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When searching for the root of a polynomial, it is generally 
difficult to know just when to accept a number as an adequate 
approximation to the root. In this paper an algorithm is pre- 
sented which allows one to terminate the iteration process on 
the basis of calculated bounds for the roundoff error which 
occurs in evaluating the polynomial. This stopping criterion 
has been tested on numerous examples and has been found 
to serve as a satisfactory means for accepting a complex 
number as a zero of a real polynomial. 

1. I n t r o d u c t i o n  

When locating the zeros of a polynomial, it is usually 
diiScult to know just when t,o terminate the iteration 
process. I t  is desirable to terminate the process when the 
zero is known to within roundoff accuracy. Various ad hoc 
stopping criteria have been used; however, such criteria do 
,tot take into account particular properties of the poly- 
nomial being evaluated. Such properties might include the 
condition of the polynomial, multiple zeros, or clusters of 
zeros. In this paper a stopping criterion is presented which 
requires that  the value of the polynomial be smaller than 
a calculated bound for the roundoff error. 

Bounds for the roundoff error can be obtained by using 
the methods of range arithmetic [1] or interval arithmetic 
[4], but such methods require a latge amount of computa- 
tion. The algorithm described here produces similar 
bounds, and offers the advantage of being easily calcu- 
lated. Kahan and Farkas [3] have used this algorithm to 
bound the roundoff error for a real polynomial evaluated 
at a real point, but they do [lot explain why the algo- 
rithm works. In this paper, Kahan's bounds for a real 
polynomial evaluated at  a real point are summarized, 
and then the analysis is extended to a real polynomial 
evaluated at a complex point. The  use of this bound as a 
stopping criterion is discussed. 

2. S u m m a r y  o f  R e s u l t s  for  a Rea l  P o l y n o m i a l  
E v a l u a t e d  a t  a R e a l  P o i n t  

This section contains a brief summary of Kahan's ~ 
results on bounding the roundoff error for a real polynomial 
evaluated at a real point. Consider the polynomial 

P ( Z )  = aoZ n + alZ '~-1 + . . .  + am. 

* Assigned to the Department of Computer Science by the Air 
Force Institute of Technology 
z Lectures presented by Professor Kahan at Stanford University, 
Spring 1966. 

The Homer  recurrence to compute P ( x )  is 

b0 = a0, (1) 

bk = x~b~_l-f-ak for k = 1 , . . . , n .  

The last term of this recun'ence, b,~, is P(x ) .  
Rounding errors in calculating the ha: will prevent (1) 

from being satisfied precisely. In order to bound these 
errors, we note that  when the statement 

s : = u + v  

is executed [7], the number s which is produced satisfies 

1RI--/ 
l u + v - s l l l * l ~ = < ~ - .  , 

and when the statement 

p : = u X v  

is executed, the number p satisfies 

= = I R  l - t  [uv-pl/luvl < ~ < ~ .  • 

The numbers ¢ and ~r used above are bounds which hold 
for each addition and multiplication, respectively, in the 
evaluation of any given polynomial./3 represents the base 
in which the machine's floating-point rounded arithmetic 
is performed, and t represents the nnmber of digits in the 
mantissa. For the Burroughs B5500, an octal machine 
with a 39-bit mantissa, we have ~ = 8 and t = 13. 

Associated with (1) we have a second recurrence, given 
by 

e0 = i a0 I~/( ~+ ~), 
( 2 )  

e~ = lxlek_~...k lbk I for k =  l, . . . , n ,  

where b~ represents the calculated quantity. Kahan shows 
that  a bound for the roundoff error is given by 

IF(x )  - -  bm [ =< (~r -4- 7r)e~ --  Ibm [~r. (3)  

He also shows that  a suitable criterion for accepting x as a 
zero of P to within the bounds given for the roundoff 
error is 

where 

I bm [ ~ 2E (4) 

E = (~  + ~)em - Ibm I~. 

The factor 2 in (4) guarantees that  there exists at least 
one number, representable in the computer, which satis- 
fies (4). Note that  the above criterion does not tell us how 
close we are to a zero, but  only that  we are in some interval 
about the zero where roundoff error may be dominating 
our calculations. 

