
J. F. TRAUB, Editor

On Computing The Fast
Fourier Transform

"I:{ICHARD C. SINGLF;I'ON"

Stanford Research Insli~ute, Menlo Park, Calif.

Cooley and Tukey have proposed a fast algorithm for
computing the complex Fourier transform

x~ = ~ elk exp (i2~-jk/n) f o r j = 0,1, . . ., n -- 1,
k.=0

and have shown major time savings in using it to compute large
transforms on a digital computer. With n a power of two,
computing time for this algorithm is proportional to n log2 n,
a major improvement over other methods with computing time
proportional to n 2. In this paper, the fast Fourier transform
algorithm is briefly reviewed and fast difference equation
methods for accurately computing the needed trigonometric
function values are given. The problem of computing a large
Fourier transform on a system with virtual memory is con-
sidered, and a solution is proposed. This method has been
used to compute complex Fourier transforms of size n = 2 z6 on
a computer with 215 words of core storage; this exceeds by a
factor of eight the maximum radix two transform size with
fixed allocation of this amount of core storage. The method has
also been used to compute large mixed radix transforms. A
scaling plan for computing the fast Fourier transform with
fixed-point arithmetic is also given.

I n t r o d u c t i o n

The transformation of a time series to an amplitude
spectrum, or in othea" words to a set of Fourier series coeffi-
cients, is a familiar task for a digital computer. Also, the
inverse operation of evaluating a Fourier series is a simi-
larly common task pea'formed. Given a real sequence {xj}

This work was supported by Stanford Research Institute out of
Research and Development funds.

fo r j = 0, 1, . . . n - 1, with n even, the Fourier cosine
and sine coefficients, respectively can be represented as

a~ = - ~ x~cos(2a-jk/n) fo rk = O, 1, - . . , n / 2 ,
n j~o

n--I

b~ = 2 _ ~ x~sin (2r~]k/n) for/k = 1,2, . . . , n / 2 - 1.
n j~0

The original sequence can be recovered by the inverse
relationship

hi2--1
go x/ = 2- ~ [ak cos (2zrjk/n) + bk sin (2zrjk/n)]

k=4

-4- ag-~- cos (zrj) for j 0, 1, ., n 1.

A proof of this relationship can be found in any standard
text on the subject, for example, Hamming [1]. Hamming
also describes Goertzel's method [2] for computing the
Fourier coefficients, a method in which cos (2~-j£/n) and
sin (2~rjk/n) are computed by a multiple angle formula
eanbedded in the summation to evaluate each pair ak, bk
of coefficients. The method can also be adapted for Fourier
series evaluation. The Goertzel algorithm is among the
fastest methods in general use before the fast transform,
but computing time increases as n 2 and roundoff errors
grow rapklly with n.

The Cooley-Tukey fast Fourier transform algorithm is,
except when n is a prime number, considerably faster and
more accurate than the Goertzel method when compm'ed
on the same computer. This algorithm was preceded by
several others of comparable efficiency, but less generality
[3]. Danielson and Lanczos [4] showed how to compute a
transform of dimension 2n with only slightly more than
double the number of operations for a transform of length
n and proposed using a sequence of doublings to compute
larger transforms. Although their work was oriented to-
ward simplified hand calculation of the coefficients of a
real Fourier series, Rudnick [5] has reported use of the
method on a digital computer. The fast Fourier transform
for complex-valued (and multivariate) da ta was first
formulated by Good [6], apparently without knowledge
of the previous work of Danielson and L~nezos. In Good's
solution, there remained one important limitation: in
computing siagle-variate transforms, n was decomposed
into mutually prime factors. Thus n = 36 could be fac-
tored as 4 × 9, but not 2 × 2 X 3 × 3. Cooley and Tukey

Volume 10 / N u m b e r 10 / Oc tobe r , 1967 C o m m u n i c a t i o n s o f t h e ACCM 647 ,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363717.363771&domain=pdf&date_stamp=1967-10-01

[7] generalized Good's algorithm to allow arbitrary fac-
torization of the dimension of a single-variate transform.
Their report of dramatic t ime savings has stimulated wide-
spread interest in the fast Fourier transform.

The Cooley-Tukey fast Fourier transform algorithm
can be used with any value of n, and the required number
of arithmetic operations is proportional to n times the sum
of the factors of n. The ease of n = 2 "~ is of special interest
because of the ease of programming and is sufficiently
general for most applications in which the user is free to
choose n. Computing time for n a power of two increases
as

n log2 n = n m

and roundoff errors increase slowly. Even for small n, this
algorithm is faster and more accurate than previous
methods, and it permits solution of large problems tha t
would before have required an impractical amount of
computing time.

