER OF PROGRAMS

FIG. 11. Performance for the multiprogrammlng of class 2
programs from parameter set B

644 Communica t i ons o f t h e ACM V o l u m e 10 / Number 10 / October, 1967

7. Co~clus ion

The most significant feature, not dealt, with in this
investigation, is the system overhead involved in both the
executive control program and the implementation of
paging and muitiprogramming. Present indications are
that this overhead is considerable and its effect would be
to moderate any improvement attributed here to multi-
programming. Nevertheless, analysis of the model has
provided use%l insight into the potential of multiprogram-
nfing and paging, and the results could be modified to take
account of system overhead.

Categoric conclusions cannot be made from the limited
set of statistics described in Section 3, but as they have
bee~ recorded fl'om a time sharing interactive envh'on-
meat they are appropriate. Analysis of the model for the
range of parameters corresponding to these statistics
indicates that a conservative outlook for multiprogram-
ruing using a page on demand strategy must be maintained.
If a large lfigh speed memory is available for user pro-
grams, however, it does seem that there is some advantage
(dependent on system overhead) to be gained from multi-
programming.

Specifically, the SDC statistics have described paging
for a fixed page size of 1024 words of 48 bits. The model
has demonstrated that it is fortuitous to at tempt multi-
programming with only 14 pages available for the user
programs. With 28 pages available to user programs, a
25 % margin of improvement has been eMculated for the
multiprogramming of two programs. I t is likely that the
method we have used to obtain the results for a 28 page
memory is a little favorable to the page on demand strategy,
because doubling the page size will not halve the number
of page ealls. Therefore a slightly larger memory may be
necessary to obtain the improvement cited.

The necessary operating conditions for the success of
multiprogramming have been identified. The reason for
the failure of multiprogramming, in those eases analyzed,
was that programs were delayed too frequently and for too
long a period, either because of their own short execution
intervals or because they were constrained to execute in a
small high speed memory area. The most important
characteristic of the hardware is the relative speed of the
high speed memory and the drum accessing process. All
these factors are reflected in the channel utilization factor,
p, which has been proposed as a gauge for multiprogram-
ruing under a page on demand strategy.

Acknowledgments. The author is indebted to Professor
B. Arden of the University of Michigan for helpful
discussions on this work, and to G. Fine, C. Jackson, and
P. ~¢IcIsaac for making available their measurements
taken at the System Development Corporation. Apprecia-
tion is also due to the referee for his very helpful criticism.

RECEIVED APRIL 1967; REVISED JUNE 1967

lt~EFE RENCES

1, GIBSON, C.T. Time sharing oa the IBM System/360: Model
67. Prec. AFIPS 1966 Spring Joint Comput. COM., Vol. 28,
pp. 61-78.

2. ARDEN, B. W., GALI,ER, g. A., O'BRIEN, T. C., ~ND WESq~R-
VELT, F. It. Program and addressing structure in a time-
sharing environment. J. ACM 12, 1 (Jan. 1966), 1-16.

3. FINE, G. It., JACKSON, C. W., ANt) McIsAxc, P. V. Dynamic
program behavior under paging. Prec. 21st ACM NationM
Conf., Washington, D. C., 1966, AC~¢I Publ. P-66, pp. 223-228.

4. WALLACE, V. L., AND ROSENBSRG, R. S. I~.Q.A. --1, the
Recursive Queue Analyzer. Technical Report No. 2, Sys.
Eng. Lab., U. of Michigan, Ann Arbor, Mich., Feb. 1966.

5. SMITH, J. L. Markov decisions oi1 a partitioned state space,
and the control of multiprogramming. Technica~l Report
No. 9, Sys. Eng. Lab., U. of Michigan, Ann Arbor, Mich.,
April 1967.

6. MORSE, P. M. Queues, Inventories and Maintenance. John
Wiley & Sons, Inc., New York, 1958.

A P P E N D I X

The details of the nmdel of the drum and I /O channel
operation are given below.

Let us consider a request which arrives to find n prior
requests, labeled 1, 2 , . . . , n, waiting for service. In
order to include those eases in which some additional
information is known about the locations of the pages
associated with these n requests, let pjk denote the prob-
ability that the kth request concerns a page displaced j
sectors fl'om the current origin of the read heads.