3. R o u n d i n g  Error B o u n d s  for  a Rea l  P o l y n o m i a l  
E v a l u a t e d  a t  a C o m p l e x  P o i n t  

Now suppose that  

P ( Z )  = aoZ" + alZ n-1 + . . .  + a,, 

is a polynomial with real coefficients ak, but that  we wish 
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to evaluate ehe polynomial at a point Z = x ~- i-y. By 
dividing a quadratic factor into the polyaomial we can 
obtain the well known recurrence [8] for evaluating this 
polynomial at a point in the complex plane which involves 
only real arithmetic and a total of 2.n multiplications. 
Thus if we write 

P ( Z )  = (Z ~ + pZ  + q) (boZ ~-~ + btZ ~-~ JF "'" + b,~_~) 

+ R(Z - z) + S, 

we obtain the recurrence 

bo = ao, 

bl = a~ - p.bo, 
(5) 

bk = a ~ - - p . b e _ i - q . b ~ _ =  for /c = 2 , . . - , n  - 1, 

bn = a,, + x. b~_l - q. b~_~ , 

where 

p = - 2 x ,  q = x ~ +  y~, b,,_l = R arid b,, = S. 

Finally 

P ( x  + i . y )  = b,~ + i.y.b,,_~. 

The coefficients a~ which appear in the machine may not 
be identical ¢o the coefficients of the original problem be- 
cause of the error in converting from decimal to binary. 
We shall not be concerned with this error, but rather with 
the errors which accumulate in attempting to evaluate the 
polynomial represented in the machine. 

When the program which realizes (5) is executed, the 
numbers stored in cells called "b~" will not satisfy (5) 
precisely but will instead satisfy 

~0 ~ a0  ; 

b~ = (m - /5.50(1 + ~nl))/(1 + ~1~), 

b~ = ((a~ -- i~'b~-l(1 + ~rik))/(1 + o'ik) 

- q.bk_~(l + ~r~))/(i + ff~) (6) 

for k = 2 , . - . , n -  1, 

bn = ((a~ + x.bn_1(1 -4- ~r~.))/(1 + ran) 

--q.b~_~(1 + ~-~.))/(I q- ~r2,~). 

Here the Greek letters ¢~ and ~-~ represent the contribu- 
tions due to roundoff. We can bound each of the quantities 
~ri~ and ~-~ on the basis of the floating-point arithmetic of 
the computer being used; that is, 

-~ IR 1-t IR1--t 

In (6), ~ and ~ represent the calculated values of p and 
q, respectively, and hence have rounding errors associated 
with their calculations. For the sake of simplifying the 
analysis slightly, let us assume that  q is calculated in double 
precision and then rounded to single precision. Then we 
may  write 

15 = p(l + ~r,) 

arid 
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= q(1 + aq) = (x ~ + y~)(1 + ~rq), 
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where 

= ~ ,  , ] ~ 1 _ < ½ ~ I - ~ .  

In practice this double-precision calculatiori is ~ot rleces.o 
saW. 

Solvi~lg for the ak in (6) we find 

a 0  ~ b0 

al = bl(1 + o-~) + p-b0(1 -t- ~rp)(1 + vii), 

ak' =:bk(1 +:z~k)(1 + z2k) 

.q- q.bk-2(1 -t- aq)(1 + 7r2k) (1 q- ~ )  

-t- p.bk_~(1 + ~rp)(1 + v~) (7) 

for k = 2, . . ° n  -- 1, 

a~ = b ~ ( l + ~ ) ( 1  + a~,) 

- -  x.b,_l(1 + wl.). 

Note that  in (7), and for the rest of this analysis, the  
letters a~ and b~ shall represent the numbers within the  
machine, and any deviation from the true values is repre- 
sented by the error bounds, p and q represent true values.  

By substituting the a~ of (7) into P and simplifying we 
find 

~. Z~-~ P(Z)  = b~ + i'y'b,~-i - -  x'b,-l~r~ JF q~o~ 

+ ~ b~(~r~+,.p/Z + ~o~+~2/Z).Z :~-~, 
k=O 

where 

i-~¢I = ( 1 +  

l + v ~ =  ( 1 +  

l+~=(i+ 

I +Trk = (i+ 

1 +oo~ = (i+ 

o11); I oll =< ½~1-' 
~-1o); IF .  1 --< ½~i-, 
a~k)(1 --1- otk); I crk] =< fli-~ 

and where Z = x -t- i . y  and  Z = x - i . y .  