In this paper, we consider several topics related to the
fast Fourier transform. Reviewed first is the fast trans-
form algorithm for n a power of two, giving shortcuts for
computing the needed trigonometric function values, and
showing a convenient method of transforming real-
valued data. We then consider computing the fast trans-
form on a system with virtual memory and rearrange the
transform steps to reduce the number of memory overlay
operations. The approach given is applicable to the mixed
radix transform as well as the radix two transform. A
scaling plan for computing the fast t ransform vSth fixed-
point arithmetic is also given.

i represents the imaginary unit ~// -- 1. In m~trix not~..,
tion, we can represent this transformation by

X = ~ 0 /

where T is the n X n matrix of complex-valued exponen~
rials

t~.~o = exp (i2~rjlc/n)

= cos (27rj]c/n) + i sin (2~-jk/n)

for j , lc = 0, 1, . . ° ,n - 1.

The inverse transform

1 ~-1
0/~ = - ~ x1 exp (- - i27r j t~/n)

n f = 0

for/~ = 0 , 1 , . . . , n - 1

can similarly be represented by

l r . a=-Tx,
n

where T* is the complex conjugate of T; i.e.,

tj~ = cxp (- - i 2~ - j k /n)

= cos (2~-jk/n) -- i sin (27rjk/n)

for j , k = O, 1, . . - , n - 1.

The matrices T and T* have the relation

T T * = T * T = n I

where [is the n X n identity matrix2

~0 ~0 + ~ (~ 0 + ~) + (~ + ~)
~ ~ + ~ (~ + ~) + (~ + ~)

~ ~ + ~0 (~0+~,) - (~ + ~ 0)
~ ~ + ~ (~ + ~) - (~ + ~ 7)

~, ~0 - ~ (~ 0 - ~ t + c ~ (~ - ~ 0)

~ ~ - ~ (~ - ~) + c ~ (~ - ~)

~. ~ - ~ (~ 0 - ~) - c ~ (~ - ~ 0)

¢:~7 0/3 - - Ol7 (~ 1 - - O / 5) - - C2(0 /3- -Ol7)

I--s 'l ,I

[(~0+~,) + (~ + ~ d] + [(~ + ~) + (~ + ~)] = z0
[(~0 + ~,) + (~+~0)1 - [(~ , + ~) + (~ + ~ t] = z,
[(~ 0 + ~ t - (~ + ~ 0)] + d [(~ + ~) - (~ + ~ t] = x~

[(~ o + ~ t - (~ + ~ 6) 1 - c ~ [(~ + ~) - (~ + ~ t] = z~
[(~ o - ~ t + d (~ - ~ o)] + w [(~ - ~) + c ~ (~ - ~)] = x~
[(~ . - ~) + c~ (~ -~o)] - c ~ [(~ - ~) + d (~ - ~)] = x~
[(~o-~ ,) - w (~ - ~ o)] + d [(~ - ~) - d (~ - ~)] = x~

[(~ - ~ ,) - w (~ - ~ o)] - w [(~ - ~) - w (~ - ~ t] = x~

"$3 *I

c ~ -~ exp (i2~-k/8)

FxG. l. Example of fast Fourier transform algorithm for n = 8

T h e F a s t F o u r i e r T r a n s f o r m

The fast Fom'ier transform algorithm is a method of
computing the finite complex Fourier transform

n--1

x j = ~ a ~ e x p (i 2 7 r j k / n) for j = 0 , 1 , - . . , n - 1,
k=0

where a and x are complex-valued vectors of length n, and

If n has m factors n l , n2, • " " n m , where n = I I J n i ,
the Cooley-Tukey fast transform algorithm decomposes
the transformation I ' into the product of m elementary

i When using a program not having the complex conjugate
transform as art option, one can compute T*x by forming the
complex conjugate of x, transforming by T, then taking the com-
plex conjugate of the result, i.e., (Tx*)*.

648 Communica t ions o f the ACM Volume 10 / Number 10 / October, 1967

transformations, followed by a permutation P of the
result} In matrix notation, T can be represented by

T = PS

= PS,,~S,~_i " " S~S1.

Each step ,~y is in turn composed of n/ni transforms of
dimension n~. Since the number of arithmetic operations
for a tn:msform of dimensiott ni is of the order of ha% the
total number" of operations for the transformation S is of
the order of n ~ j ny. The permutation P adds compara-
tively few additional operations.