Hence

m--1

pck = 1, k = 1, 2, . . . , n. (3)

Then measuring time from the beginning of the first t ime
unit after the (n + 1) request arrives, and assuming each
subqueue is serviced according to a first-in first-out disci-
pline, the expected time until the completion of this most
recent request can be expressed as

m-1 (/ n k \)
= (m -4- 2n + 1) /2 .

I t is of interest to observe that this time is independent of
all p~k.

The Marker chain approximation to the behavior of
the drum I /O channel now proposed has a state deserip-
tion which is based on the number of page transfer requests
queued at the beginning of a t ime unit. The requests are
assigned priority according to their order of arrival, and
the probability that the j th priority request will have its
page transferred in the ensuing t ime unit is denoted by
p j . Therefore the completion t ime for the highest priority
request is described by a geometric distribution, with
mean 1 / p l , since during each t ime interval it has prob-
ability p i of having its page transferred. If the j t h priority
request completes, all lower priority requests k (]~ > j)
assume priority/c - 1 in the ensuing time unit. In order

Volume 10 / Number 10 / October, 1967 Communications of the ACM 645

to satisfy (4) we have

pl : 2/(m @ l),

The distributions for the completion time of the lower
priority requests are not as simple. However it is art easy
matter to show (see [5, Appendix E]) that

n
E(t.+~) - ~ ps (~)

1=1

and so in order to satisfy (5) we have

p~ - (6)
~'=1 m + 2 n - - 1"

Solving (6) in order for p l , p2, " '" , yields

2 (m - 1) (7)
Pk = (m + 2 k - - 3) (m -4- 2k -- 1)

thus defining the model parameters for any number of
requests. From (6) it follows that

lira ~ p~ = 1
~-.oo $=1

which is in accordance with the maximum capacity of the
I /O channel--one page transfer per unit time interval.

(a)

mean=3 .5

I I I I
5 6 7 8

rl

.3

. 2

. I

(b)

mean=3.5

I I , ,
5 6 7 8

(c)

memo=3.

|

9 ~o

Time t

Fro. 12. Probability density functions for page transfer
completion time.

I t can also be seen from (5) that

E(t,~+l) - n, for n large.

The representation described abow~ is a very tractable
Marker model, because of its simple state description. ~It
should be noted that this model only describes the eomp] e-
tion time (waiting time + transfer time) of a request fr<m;x
the beginning of the first time unit after the request is
generated. The additional latency delay, experienced b y
each request, is accounted for exactly in the discrete t ime
model of Section 2.

When there is only one program using the high speed
memory, only one page transfer request can occur, and so
in the Marker model the completion time of a page tra,ls-
fer request is described by a geometric distribution w i t h
mean (m + 1)/2. Of course, in the actual system this t i m e
is a random variable, uniformly distributed over the range
1, 2, . . . , m. However, the average CPU usage derived
from the model of Section 2 is only dependent on the first
moment of the distribution, and hence it is the same fo r
either distribution.

When more than one page transfer request can occur
the higher order moments of the distribution affect t h e
average CPU usage. If the use of the drum I/O channel is
heavy, however, so that each new page transfer request
arrives to find other requests already waiting, then t h e
distribution resulting from the Markov chain approxima-
tion is close to reality. This is illustrated by the probabili ty
density functions plotted in Figure 12, which correspond
to the ease of a request which arrives when one o t h e r
request is waiting, and m = 4. Figure 12(a) is the dens i ty
function for the completion time of the second request :if
no additional information is known about the location o f
the page associated with the first request. However, t h e
location of the page associated with the first request is
dependent on the history of previous page transfers a n d
the elapsed waiting time of the request. Figure 12(b) is
the density function for the completion time of the second
request, a priori that there is twice the probability of t h e
page associated with the first request being located in t h e
next two sectors to rotate under the read heads. F igure
12(e) is the density function yielded by the Markov cha in
approximation derived in this AppendLx.

From Figure 12(c) it earl be seen that one approxima-
tion, implicit in the Marker model, is the assignment of a
small probability to completion times longer than those
which can possibly occur in the real system. In generM,
the variance of the resulting distribution is larger bug t h e
mean is always the same as for the real system. The effect
of this decrease in the "orderliness" (see Morse [6]) of t h e
drum I /O operation is to increase the likelihood of queue-
ing delays, which in turn would reduce the mean C P U
usage derived from the model of Section 2. But we h a v e
indicated that the model becomes close to reality as t h e
use of the drum I /O ehmmel increases, and therefore, i t
should provide reliable results.

646 Communicat ions of t i le ACM Volume 10 / Number 10 / October, 1967