Recalling that the calculated value of tile polynomial a t  
Z = x + i .y,  as given by the recurrence, is supposed to be 

P(x  + i . y )  = b, + i.y.b,_~, 

we have 

I P(x  + i .y )  -- (b, + i.y.b,~_~)] 
=< ~r ]x l . ]b~- l l  + ~(]b~ [ + ] b,,_,].] Z ]) 

~a--2 

+ (2~ + ~)t b0 l'r Z"l + (~ + 2~ + ~) ~2 I big I, 
k = l  

where 

= m a x  I ~* I, ~ = m a ~  I ~ *  I, ~ = m a x  I ~  I- 
k k k 
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N o - w  c l l o o s e  

e0 = I + + + 
(s)  

I/lessee 

I bo i = + oo + + 

l b, I = e~ - -  [Zl'ek-~ for k = 1, - . - , n ,  

and upon substituting into the above and simplifying we 
oabtain 

{ P(x 4- i .y)  - (b, 4- i .y.b,-O[ ~ (2 ,  4- w 4- cr)e, (9) 

- (2rr 4- ~0)(I b~ I + lb.- ,  I t g I)+ lxll 
where 

The formula given in (9) is a generalization of the formula 
given in (3). To complete the parallelism between the real 
and the complex eases, we give the generalization of (4). 
We accept Z = x ÷ i .y  as a complex zero of the real poly- 
nomiM P if 

lb, ÷ i .y.b,_,  I =< E, (10) 

where 

J; = (2~ + o0 + o')e. 

- (2~r 4- w)(I b.l  + I 5.- ,  1 [ Z l )  + ~ [ x l  1 b . - l l  • 

Section 4 contains a discussion of this criterion. 

4. U s e  o f  t h e  Error B o u n d  in  a S topp ing  Cr i ter ion  

For each zero Zj of P, let f~j denote the set of all machine 
representable points which lie in a neighborhood about Z/ 
and which satisfy (10). We may imagine that Oi defines a 
region about Z s in the complex plane. This region may not 
be simply commeted, and its size and shape will depend on 
both the polynomial P and the computer arithmetic. If  
our error bound is a good one, then we will not be able to 
distinguish any of the points in 9j from the true zero Zj on 
the basis of calculated function values, for any nonzero 
values of P(Z)  for Z E Oi will be mostly made up of 
"noise." 

We have made rather extensive tests to see how the 
bound given in (10) compares with the actual roundoff 
errors. Included in our tests have been the polynomials 
given in Table 1 and Table 2 of Henrici [4]. The zeros of 
these polynomials were determined using the method sug- 
gested by Traub [5, 6]. The iteration process was termi- 
nated when (10) was satisfied. After all the zeros of each 
polynomial had been located, they were then resubstituted 
into the original polynomial and evaluated in both single 
and double precision. Any zeros which did Imt satisfy (10) 
were purified until (10) was satisfied using the original P. 
The roundoff error is then the difference between the 
evaluations in single and double precision. 

Figure 1 shows a distribution of the ratios of roundoff 
error to the roundoff error bound when (10) was first 

satisfied for each zero. The calculations were performed on 
a Burroughs ]~5500, an octal machine. From Figure 1 we 
see that in nearly 85 percent of our examples the roundoff 
error is bigger than 0.01 times the error bound, and this 
we feel is a reasonable bound for the error. 

The distribution shown in Figure 1 tells us how the 
ro~ldoff error compares with the error bound, but not how 
close we are to a zero of P. When (10) is satisfied we know 
only that we are within the region ftj. However, our analy- 
sis of the data indicates that, in the majority of the exam- 
ples we have tested, we are sufficiently close to the zero 
when the stopping criterion is satisfied that even one more 
iteration is unwarrented. The extra iteration may result in 
no change, there may be a perturbation in the roundoff 
error but the answer is not improved, or the answer may 
be improved by 2 or 3 units in the last decimal. 