Consider now the ease n = 2". Each step Sj consists of
computing n/2 transforms of dimension 2. In the trans-
formation S , , pairs of elements n/2 apart in the complex
data vector are transformed. In 82, pairs of elements n/2
apart in the upper and lower halves of the data vector are
selected. In Sa, pairs of elements n /4 apart within each
quarter of the data vector are selected, and so on until
pairs of adjacent elements are selected in the transforma-
tion S,~. These steps are illustrated in Figure 1 for n = 8.
We defer for the moment discussion of the sequence of
exponential multipliers used and consider first the per-
mutation P of the transform result.

To bring the results into normal binary order, we must
interchange pairs of entries according to the following rule:
We represent an index j as

j = j~-12"-* + ~ o,,,-.2 g,,,-2~ q- "'" + j12 ~ + j0

and associate with it the reverse binary representation

ri = j02 ''-1 + j r 2 ''-2 + • "" + j .° -~21 + j . , - 1 ;

if ri > j, we interchange entries ri and j. Note that if
rj = j, as is true, for example, fo r j = 0, n -- 1, n/2 - 2,
n /2 + 1, . . - , the j th entry remains fixed. The permuta-
tion matrix P of this interchange is symmetric and P P = I,
i.e., permuting twice gives an identity permutation. Thus,
a computing procedure for permuting from reverse binary
to normal order can also be used for permuting data from
normal to reverse binary order.

In computing the fast Fourier transform, we can al-
ternatively permute the data first, then compute the
transform. Thus

a = T x = PSx

= (PSP)Px

= (PSmP) (PS,~_~P), . . . , (PS,P)Px.

Whereas in S i , we selected pairs of elements 2 ''-s apart, in
(PS~P), we select pairs 2 j-~ apart. Thus in (PS1P), we
select adjacent pairs of data elements and in PSmP we
select pairs of elements n/2 apart. In some applications,

2 We assume throughout this paper that the transform is com-
puted in place with the results of each transform of dimension ni

i

replacing the previous values.

Volume l0 / Number 10 / October, 1967

we will wisk to have computing procedures for both trans-
formations S and (PSP) to avoid the need for permuta-
tion. We carl then transform a data vector with S, modify
the result, and transform back with (PS*P).

In computing the radix 2 transform in place, the schedule
of pairs of data elements used depends on the original
ordering of the data. If the data m'e in normaI order, we
start with pah's n/2 apart in the first step and end with
adjacent pairs in tile last step; the result is left in reverse
binary order. If the data are in reverse binary order, we
start with adjacent pairs in the first step and end with
pairs n/2 apart in the last step; the result, is then in normal
order.

We now consider the sequence of complex exponential
multipliers used in the radix 2 transforrn, a or, equivalently,
the required sequence of pairs of sine and cosine values.
The example in Figure 1 is based on the form of the fast
transform algorithm proposed by Cooley and Tukey [7].
If we consider tile n = 16 ease, tile required multiples of
2rr/16, if we take the eight pairs of data elements in order
according to the lower index member of each pair, are:

0, 0, 0, 0, 0, 0, 0, 0 1st step

0, 0, 0, 0, 4, 4, 4, 4 2nd step

0, 0, 4, 4, 2, 2, 6, 6 3rd step

0, 4, 2, 6, 1, 5, 3, 7 4th step.

We note that if the data elements are indexed in normal
order, the trigonometric function values are used in re-
verse binary order. For the corresponding transform
(PSP) with the data originally in reverse binary order, the
required multiples of 2rr/16 are:

0, 0, 0, 0, 0, 0 ,0 , 0

0, 4, 0, 4, 0, 4, 0, 4

O, 2, 4, 6, O, 2, 4, 6

O, 1, 2, 3, 4, 5, 6, 7

1st step

2nd step

3rd step

4th step.

h~ this case, trigonometric function values can be gener-
ated in normal sequence as needed. However, for efficient
use of these values, we need to step through the data
array more than once in all but the first and last steps.
This can be a disadvantage if we are using a computing
system allowing automatic overlay of data storage.

We can invert the transformation S by using the trans-
formation 1/n(PS*P), since

I = _1 T*T = _1 (P S *) (P S) = _1 (PS*P)S .
n ~t

This topic is discussed by Gentleman and Sande [8] for the
mixed radix case.

C o m m u n i c a t i o n s o f t h e ACM 649

Alternatively, we can express the inverse as:

S-1 = $7~$71 . . . S= 1,

the product of the inverses of the m steps Sj in the trans-
form S. Considering an elementary dimension 2 transform

y~ = xj + z~ exp (i0)

yk = xj - xk exp (i0)

in S, we see tha t its invm'se is

z; = ½(yj + >)

xk = ½(yj -- y~)exp (--i0).

Using this modified arithmetic, we can backtrack through
the steps of transform S. Considering again the first n = 16
example above, we now use the trigonometric function
sequence of the 4th step, the 3rd step, the 2nd step, then
finally the 1st step.