In referring to the region ~t i about each zero, we have 
not dealt with the case where f l /may be empty. If there is 
no machine representable number which satisfies the error 
bound, then the Mgorithm would search endlessly for such 
a value unless terminated after a preassigned number of 
steps. We have not been able to prove that there always 
exists a machine number which satisfies (10). On the 
other hand, we have not found an example where there is 
no such number. For the real ease, Kahan has shown that 
doubling the error bound is enough to make (4) satisfiable. 
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FIG. 1. Distribution of the ratio of roundoff error to error 
bound 
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For the complex case it can probably be showr~ that fr,r 
some small multiple of the error bound, there is always ~, 

number Z in the machine which satisfies the bou~ld (10). 
However, we have not shown this. 

5. Conclusions  

The stopping criterion given in. (10) serves as a, satis- 
factory means for accepting a number Z as a complex zero 
of a real polynomial. I t  is based on having a bom~d for the 
roundoff error, which is easily calculated along with the 
polynomial value by using the recurrence given in. (8), 
Little is to be achieved by iterating beyond the stopping 
criterion. An open question at  present is whether or not, 
there always exists a machine representable number which 
satisfies (10). 
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STANDARDS: 
To: ThE ACM M:E~mEttSHm 
Fl:toM: R. W. BEMt~m, A C M  Standards Comm:ittee 

BEMA, sponsor of USASI X3, has pul)lished Docu- 
ment X3/85, Om draft COBOl, standard, via SIC[If,AN 
Notices [Vol. 2, % 4, 11967 April] with NBS support as 
COBOL Inforttuxtion Bulletitt ~ 9. Fur ther  details were 
given on page 440 of the July issue of the Commurdcaffons, 

specifying how rite document couM be obtained. This 
publication preceded a six-mortth balloting period for 
members of X3, which period closes 1967 December 31. 
However, it is desirable for the vote to be as complete as 
possible prior to the November 6-10 meeting in Paris of 
ISO/TC97/Subeommittee 5 on Programming I~mguages, 
to permit the U.S. delegation to report the latest status 
and give some indication of the U.S. position on this docu- 
ment. Several votes have already been cast. For purposes 
of SC5, this document is only a working paper for discus- 
sion as it could not, due to difficulties of fonmdation 
within X3.4, meet the requirements of submission to 
member countries four months prior to the meeting. 

ACM is a voting member of X3, and the Steering Com- 
mittee of the ACM Standards Committee recommended 
unanimously an affirmative vote at its Angust 4 meeting. 
Considering the existence span of the language and the 
vast amount of work that has gone into the preparation 
of this document, the ACiV[ could cast a negative vote only 

On Draft COBOL Standard 
on the basis of substantial new evidence ()f' error (,r ()rob, 
sion. Quite naturally ~here are aIrcady ma~y suggest it)z>;: 
reeeiv~l for improving the w(~r(ting a~~d/()r s~bsta~ce ,~f 
the in~.~ny dements of this doeumeut~ Some (:()mplai~l:~ 
have been heard that the various el)tie,is provide l;oo mate  
combinatorial versions of COBOl, to t)e (:(m*r()llab]e f,:,,r 
interchange between processors, and that a few of thes,,: 
should be selected to the exclusion of th,e rest. The Iv.S. 
Department of Defense is currently ch(:,osi~g some specific: 
levels, which have themselves been subjec*~ to attack for 
having too large a gap between levels to be economical to 
the user. 

The purpose of this letter is to provide lke opportunity ~'~ 
close this loop with the A C M  nwmbership. The 7,'esev~t .~ta~>~ 
is very advanced, and minor changes or improvemem:~ 
should (and probably will) be introduced only at thr, 
international level of SC5 or in the next revisio~ of the 
U.S. standard. Another standard of comparable importance 
and complexity, USASCII, did in fact go through t w~ 
revisions in the U.S. version to coifform to internationa~ 
considem.tions. This indicates the impracticality :rod 
dinfinishing return of holding back a st~mdard until a state 
of perfection is reached. 

If  no major objections Call be advanced, not only -wiIl 
this document become a USA standard, but  the possibility" 
exists for it to be a Federal  standard as well, and would 
thns be specifiable in government contracts. ACM mem- 
bers- - the  banns are hereby posted.--R.W.B. 
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