Similarly if our data are in normal order, we can back-
track through the steps of the transform (PSP). Con-
sidering the second n = 16 example above, we now use the
trigonometric function sequence of the 4th step, the 3rd
step, the 2nd step, and finally the 1st step. Sande [8] has
proposed using this organization of the fast transform and
points to the advantage of using the trigonometric func-
tion values in normal order.

The author has coded ALGOL radix 2 transforms based
on the (PSP) -~ organization for da ta in normal order and
based on the (PSP) organization for data in reverse binary
order [9] for use on a system with fixed memory allocation.
The S and S -~ organizations are used in a later section of
this paper as the basis of a method to be used on a com-
puter system with memoLv overlay; the advantage of
being able to use each pair of trigonometric values on a
single sequence of consecutive da ta points outweighs the
disadvantage of generating them in reverse binary order.

C o m p u t i n g T r i g o n o m e t r i c F u n c t i o n V a l u e s

Counting one sine and cosine value for each 2 X 2
transform, the fast Fourier transform of n = 2 m data points
requires nearly 2n trigonometric function values. In most
methods of computing the fast transform, we can reduce
this number to n by using the relations:

e o s (~ + 0) = --sin (0)

sin (~ + 0) = cos (0).

We may further reduce the number to n/2 by using similar
relations for the angles rr/2 -- 0 and ~- - 0. I f we complete
each of the ra transform steps before going on to the next,
further reduction in the number of trigonometric values
requires storing some values for later use.

If sufficient high speed storage is available, we can table
the values

sin (2rrj/n) f o r j = 0, 1, - . - , n / 4 ;

TAIBLE 1, EXTRAPOhATIgD V,,a, LU~:S OF COS ~r/2 /~N1) 1 - [4~N "~-/2
FOR T W O]~)IFFERENCilg [~QUATi[()N 73/[ETHOI)S

First method I1 Second metl~od
Number of (value in units of 10-~:)

ex trapo/a tions

cos u/2 1 -- sin w/2 cos 7r/2

2 4

2 ~
2 s
27
2 s

29
21o
2 n
212
218

2~4
215
216
217

o
---11.60

6.59
-14.81
--0.91
--5.74
--1.62

--14.41
114.18
31.61

-3.91
243.07
127.04

--60.92

o
3.64

-,29. lO
o

- 14,55
o
1.82

- 29. lO
34.56

1.82
23.65

- 494.77
-'29.10

50.93

.... 5.91
0.68

-.13.87
--8,44

-11.60
--21.00

16.79
-60.25

88.36

-2.38
53,18

--0.62
119.22
149,99

i ...- shx -,,/2

0
0
0
0
0
0
5.46

--14.55
12,73
0
9,09
0

14,55
1.82

this table contains all of the values needed in the transform
computation. The entries can be quickly filled ill by a
binary process. We first enter the values for 0, @4, and
rr/2. On the next step, the values for rr/8 and 3rr/8 are
computed, using the relation

sin ((k + 1)0) = sin (kO) + sin ((k + 2)0)
2 cos 0

where 0 = ~r/8. At each succeeding step the number of
values is doubled until the table is complete. If the values
are used in reverse binary sequence in computing the fast
t ransform the table may then be permuted for con-
venience in indexing.

Another approach is to generate the trigonometric
function values for successive multiples of 2rr/n by differ-
enee equation. Since we extrapolate fl'om initial values,
care in selecting a method is needed. We show two methods
tha t give satisfactory accuracy. In the first., we generate
cosine and sine values as independent sequences, using tile
second difference relations

G+ i = R X cos (k0) + Ck

cos ((k + 1)0) = cos (/.'cO) + Ck+l

Sk+l = R X sin (/cO) + $/:

sin ((£ + 1)0) = sin (/cO) ÷ Sk+l,

where the constant multiplier is

R = - 4 si:n 2 (0/2)

and the initial values are

Co = 2 sin 2 (0/2)

So = sin (0)

650 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 10 / Number 10 / October, 1967

cos (0) = 1

s i~ (0) = O.

Another method, i~ which the sine and cosine are con>
puted as ~ pair with four multiplications instead of two,
is as follows:

cos ((/c + 1)0)

= [C X cos (/c0) - S X s i n (k0)] + cos (ko)

sitl ((/c + 1)0)

= [C X sin (~CO) q- S X cos (/cO)] + sin (/cO),

where

C = - 2 sin 2 (0/2)

S = sin (0).

The two methods were tested using initial vMues calcu-
lated by the library trigonometric function procedure on a
Bm'roughs B5500 computer, then values for cos rr/2 and
sin rr/2 were computed by extrapolation. Results are given
in Table I. The computer used has a 39-bit floating-point
mantissa, with octal exponent; thus for a number between
1/8 and 1, a change in the low order bit gives a difference
of 1.8 X 10 -~. Both methods result in a low level of errors,
but when used in a Fourier transform program, the second
method often yields about one binary place more accuracy
than the first.

T r a n s f o r m i n g R e a l D a t a

If the data vector to be transformed is real-valued, one
can augment the data with an imaginary component
vector of zeros and then use a subroutine for computing
the complex Fourier transform. The resulting Fourier
coefficients ~ek for k = 0, 1, • • • n -- 1 have a complex con-
jugate symmetry about n/2, thus

a,~-k = o~k* f o r h = 1 , 2 , . . . r e - - 1.

As pointed out by Cooley [10], this sy~mmtry allows us to
transform simultaneously two real vectors x and y and
separate the results. We compute the transform

X = 1 T (x + i y)
n

= 1 Tx + i 1- T y
n n

1
- (~ + i~)

2

where ~ and fl are the real Fourier transforms of x and y,
and then recover c~ and fl by

X0 + X0* for/c = 0

Xk -t- X,-k for k = 1, 2, - . . , n /2 ,

Ii(X0* -- X0) for/C = 0
• $

~k [z (M - ~ - M) f o r k = 1 , 2 , . . . , n / 2 .

Volume 10 / Number 10 / October, 1967

Bingham, ()od:rey, ~md Tukey [11] point out that this
~cetmique ca~l be used to transform a single sequence of
real data points if n is divisible by two. Alternate data
points are stored in the real and imaginary components of
the complex vector to be transformed. After transfornfing,
permuting t.o normal order, and separating the Fourier
coefficients of the two sequences, the two eoeftieient sets
are combined in a final step. In using this method, two
reorderings are needed if the real data are iifitially in a
single sequence, one bdore the transform and another
after. For n a power of two, the final permutation from
reverse binary to normal order can be done in place in one
step by pair interchanges. However, the initial permuta-
tion is not as easily done in place. 4 Here we propose a
simple solution to this problem.

Let us suppose that the original data are stored in
normal sequence, with the first n /2 entries in the real
vector A and the second n /2 entries in the imaginary
vector B of the transform. We then in two steps permute
the data so that the even numbered entries are in A and the
odd-numbered entries in B, both in reverse binary order.
I f we then compute the transform with a procedure operat-
ing on complex data originally in reverse binary order, the
transformed result is in normal order with no further per-
mutat ion needed. In the first step, we interchange entries

Ai+l and Bi f o r j = 0, 2, - . . , (n/2) - 2,

which leaves the even-numbered entries in A and the odd-
numbered entries in B. In the second step, we pexnmte A
and B independently to reverse binary order, ignoring the
low-order bit, as follows: for j = O, 2, . . . (n/2) - 2, let k
be the reverse binary value of j /2 ; then if/C > (j /2) , inter-
change Ask and Ai and interchange A2k+~ and Ai+~. The
same permutation is applied to the B vector. The two steps
for N = 16 are shown in Figure 2, where the numbers
listed are the original indices of the data. I t should be noted
that the order of doing the two steps of the permutation
may be interchanged if desired.

A B A B A B
0 8 0 1 0 1
1 9 8 9 8 9
2 10 2 3 4 5
3 11 10 11 12 13
4 12 4 5 2 3
5 13 12 13 10 11
6 14 6 7 6 7
7 15 14 15 14 15

Original order First permutation Second permutation

FIG. 2. Permutation of real data before Fourier transform

The inverse operation of evaluating a real Fourier series,
given a set of cosine and sine coefficients, can be done by

4 We assume that the real and imaginary components of complex
data are stored in separate arrays. If interleaved, as wi th some
FORTRAN compilers, the problem considered here does not exist.

C o m m u n i c a t i o n s o f t h e ACM 6 5 1

backtracking through the steps described above, comput-
ing the inverse of each. While this is usually the most con-
venient method, another method offers advantages in
computing convolutions. If we transform two real se-
quences :of.length n to the frequency domain and forn, the
product a~* of the two transforms, the resulting n complex
values are the Fourier coefficients of the convolution, a
real sequence of length n. Thus, the real eoInponent a is an
even function, the imaginary component ib is an odd
function, and Ta and T(ib) are both real. Since

T (a + ib) = Re [T(a - b)] + Im [T(a -- b)],

we can subtract b from a, transform, then add the real and
imaginary components to get the convolution. The ad-
vantage of this approach is that we can perform all of the
frequency domain operations with the data in reverse
binary order, reducing the intermediate result to a complex
vector of length n /2 at this stage before transforming to
the time domain. With the result in normal order, we then
separate the transforms of the even-and odd-numbered
entries and combine them, using the algorithm for com-
puting Fourier coefficients described above. A final addi-
tion then gives the convolution. An ALGOL convolution
procedure based on this approach is available [9].

Methods for Use on a Virtual Memory S y s t e m

In using the fast transform algorithm on the Burroughs
B5500 computer, we have frequent need to transform data
sets of a size exceeding the 2 ~5 words of core storage. One
solution, using auxiliary memory for data storage, has been
explored previously [12]. Here we consider use of the com-
puter's virtual core memory feature.

Virtual memory and multiprogramming are standard
features of the B5500 computer system. Data and pro-
grams are stored in variable-length segments of up to 1023
words. In ALGOL, array rows correspond to data segments,
and for large radix two transforms, we store data in two-
dimensional arrays with rows of 512 words in length. When
a program refers to an element of an absent array row, the
operating system takes control and finds core space for the
row. Space occupied by program segments not currently
in use is taken first, then data segments are copied to disk
storage generMty on a first-in, first-out basis, without re-
gard to the program to which they belong. Then an input
operation reads the desired row into core and control is
returned to the user program. This organization places a
premium on doing as much computing as possible with a
small set of array rows before going on to others. Memory
overlay operations begin when the total storage require-
meat of the programs in the "mkx" exceeds core capacity.

The Sande version of the fast transform, while very
efficient for transforming a single segment of data, is highly
vulnerable to slowdown through memory overlay. A com-
plex transform of size n = 2 ~a can be computed without
difficulty on the B5500 if it is run without multiprogram-
ming, but the addition of another program of comparable
size will slow the transform program almost to a hair.

Fortunately, the Cooley version will run under ttm same,
conditions with only a moderate increase in eomputi~g a>t
input-outpu~ channel time. In this section, we show a :t'em'-
rangement of the Cooley version giving a more eiIieie~t;
schedule of data accesses. With this arrangement, input-
output channel t, ime caused by memory overlay increases

io.o ~ - - - - ~ -7~-

2 . 0 - - -

COMPt r ER~.~j

0.05 - - --.

0.02

O.Ol
~9 210 211 212 2t3 21a , 215 216

NUMBER OFF COMPLEX DATA POINTS

FIG. 3, Computer and inpu t -ou tpu t channel t imes for the fas t
Fourier t rans form on a vir tual memory sys tem wi th 2 ~ words of
core storage

(a) (b)

1

2

9

i 4
3

5

7
61

8

ii
i0~

12

14
13

1

.... 3

2

4 6~

5 1

8
!

~ lO

9

l l
- 13
121

71

15

14

Step: I 2 3 4 ~Step: 1 2 3 4

FIG. 4., Comput ing sequence for Fourier t ransform with vir tuM
memory, n = 16; (a) d a t a in normal order; (b) da ta in reverse
binary order

652 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 10 / N u m b e r 10 / O c t o b e r , 1967

slowly as core capacity is exceeded. In Figure 3, we show a
plot of computer and input-output channel thne for a
radix two transform based on this aTmlgement. 5

In the first; step of the radix two fast transform algo-
rithm, data pairs are taken in serial order from the full
data set., one element from the lower half and the other
from the upper half of the data vector. However, after the
first step in the transform, the two hMves of the complex
dat~ at'rays are independent. Similarly, after tile second
step, the fore' quarters are independent, and so on. Thus,
~:tfter the first step, we can complete the remaining m - 1
steps in the first half of the data before going on to the
second ihalf. And after the second step in the first half, we
can complete the remaining m - 2 steps on the first
quar[er of the data before going on to tile second quarter.
CoDtinuing in this manner, we can compute tile first pair
of entries in the final result,, having computed only tile
necessary intermediate results, then compute the second
pah • of entries in the final result, and so on. The sequence
of steps for the n = 16 ease is shown in Fignre 4(a). Ii'or
most of the computing, the needed subset of the data is
small enough to fit within the high speed memory of the
computer.

In this method, we use the arithmetic of the Cooley
version of the fast transform, thus the angle 0 of the expo-
nential multiplier remains constant within each of the
numbered sections in Figure 4. When a segment splits into
two halves in moving to the adjacent transform step, the
angle for the lower half is 0/2 and the angle for the upper
half is (0 + ~-)/2; a single sine-cosine pair serves for tile
two halves. We can use the libraIT trigonometric function
procedure to compute sin (0/2) , then calculate cos (0/2)
by the relation

sin (0) for 0 < 0 < ~r,
cos (0 /2) - 2 sin (0/2)

where sin (0) is remembered from the previous segment. In
this way, the trigonometric function library procedure is
called only (n/2)

6
14
1
9
5

13
3

11
7

15
1

Fro. 5. Steps of

- m times.

0 0 0
8 1 1
4 4 2

12 5 3
2 2 4

10 3 5
6 6
7 7
8 8
9 9

12 10
13 11
10 12
11 13
14 14
15 15

P,-q
reverse binary to binary permutation

In an alternate version of this program, using radix eight arith-
metic for the final steps within a single real-imaginary pair of
array rows, computing time is reduced by one-third, while input-
output channel time remains unchanged.

V o l u m e 10] N u m b e r 10 / Oc tober , 1967

When we start with data in reverse binary order, a
similar method can be used. We do the first step of the
transform on tile [irst pair of data entries, then oil the
second pah'. Before going on to the third pair, we first do
tile second step of the transform on the first four entries.
Afl:er each initial pair is transformed by tile first step, we
proceed to all possible subsequent steps. Tile sequence of
steps for n = 16 is shown in Figure 4 (b). Th e trigonometric
functions are computed as above, except t ha t we store a
list of the next sine-cosine pair for each of the m steps.

The author has written ALGOL procedures for computing
the fast. Fourier transform on a vh'tual meinory system,
both for the radLx two ease [13] and for the mkxed radix
case [14]. In the mixed radLx case, ~fft.er doing a step of the
transform with a faetor 'hi on a portion of the data array,
when transforming data originally in normM order, that
portion of the data can be subdivided into ni independent
sections :for further tra~lsform steps.

For the n = 2 "~ ease, the reverse binary-to-binary per-
nmtation can also be organized to reduce t ime loss through
memory overlay. In this ease, the permutat ion is done in
severM steps. In the first step, entries in the lower and
upper halves of the complex vector are interchanged so
that each entry is then in its correct hMf. In the second
step, entries within each half are interchanged so that each
entry is in its eon'eet qum'ter. This process continues until
the desh'ed permutation has been completed. An example
for n = 2 4 is given in l?igure 5. In the first step, single
entries in each vector are interchanged, ~md in the second
step, pMrs of entries are interchangcKL For laNer n, the
process continues with entries interchanged 2 k-~ at a time
in the kth step. Ii'or n = 2"5 Ira/2] steps m'e requh'ed, and
at each step half the entries in each vector are interchanged
and the other half remain fixed. On the B5500 computer,
this permutation method can be speeded up by doing the
block memory intereh~mges in character ra ther than word
mode. Similar speed-ups can be achieved on other com-
puters with block-memory transfer instructions.

The permutation procedure has a partial generalization
in the mixed radix case. If we factor n by arranging pairs of
identical factors symmetrically about the factors of the
square-free portion of n, we can then do one reordering
step for each pair of identical factors, using a simple se-
quence of pair interchanges. After the first step, each result
entry is in the correct section of length n / n ~ . After the
/cth step, each result entry is in the correct section of length
n / (n t X n~ X • • • nk). If the square-free portion of n con-
tains at most one factor, the reordering is completed by
this procedure. Othenvise a final step is required in which
we compute the permutation cycles of the square-free
portion of n and use this schedule to complete the re-
ordering.

S e a l i n g f o r F i x e d - P o i n t A r i t h m e t i c

The fast Fourier transform can be computed with good
accuracy, using fixed-point arithmetic. On a computer
without floating-point hardware, the saving in time can be

C o m m u n i c a t i o n s o f t h e ACC2rI 653

large. When a FOIn'aiN subroutine for the SDS 930 com-
puter was translated to a fixed-point machine language
program, computing time was reduced by a factor of about
ten. In the scaling used, the binary point is assumed to be
just to the right of the sign bit, and the initial complex
data values and all intermediate results are scaled to be
less than ½ in magnitude. A stored table of sine values is
used with sin (rr/2) set at the largest positive value less
than one.

Assuming that the complex data points x~ initially have
magnitude less than one, we scale by an additional factor
two. Thus

Finally, we give a scaling for computing the fast t~>ns-.
:form with fixed-point m'ithmetic. The fast transform is well
suited to fixed-point computing, and this approach shot~ld
be considered if a, significant reduction in computing time
can be g,,~ine&

A&nowledgments. The author thanks I)r. Samuel
Schechter for helpful discussions of methods of computing
trigonometric function values and])r. Harold Stone foc
his comments and suggestions :for revision of this paper.

:RECEIVED NOVEMBER, 1966; REVISED JULY, 1967

[x i l < ½ f o r j = 0 , 1 , . . . , n - - 1,

I xi ~ x~ exp (iO) I < 1

in the computation of each elementary 2 X 2 transform.
If we then scale each intermediate result by ½ before
storing, which can be done by shifting right by one place,
the values used in computing the second step of the trans-
form are again < x2 in magnitude. Continuing in this way,
we scale each result but the final one by ~ ~, giving an over-
all scale factor of 1In for a transform of n = 2 m data
values. The scaling is gradual, and satisfactory accuracy is
preserved.

This scaling is easily generalized to the mixed radix case.
Assuming that initially

I xj l < 1 f o r j = 0 , 1 , . . . , n - 1

we scale the data before each step by l i n k , where nk is the
factor of n used in the kth step of the transform. The
overall scaling is again 1In.

Conclusion

We have considered several techniques associated with
computing the fast Fourier transform. First, we proposed
ways of reducing time spent in computing trigonometric
function values. One approach is to compute a table of
n / 4 + 1 sine values using an interpolation method.
Another approach is to compute the values as needed in the
transform calculation, using a difference equation extrapo-
lation method. For the case of transforming the even- and
odd-numbered entries of a set of n = 2 m real data points,
it is shown that there is an advantage in permuting the
data to reverse binary order before the transform rather
than computing the transform and then reordering after-
ward.

In presenting his paper [8] at the 1966 Fall Joint Com-
puter Conference, Gentleman included some discussion of
the impracticality of making use of virtual memory to
compute the fast Fourier transform in problems exceeding
core storage capacity. If we transform with the Sande ver-
sion of the algorithm and permute in the ustml way, his
view is correct. However we have shown here that it is
possible to rearrange both the transform and permutation
to make practical computing large transforms on a virtual
memory system.

REFERENCES

1. HAMMING, [~. W. Numerical Methods for Scientists and
Engineers. McGraw Hill Book Company, Inc., New York,
1962.

2. GOERTZEL, G. An algorithm for the evaluation of finite
trigonometric series. Ant. Math. Monthly 65 (Jan. 1958), 3,t-
35.

3. COOLEY, J. W., LEWIS, P. A. W., AND WELCI-I, P .D. Histori-
cal notes oa the fast Fourier transform. IEEE Trans. Audio
Electroacoustics AU-15, 2 (June 1967), 76-79.

4. DANIELSON, G. C., A_ND LANCZOS, C. Some improvements in
practical Fourier analysis and their application to X-ray
scattering from liquids. J. Franklin Inst. 233 (1942), 365-
38O; 435--452.

5. RUDNICK, P. Note on the calculation of Fourier series. Math.
Comput. 20, 95 (July 1966), 429-430.

6. GOOD, 1. J. The interaction algorithm and practical Fourier
series. J. Roy. Statist. Soc. Ser. B, 20 (1958), 361-372; Adden-
dum, 22 (1960), 372-375.

7. COOLEY, J. W., ANn TUKEY, J. W. An algorithm for the
machine calculation of complex Fourier series. Math. Corn-
put. 19, 90 (April 1965), 297-301.

8. GENTLEMAN, W. M., AND SANDE, G. Fast Fourier trans-
forms-for fun and profit. Proc. AFIPS 1966 Fall Joint
Comput. Conf., Vol. 29, pp. 563-578,

9. SINGLETON, tL C. An ALGOL convolution procedure based
on the fast Fourier transform. SRI Project 181531-132,
Stanford Res. Inst., Menlo Park, Calif., Jan. 1967, Defense
Doc. Ctr. AD-646 628.

10. COOLEY, J .W. Harmonic analysis complex Fourier series.
SHARE Program library No. SDA 3425, Feb. 7, 1966.

11. BINGHAM, C., GODFREY, M. D., AND TUKEY, J .W. Modern
techniques of power spectral estimation. IEEE Trans.
Audio Electroacoustics A U-15, 2 (June 1967), 56-66.

12. SINGLETON, R. C. A method for computing the fast Fourier
transform with auxiliary memory and limited high-speed
storage. IEEE Trans. Audio Electroacoustics AU-15, 2
(June 1967) 91-98.

13. SINGLETON, IL C. ALGOL procedures for the fast Fourier
transform. SRI Project 181531-132, Stanford Res. Inst.,
Menlo Park, Calif., Nov. 1966, Defense Doc. Ctr. AD-643
996.

14. SINGLE'rON, IC C. An ALGOL procedure for the fast Fourier
transform with arbitrary factors. S[¢I Project 181531-132,
Stanford Res. Inst., Menlo Park, Calif., Dec. 1966, Defense
Doc. Ctr. AD-643 997.

654 Communications of the ACM Volume 10 / Number 10 / October, 11967

